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Abstract. The need for globally optimizing expensive-to-evaluate functions frequently occurs in many
real-world applications. Among the methods developed for solving such problems, the Efficient Global
Optimization (EGO) is regarded as one of the state-of-the-art unconstrained continuous optimization
algorithms. The surrogate model used in EGO is a Gaussian process (GP) conditional on data points.
The most important control on the efficiency of the EGO algorithm is the GP covariance function (or
kernel), which is taken as a parameterized function. In this paper, we theoretically and empirically
analyze the effect of the covariance parameters, the so-called “characteristic length scale” and “nugget”,
on EGO performance. More precisely, we analyze the EGO algorithm with fixed covariance parameters
and compare them to the standard setting where they are statistically estimated. The limit behavior
of EGO with very small or very large characteristic length scales is identified. Experiments show that a
“small” nugget should be preferred to its maximum likelihood estimate. Overall, this study contributes
to a better theoretical and practical understanding of a key optimization algorithm.
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1. Introduction

We wish to find the global minimum of a function f , minx∈D f(x), where the search space
D = [LB,UB]d is a compact subset of Rd. We assume that f is an expensive-to-compute
black-box function. Subsequently, optimization can only be attempted for a low number of
function evaluations. The Efficient Global Optimization (EGO) algorithm [3, 4] has become
standard for optimizing such expensive unconstrained continuous problems. Its efficiency stems
from an embedded conditional Gaussian process (GP), also known as kriging, which acts as a
surrogate for the objective function. Certainly, other surrogate techniques can be employed
instead of GPs. For example, [9] proposes a variant of EGO in which a quadratic regression
model serves as a surrogate. However, it is shown by some of their examples that the standard
EGO performs better than this variant.

A kriging model is described principally by the associated kernel that determines the set of
possible functions processed by the algorithm to make optimization decisions. Several alterna-
tive methods to cross-validation or maximum likelihood (ML) have been suggested to tune the
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kernel parameters. For example, a fully Bayesian approach is used in [1]. In [4], the process of
estimating parameters and searching for the optimum are combined through a likelihood which
encompasses a targeted objective. In [8], the bounds on the parameter values change within
iterations following an a priori schedule. In our view, the existing methods induce interactions
between kernel learning at each iteration and the optimization dynamics that are still difficult
to understand. The goal of this study is to more deeply understand the influence of the kernel
parameters on the efficiency of EGO by studying the convergence of EGO with fixed parameters
on both a unimodal and multimodal function. In addition, the effect of the “nugget” term is
investigated.

2. Kriging model summary

Let X = {xi}ni=1 be a set of n design points and y = {yi = f(xi)}ni=1 the associated function
values at X. Suppose the observations are a realization of a stationary GP, Y (x). The kriging
model is the GP conditional on the observations, Y (x) | Y (x1) = y1, . . . , Y (xn) = yn. The
GP prediction (simple kriging mean) and variance of prediction (simple kriging variance) at a
generic point x are

m(x) = µ+ r(x)>R−1(y− µ1), (1)

s2(x) = σ2
(
1− r(x)>R−1r(x)

)
. (2)

Here, µ and σ2 are the constant prior mean and variance, 1 is a n × 1 vector of ones, r(x) is
the vector of correlations between point x and the n sample points,
r(x) = [Corr(Y (x), Y (x1)), . . . ,Corr(Y (x), Y (xn))]>, and R is the correlation matrix between
sample points of general term Rij = Corr(Y (xi), Y (xj)). The covariance kernel mostly used
here is the isotropic Matérn 5/2 function defined as [7]

k(x,x′) = σ2Corr(Y (x), Y (x′)) = σ2
(

1 +
√
5‖x−x′‖
θ + 5‖x−x′‖2

3θ2

)
exp

(
−
√
5‖x−x′‖
θ

)
, (3)

where the scalar parameter θ > 0 is the characteristic length scale and controls the correlation
strength between pairs of response values. The smaller the length scale θ, the least any two
response values at given points are correlated, and vice versa (see Figure 1). When a nugget
τ2, is added to the model, the covariance function becomes

kτ2(x,x′) = k(x,x′) + τ2δ(x,x′), (4)

where δ(., .) is the Kronecker’s delta. Adding a nugget to the model means that the observations
are perturbed by an additive Gaussian noiseN (0, τ2). The nugget also increases kriging variance
throughout the search domain since, beside the changes in the covariance matrix R, the term
σ2 becomes σ2 + τ2 in Equation (2).

