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Abstract. In this article, a hybrid class of the q-Hermite based Apos-
tol type Frobenius-Euler polynomials is introduced by means of generating
function and series representation. Several important formulas and recur-
rence relations for these polynomials are derived via different generating
function methods. Further, the 2D q-Hermite based Apostol-Bernoulli,
Apostol-Euler and Apostol-Genocchi polynomials are introduced and im-
portant relations for these polynomials are also established. Finally, a new
class of the 2D q-Hermite based Appell polynomials is investigated as the
generalization of the above polynomials. The determinant definitions for
the 2D q-Hermite based Appell and related polynomials are also explored.

1. Introduction and preliminaries

The subject of q-calculus started appearing in the nineteenth century due
to its applications in various fields of mathematics, physics and engineering.
The definitions and notations of q-calculus reviewed here are taken from [2].

The q-analogue of the shifted factorial (a)n is given by

(a; q)0 = 1, (a; q)n =

n−1
∏

m=0

(1− qma), n ∈ N.

The q-analogues of a complex number a and of the factorial function are given
by

[a]q =
1− qa

1− q
, q ∈ C− {1}; a ∈ C,
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[n]q! =

n
∏

m=1

[m]q = [1]q[2]q · · · [n]q =
(q; q)n
(1− q)n

, q 6= 1; n ∈ N,

[0]q! = 1, q ∈ C; 0 < q < 1.

The Gauss q-binomial coefficient
[

n
k

]

q
is given by

[

n

k

]

q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

, k = 0, 1, . . . , n.

The q-analogue of the function (x+ y)n is given by

(1.1) (x+ y)nq :=

n
∑

k=0

[

n

k

]

q

qk(k−1)/2xn−kyk, n ∈ N0.

The q-analogues of exponential functions are given by

eq(x) =

∞
∑

n=0

xn

[n]q!
:=

1

((1− q)x; q)∞
, 0 < |q| < 1; |x| < |1− q|−1,

Eq(x) =

∞
∑

n=0

qn(n−1)/2 xn

[n]q!
:= (−(1− q)x; q)

∞
, 0 < |q| < 1; x ∈ C.

Moreover, the functions eq(x) and Eq(x) satisfy the following properties:

(1.2) Dqeq(x) = eq(x), DqEq(x) = Eq(qx),

where the q-derivative Dqf of a function f at a point 0 6= z ∈ C is defined as
follows:

Dqf(z) =
f(qz)− f(z)

qz − z
, 0 < |q| < 1.

For any two arbitrary functions f(z) and g(z), the q-derivative operator
Dq satisfies the following product and quotient relations:

(1.3) Dq,z(f(z)g(z)) = f(z)Dq,zg(z) + g(qz)Dq,zf(z),

(1.4) Dq,z

(

f(z)

g(z)

)

=
g(qz)Dq,zf(z)− f(qz)Dq,zg(z)

g(z)g(qz)
.

Recently, extensive investigations related to the q-Bernoulli polynomials
Bn,q(x), q-Euler polynomials En,q(x) and q-Genocchi polynomials Gn,q(x)
and their generalizations in two variables x and y are considered, see for
example [16, 18–20,17, 10, 11, 25, 24]. We recall the following definitions.

Definition 1.1. The q-Apostol-Bernoulli polynomials B
(α)
n,q(x, y;λ) of or-

der α (q ∈ C, α ∈ N, 0 < |q| < 1) in x and y are defined by [19]

(1.5)

(

t

λeq(t)− 1

)α

eq(xt)Eq(yt) =

∞
∑

n=0

B
(α)
n,q(x, y;λ)

tn

[n]q!
, |t+log λ| < 2π,

where B
(α)
n,q(λ) := B

(α)
n,q(0, 0;λ) are the q-Apostol-Bernoulli numbers.
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Definition 1.2. The q-Apostol-Euler polynomials E
(α)
n,q(x, y;λ) of order

α (q ∈ C, α ∈ N, 0 < |q| < 1) in x and y are defined by [19]
(1.6)

(

2

λeq(t) + 1

)α

eq(xt)Eq(yt) =

∞
∑

n=0

E
(α)
n,q(x, y;λ)

tn

[n]q!
, |t+ log(−λ)| < π,

where E
(α)
n,q(λ) := E

(α)
n,q(0, 0;λ) are the q-Apostol-Euler numbers.