Classically here, the prior mean and variance, without the nugget, are estimated by the
following ML closed-form expressions [7],

µ̂ =
1>R−1y

1>R−11
, σ̂2 =

(y− 1µ̂)>R−1(y− 1µ̂)

n
, (5)

so that the only kernel parameters left are θ and τ2.
At any point x ∈ D, the improvement is defined as the random variable I(x) = max(0, fmin−

Y (x)) where fmin is the best objective function value observed so far. The improvement is the
random excursion of the process at any point below fmin. The expected improvement (EI) can
be calculated analytically as

EI(x) =

{
(fmin −m(x))Φ

(
fmin−m(x)

s(x)

)
+ s(x)φ

(
fmin−m(x)

s(x)

)
if s(x) > 0

0 if s(x) = 0 ,
(6)
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Figure 1: Kriging mean (thick solid line) along with the 95% confidence intervals (thick dashed
lines), i.e., m(x)± 1.96s(x). The thin lines are the sample paths of the GP. As θ changes, the
class of possible functions considered for the optimization decision changes.

in which Φ and φ are the cumulative distribution function and probability density function
of the standard normal distribution respectively. EI(x) is positive everywhere in D. It is
increasing when the kriging variance increases (at a fixed kriging mean) and when the kriging
mean decreases (at a fixed kriging variance). The first term in Equation (6) is dominated by the
contribution of the kriging mean to the improvement while the second term is dominated by the
contribution of the kriging variance. The EGO algorithm is the sequential maximization of the
EI, xn+1 ∈ arg maxx∈D EI(x) followed by the updating of the kriging model with X ∪ {xn+1}
and the associated responses y.

3. EGO with fixed length scale

We start by discussing the behavior of EGO with two different fixed length scales (small and
large). The magnitude of length scale is measured with respect to the longest possible distance
in the search space, Distmax, which in our d-dimensional box search space is equal to (UB −
LB)
√
d. θ is large if it is close to or larger than Distmax and vice versa. Here, LB = −5

and UB = 5. For the sake of clarity and brevity, illustrations are given on only two isotropic
functions, the unimodal sphere and the highly multimodal Ackley functions. They demand two
radically different behaviors from the optimization algorithm and are defined as

fSphere(x) =

d∑
i=1

x2i , (7)

fAckley(x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

x2i

)
− exp

(
1
d

d∑
i=1

cos (2πxi)

)
+ 20− exp(1). (8)

Figure 3 illustrates the kriging models on Ackley for small and large length scales. More details
can be found in [6].

3.1. EGO with small characteristic length scale

When θ is small, there is a low correlation between response values so that data points influence
the process only in their immediate neighborhood. As θ tends to 0 and at points away from
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the data points, the kriging mean and variance of Equations (1) and (2) turn into the constants
µ and σ2 respectively. Thus the EI becomes a constant flat function when x is away from

xis, EI(x) → EIasymp := (fmin − µ̂)Φ
(
fmin−µ̂

σ̂

)
+ σ̂φ

(
fmin−µ̂

σ̂

)
, where µ̂ →

n∑
i=1

yi

n and σ̂2 →
n∑

i=1
(yi−µ̂)2

n since the correlation matrix R in Equation (5) tends to I, the identity matrix.

Proposition 1 (EGO iterates for small length scale). Without loss of generality, we assume
that the best observed point is unique. As the characteristic length scale of the kernel tends to
zero, the EGO iterates are located in a shrinking neighborhood of the best observed point.

This proposition is now further explained. Irrespectively of the function being optimized
and the current design of experiments (DoE), provided that fmin is uniquely defined, the set of
design points created by EGO with small θ has characteristically repeated samples near fmin.
When the length scale is small, the observations have a low range of influence. In the limit
case, one can assume that in the vicinity of the ith design point the correlation between Y (xi)
and the other observations is zero, i.e. Corr(Y (xi), Y (xj)) → 0 , 1 ≤ j ≤ n , j 6= i, so that
R→ I. Let x be in the neighborhood of xi, Bε(x

i) =
{
x ∈ D : ‖x− xi‖ ≤ ε

}
, for a sufficiently

small ε and away from the other points of the DoE j 6= i so that the correlation vector tends
to r(x)→ [0, . . . , 0, r, 0, . . . 0] where r = Corr(Y (x), Y (xi)). In this situation, the kriging mean
and variance can be fully expressed in terms of the correlation r (a scalar in [0, 1]):

m(r) = µ̂+ r(yi − µ̂) = µ̂(1− r) + ryi , s2(r) = σ̂2(1− r2), (9)

The above equations show that among the points of the DoE, the EI will be the largest near
the best observed point as, for any given r, the variance will be the same and the mean will be
the lowest. By setting yi = fmin in Equation (9), dividing the equation by σ̂ and introducing
the new variable A := fmin−µ̂

σ̂ , the normalized EI (Equation (6)) in the vicinity of the best
observed point reads,

EI(r)/σ̂ = (1− r)AΦ

(
A

√
1− r
1 + r

)
+
√

1− r2φ

(
A

√
1− r
1 + r

)
. (10)

The normalized EI is handy in that, for small length scale, it sums up what happens for all
objective functions, DoEs and kernels in terms of only two scalars, i.e. the correlation r and
A. Notice that A ≤ 0 because fmin ≤ yi , ∀i. Instances of the normalized EI are plotted for
a set of As in [−2,−0.001] in the left of Figure 2. The value of normalized EI when r → 0+ is
the value of EI as x moves away from data points. The maximum of EI (equivalently EI/σ̂) is
reached at r?, which is strictly larger than 0, and thus in the neighborhood of the best observed
point.

3.2. EGO with large characteristic length scale

Proposition 2 (EGO iterates for large length scale). As the characteristic length scale of
kernels goes to infinity, the EGO algorithm degenerates into the sequential minimization of the
kriging mean, m(.).

Partial proof : As the length scale, θ, goes to infinity, the kriging variance vanishes everywhere,
limθ→∞ s2(x) = 0, with the implication on the EI of Equation (6) that limθ→∞EI(x) =
fmin − m(x) in regions where m(x) < fmin. To save space, we do not prove here that such
regions exist in general. The intuition is that because m(x) is interpolating, and stiff for large
θs, it overshoots the best point value. Now we just need to prove that kriging variance s2(x)
tends to zero when θ → ∞. This is established under general conditions by the following
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Figure 2: Left: Normalized EI as a function of r ∈ [0, 1] in the vicinity of the sample point with
the lowest function value for a small length scale. Right: location of the next EGO iterate (r?

where EI is maximized) as a function of A.

Lemma, where the stationary GP Y (x)x∈D is assumed to be centered, i.e. E[Y (x)] = 0, and
square-integrable. Dealing with a centered GP is a standard assumption used in simple kriging
which is recovered in general by removing the average from the process.

Lemma 1. If ∃ i , i = 1, . . . , n, such that
〈
Y (x), Y (xi)

〉
→ σ2 as θ →∞, then s2(x)→ 0.

Proof. We define S to be the subspace spanned by the Y (xi)s: S = span
(
Y (x1), . . . , Y (xn)

)
.

Let P be the orthogonal projection operator onto S. The kriging variance at an arbitrary
location is

s2(x) = ‖Y (x)− P (Y (x))‖2 = ‖Y (x)‖2 − ‖P(Y (x))‖2 . (11)

Any vector in S can be represented by a linear combination of Y (x1), . . . , Y (xn), including
P (Y (x)), which is written as

P(Y (x)) =

n∑
j=1

βjY (xj) = β>y, (12)

Because the projection error is perpendicular to the projection plane, the βjs are solutions of

∀ i ,
〈
Y (x)−

∑n
j=1 βjY (xj), Y (xi)

〉
= 0, which implies

∀ i ,
〈
Y (x), Y (xi)

〉
=

〈
n∑
j=1

βjY (xj), Y (xi)

〉
=

n∑
j=1

βj
〈
Y (xj), Y (xi)

〉
. (13)