Definition 1.3. The q-Apostol-Genocchi polynomials G
(α)
n,q (x, y;λ) of or-

der α (q ∈ C, α ∈ N, 0 < |q| < 1) in x and y are defined by [19]
(1.7)

(

2t

λeq(t) + 1

)α

eq(xt)Eq(yt) =

∞
∑

n=0

G(α)
n,q (x, y;λ)

tn

[n]q!
, |t+ log(−λ)| < π,

where G
(α)
n,q (λ) := G

(α)
n,q (0, 0;λ) are the q-Apostol-Genocchi numbers.

Several unified forms of the Apostol-type polynomials are introduced and
studied by many authors, for this see [7,21,23,22,27,8,9,12,15]. We recall the

definition of the Apostol type q-Frobenius-Euler polynomials H
(α)
n,q(x, y;u;λ)

introduced and studied by Kurt in [13].

Definition 1.4. The Apostol type q-Frobenius-Euler polynomials of order

α H
(α)
n,q(x, y;u;λ) (q ∈ C, α ∈ N, 0 < |q| < 1) in x and y are defined by

(1.8)

(

1− u

λeq(t)− u

)α

eq(xt)Eq(yt) =

∞
∑

n=0

H(α)
n,q(x, y;u;λ)

tn

[n]q!
,

where H
(α)
n,q(u;λ) := H

(α)
n,q(0, 0;u;λ) are the Apostol type q-Frobenius-Euler

numbers defined by

(1.9)

(

1− u

λeq(t)− u

)α

=

∞
∑

n=0

H(α)
n,q(0, 0;u;λ)

tn

[n]q!
.

• For y = 0, the polynomials H
(α)
n,q(x, y, u;λ) reduce to the q-Apostol type

Frobenius-Euler polynomials H
(α)
n,q(x, u;λ) in one variable [26].

• By letting q → 1− and λ = 1, the polynomials H
(α)
n,q(x, u;λ) reduce to

the Frobenius-Euler polynomials H
(α)
n (x, u) [14, 3].

Very recently a new type of q-Hermite polynomial is considered in [4],
which is a particular member of the q-Appell family [1]. The q-Appell poly-
nomials are defined by means of the following generating function

1

gq(t)
eq(xt) =

∞
∑

n=0

An,q(x)
tn

[n]q!
, An,q := An,q(0).
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Definition 1.5. The continuous q-Hermite polynomials H
(s)
n,q(x) (0 <

q < 1, 0 6= s ∈ R) are defined by

(1.10) eq

(

xt−
st2

1 + q

)

=

∞
∑

n=0

H(s)
n,q(x)

tn

[n]q!
,

where H
(s)
n,q := H

(s
n,q(0) are the q-Hermite numbers defined by

(1.11) eq

(

−
st2

1 + q

)

=
∞
∑

n=0

H(s)
n,q(0)

tn

[n]q!
.

The continuous q-Hermite polynomials H
(s)
n,q(x) are q-Appell for gq(t) =

eq

(

st2

1+q

)

.

To study hybrid forms of the q-polynomials by different means is a new ap-
proach. Very recently, Riyasat et al. [24] introduced and studied the compos-
ite 2D q-Appell polynomials. In order to extend this approach, in this article,
a hybrid class of the q-Hermite based Apostol type Frobenius-Euler polyno-
mials is introduced. The generating function, series representation and sev-
eral important formulas and relations for these polynomials are derived. The
2D q-Hermite based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi
polynomials are also introduced and corresponding results are established.
Finally, a new family of the 2D q-Hermite based Appell polynomials is intro-
duced and studied from determinant point of view.

2. q-Hermite based Apostol type Frobenius-Euler polynomials

In this section, we introduce the q-Hermite based Apostol type Frobenius-
Euler polynomials (qHbATFEP) by means of generating function and series
representation. Certain relations for these polynomials are also derived by
using various identities.

In order to establish the generating function for the qHbATFEP, the
following result is proved.

Theorem 2.1. Let q ∈ C, α ∈ N, 0 < |q| < 1. The following generating
function for the q-Hermite based Apostol type Frobenius-Euler polynomials

HH
(α,s)
n,q (x, y;u;λ) of order α holds true

(2.1)

(

1− u

λeq(t)− u

)α

eq

(

xt−
st2

1 + q

)

Eq(yt) =
∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!
.

Proof. Expanding the exponential function eq(xt) and then replacing
the powers of x, i.e. x0, x1, x2, . . . , xn by the corresponding polynomials

H
(s)
0,q (x), H

(s)
1,q (x), . . . , H

(s)
n,q(x) in the l.h.s. and replacing x by the polynomial
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H
(s)
1,q (x) in the r.h.s. of equation (1.8) and after summing up the terms in the

l.h.s. of the resultant equation, we find
(

1− u

λeq(t)− u

)α

Eq(yt)

∞
∑

n=0

H(s)
n,q(x)

tn

[n]q!
=

∞
∑

n=0

H(α)
n,q(H

(s)
1,q (x), y;u;λ)

tn

[n]q!
,

which on using equation (1.10) in the l.h.s. and denoting the resultant

qHbATFEP in the r.h.s. by HH
(α,s)
n,q (x, y;u;λ) yields assertion (2.1).

Remark 2.2. We note that HH
(α,s)
n,q (u;λ) := HH

(α,s)
n,q (0, 0;u;λ) are the

q-Hermite based Apostol type Frobenius-Euler numbers defined by
(

1− u

λeq(t)− u

)α

eq

(

−
st2

1 + q

)

=

∞
∑

n=0

HH(α,s)
n,q (u;λ)

tn

[n]q!
.

Theorem 2.3. The following series representation for the q-Hermite

based Apostol type Frobenius-Euler polynomials HH
(α,s)
n,q (x, y;u;λ) of order α

hold true:

(2.2) HH(α,s)
n,q (x, y;u;λ) =

n
∑

k=0

[

n

k

]

q

H
(α)
n−k,q(0, y;u;λ)H

(s)
k,q(x).

Proof. Using equations (1.8) and (1.10) in the l.h.s. of equation (2.1)
and then applying the Cauchy product rule and equating the coefficients of
same powers of t in both sides of resultant equation, we get representation
(2.2).

Theorem 2.4. The following summation formulas for the q-Hermite

based Apostol type Frobenius-Euler polynomials HH
(α,s)
n,q (x, y;u;λ) of order α

holds true:

(2.3) HH(α,s)
n,q (x, y;u;λ) =

n
∑

k=0

[

n

k

]

q
HH

(α)
k,q (0, 0;u;λ)(x+ y)n−k

q ,

HH(α,s)
n,q (x, y;u;λ) =

n
∑

k=0

[

n

k

]

q
HH

(α)
k,q (0, y;u;λ)x

n−k,

(2.4) HH(α,s)
n,q (x, y;u;λ) =

n
∑

k=0

[

n

k

]

q

q(n−k)(n−k−1)/2
HH

(α)
k,q (x, 0;u;λ)y

n−k.

Proof. Suitably using equations (1.1)-(1.7) in generating function (2.20)
to get three different forms. Further, making use of the Cauchy product rule
in the resultant expressions and then comparing the like powers of t in both
sides of resultant equation, we find formulas (2.3)-(2.4).
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Theorem 2.5. The following recursive formulas for the q-Hermite based

Apostol type Frobenius-Euler polynomials HH
(α,s)
n,q (x, y;u;λ) of order α hold

true:

(2.5) Dq,x HH(α,s)
n,q (x, y;u;λ) = [n]q HH

(α,s)
n−1,q(x, y;u;λ),

(2.6) Dq,y HH(α,s)
n,q (x, y;u;λ) = [n]q HH

(α,s)
n−1,q(x, qy;u;λ).

Proof. Differentiating generating function (2.1) with respect to x and
y with the help of equation (1.2) and then simplifying with the help of the
Cauchy product rule, formulas (2.5) and (2.6) are obtained.

Theorem 2.6. The following recurrence relation for the q-Hermite based

Apostol type Frobenius-Euler polynomials HH
(s)
n,q(x, y;u;λ) holds true:

(2.7)

HH
(s)
n+1,q(x, y;u;λ)

= −

(

2s

1 + q

)

[n]qHH
(s)
n−1,q(qx, qy;u;λ)

+ x HH(s)
n,q(x, y;u;λ) + y HH(s)

n,q(qx, qy;u;λ)

−
λ

1− u

n
∑

k=0

[

n

k

]

q
HH

(s)
n−k,q(x, y;u;λ)q

n−kHk,q(1, 0;u;λ).