In the Euclidean space, the following definitions hold for any two x and x′ ∈ D: 〈Y (x), Y (x′)〉 =
E [Y (x)Y (x′)] = Cov (Y (x), Y (x′)) = σ2Corr (Y (x), Y (x′)) , where the term Corr (Y (x), Y (x′))
is (geometrically) the cosine of the angle between Y (x) and Y (x′). Thus, one can rewrite
Equation (13) as

E
[
Y (x)Y (xi)

]
=

n∑
j=1

βjE
[
Y (xj)Y (xi)

]
or σ2Corr (Y (x),y) = σ2Corr (y,y)β ,

i.e., r(x) = Rβ ⇒ β> = r>(x)R−1. (14)
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Summing up, Equations (12 – 14) result in P(Y (x)) = r>(x)R−1y, which is an important
property: the kriging prediction at any location x ∈ D is the orthogonal projection of Y (x)
onto S.

In the sequel, Equation (11) is rewritten by replacing the terms ‖Y (x)‖2 and ‖P(Y (x))‖2
by σ2 and E [P(Y (x))P(Y (x))] as follows

σ2−E
[
r>(x)R−1yy>R−1r(x)

]
= σ2 − r>(x)R−1 E

[
yy>

]︸ ︷︷ ︸
σ2R

R−1r(x)

= σ2 −
(
1− r>(x)R−1r(x)

)
= s2(x). (15)

We can now see why the kriging variance tends to zero when θ → ∞. Remember that
〈Y (x), Y (x′)〉 = σ2Corr (Y (x), Y (x′)). When θ →∞, the correlation between Y (x) and Y (x′)
is 1 and 〈Y (x), Y (x′)〉 becomes σ2. Apply this result to x′ ≡ xi:

s2(x) = ‖Y (x)‖2 − ‖P(Y (x))‖2 ≤
∥∥Y (x)− Y (xi)

∥∥2 =

‖Y (x)‖2︸ ︷︷ ︸
σ2

+
∥∥Y (xi)

∥∥2︸ ︷︷ ︸
σ2

−2
〈
Y (x), Y (xi)

〉︸ ︷︷ ︸
σ2

= 0, (16)

and the proof is complete. �
Minimizing the kriging mean does not define a valid global optimization scheme for two

reasons. Firstly, because premature convergence occurs as soon as the minimum of m(x) co-
incides with an observation of the true function [4]; when m(xn+1) = f(xn+1) where xn+1 =
arg minx∈Dm(x), the EGO iterations with large θ stop producing new points; however, xn+1∪X
may not even contain a local optimum of f . Secondly, it should be remembered that the kriging
mean discussed here stems from large length scale, which may not allow an accurate prediction
of the objective function considered. It suits a function like the sphere with a Matérn kernel,
but it is not appropriate for a multimodal function like Ackley.

The DoE created by EGO with large θ can vary greatly depending on the function and the
initial DoE. So, if the function is regular and well predicted by m(.) around xn+1, like the sphere
function, the kriging mean rapidly converges to the true function and points are accumulated
in this region which may or may not be the global optimum. Conversely, if m(xn+1) is different
from f(xn+1), the kriging mean changes a lot between iterations, which can be understood as
a manifestation of Runge’s phenomenon because new observations have a long-range influence.
The kriging mean overshoots observations in both upper and lower directions (cf. the dotted
curve in the upper right plot of Figure 3). The resulting DoE is more space-filling than the
DoE of small length scale. We end this section by further specifying the asymptotic behavior
of the kriging mean as θ → ∞. Our results are based on 1-dimensional observations and are
summarized as follows.

Conjecture 1 (Asymptotic behavior of kriging mean for large length scales).
In 1 dimension with n data points, if the covariance function is n− 1 times differentiable, then
the kriging mean tends to the interpolating Lagrange polynomial [2] as the length scale, θ, tends
to infinity.

For example, Figure 4 shows processes with Matérn 3/2, Matérn 5/2 and square exponential
kernels which are once, twice and infinitely differentiable respectively. Herein, the length scale
is 300, which is very large with respect to the distance between the sample locations, and the
number of data points is n = 3. As a result, the kriging means of the processes with Matérn
5/2 and square exponential kernels are identical to the Lagrange polynomial, but not when the
kernel is Matérn 3/2. Note also that, since a cubic spline [5] is made of third degree polynomials,
it is the same as the Lagrange polynomial when the number of data points is n ≤ 4.
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Figure 3: Ackley function (solid line) approximated by a kriging model (mean ± std. deviation,
thick/thin lines) with θ = 0.001 (dashed) and θ = 100 (dotted). The crosses are the initial DoE.
Bullets: DoEs created by EGO after 20 iterations.

3.3. Comparison of EGO with fixed and adapted length scale

In this section, the efficiency of EGO with different fixed length scales is compared with the
standard EGO whose length scale is determined by ML. Tests are carried out on the previously
defined functions, Equations (7) and (8) respectively. Each optimization is repeated five times
on 5-dimensional instances of the problems, d = 5. The initial DoE is fixed and has size 3× d.
The total budget is 70×d. To compare results adequately, the functions are scaled (multiplied)
by 2

fmax
DoE−fmin

DoE
, where fminDoE and fmaxDoE are the smallest and the largest value of f in the initial

DoE. Figure 5 shows the results in terms of median objective functions. The medians are
significant even when accounting for the spread in the results of the experiments. The θ values
belong to the set {0.01, 0.1, 1, 5, 10, 20}. On both functions, EGO does not converge quickly
towards the minimum when θ = 0.01 or θ = 0.1 because, as explained in Section 3, it focuses on
the neighborhoods of the best points found early in the search. On the sphere function, EGOs
with large length scale, i.e. 10 or 20, have performances equivalent to that of the standard
EGO. Indeed, the sphere function is very smooth and, as can be seen on the rightmost picture
of Figure 5, ML estimates of θ are rapidly equal to 20 (the upper bound of the ML) after a
few iterations. With the Ackley function, the best fixed θ is 1. It temporarily outperforms the
standard EGO at the beginning of the search (until about 70 evaluations) but then ML makes
it possible to decrease the θ until about 0.5 (see rightmost plot) and to fine-tune the search in
the already located high performance region.

4. Effect of a nugget on EGO convergence

To investigate the effect of a nugget on EGO, the same test protocol as above is conducted but
the length scales are set by ML and two scenarios are considered: 1) nugget τ2 is estimated by
ML, 2) a fixed nugget is taken from the set τ2 ∈ {10−2, 10−4, 10−6, 10−8, 0} (τ2 = 0 means no
nugget). Figure 6 shows the results. For both functions, when the nugget value is large (10−2 or
10−4 or ML estimated on Ackley), EGO exhibits the worst performances: it does not converge
faster and stops further from the optimum. The reason is that a large nugget deteriorates the
interpolation quality of a kriging model when observations are not noisy like here. On the sphere
function, EGO rapidly locates the area of the optimum but the EI without a nugget, which is
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Figure 5: Median of the best objective function vs. number of calls of standard EGO and EGO
with different fixed length scale in dimension 5.

null at data points, pushes the search away from it. However, a nugget value equal to 10−6 or
10−8 hardly slows down convergence and significantly improves the accuracy with which the
optimum is found. Indeed, by increasing s2(x) everywhere including in the immediate vicinity
of data points, where it would be null without a nugget, the nugget increases the EI there
and allows a higher concentration of EGO iterates near the best observed point. The nugget
learned by ML on the sphere tends to zero which, as just explained, is not the best setting for
optimization. On Ackley, besides large nugget values (τ2 ≥ 10−4) which significantly degrade
the EGO search, values ranging from τ2 = 0 to 10−6 do not notably affect efficiency. In this
case, the global optimum is not accurately located after 70× d evaluations of f and there is no
need to allow an accumulation of points near the best observation through the nugget. Note
that on both functions, when considering the best point found so far, ML estimation of the
nugget is not a good strategy.
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Figure 6: Median of the best objective function vs. number of calls to f for EGO with different
nugget values in dimension 5.

5. Conclusion

This paper provides a careful analysis of the effect of length scale and a nugget on EGO
iterations. Based on our tests, ML estimation of the length scale is a good choice but ML
estimation of the nugget is not recommended and a fixed small nugget value is preferred. As
a perspective, our experiments suggest that EGO strategies starting with a large fixed length
scale, which is then decreased while keeping a small amount of nugget, should be efficient and
will also eliminate the need for ML estimations, which require O(n3) computations.
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