Proof. Taking α = 1 and then applying q-derivative on both sides of
generating function (2.1), it follows that

∞
∑

n=0

HH
(s)
n+1,q(x, y;u;λ)

tn

[n]q!
= (1− u)Dq,t





eq(xt)Eq(yt)eq

(

− st2

1+q

)

(λeq(t)− u)



 ,

which on performing differentiation in the l.h.s. using formula (1.4) yields

∞
∑

n=0

HH
(s)
n+1,q(x, y;u;λ)

tn

[n]q!

= (1− u)





(λeq(qt)− u)Dq,t

(

eq(xt)Eq(yt)eq

(

− st2

1+q

))

(λeq(t)− u)(λeq(qt)− u)
−

eq(xqt)Eq(yqt)eq

(

− sq2t2

1+q

)

Dq,t(λeq(t)− u)

(λeq(t)− u)(λeq(qt)− u)



 .
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Now, using product differentiation formula (1.3) in the above equation, it
follows that
(2.8)
∞
∑

n=0

HH
(s)
n+1,q(x, y;u;λ)

tn

[n]q!

= −

(

2s

1 + q

)(

1− u

λeq(t)− u

)

eq

(

qxt−
st2

1 + q

)

Eq(qyt)t

+ x

(

1− u

λeq(t)− u

)

eq

(

xt−
st2

1 + q

)

Eq(yt)

+ y

(

1− u

λeq(t)− u

)

eq

(

qxt−
st2

1 + q

)

Eq(qyt)

−
λ

1− u

(

1− u

λeq(qt)− u

)

eq

(

qxt−
sq2t2

1 + q

)

Eq(qyt)

(

1− u

λeq(t)− u

)

eq(t).

Further, using generating functions (1.8) and (2.1) (with α = 1) in equa-
tion (2.8), we find

∞
∑

n=0

HH
(s)
n+1,q(x, y;u;λ)

tn

[n]q!

= −

(

2s

1 + q

)

[n]q

∞
∑

n=0

HH
(s)
n−1,q(qx, qy;u;λ)

tn

[n]q!

+ x

∞
∑

n=0

HH(s)
n,q(x, y;u;λ)

tn

[n]q!
+ y

∞
∑

n=0

HH(s)
n,q(qx, qy;u;λ)

tn

[n]q!

−
λ

1− u

∞
∑

n=0

HH(s)
n,q(x, y;u;λ)q

n tn

[n]q!

∞
∑

k=0

Hk,q(1, 0;u;λ)
tk

[k]q!
,

which on making use of the Cauchy product rule in the r.h.s. and comparing
the coefficients of tn/n! on both sides of the resultant equation gives recurrence
relation (2.7).

Theorem 2.7. The following relation for the q-Hermite based Apostol

type Frobenius-Euler polynomials HH
(s)
n,q(x, y;u;λ) holds true:

(2.9)
(2u− 1)

n
∑

k=0

[

n

k

]

q
HH

(s)
n−k,q(x, y; 1− u;λ)H

(s)
k,q(0, 0;u;λ)

= uHH(s)
n,q(x, y;u;λ)− (1− u)HH(s)

n,q(x, y; 1 − u;λ).

Proof. Making use of the identity

(2u− 1)

(λeq(t)− u)(λeq(t)− (1 − u))
=

1

(λeq(t)− u)
−

1

(λeq(t)− (1− u))
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to evaluate the following fraction, so that we have

(2u− 1)
(1− u)eq

(

xt− st2

1+q

)

(1− (1− u))Eq(yt)

(λeq(t)− u)(λeq(t)− (1− u))

=
(1− u)eq

(

xt− st2

1+q

)

uEq(yt)

(λeq(t)− u)

−
(1− u)eq

(

xt− st2

1+q

)

(1− (1− u))Eq(yt)

(λeq(t)− (1− u))
,

which on using equations (2.1) and (1.9) in both sides gives

(2u− 1)

∞
∑

n=0

HH(s)
n,q(x, y; 1 − u;λ)

tn

[n]q!

∞
∑

k=0

H
(s)
k,q(0, 0;u;λ)

tk

[k]q!

= u

∞
∑

n=0

HH(s)
n,q(x, y;u;λ)

tn

[n]q!
− (1− u)

∞
∑

n=0

HH(s)
n,q(x, y; 1− u;λ)

tn

[n]q!
.

Applying the Cauchy product rule in the above equation and then equating
the coefficients of like powers of t in both sides of the resultant equation,
assertion (2.9) follows.

Theorem 2.8. The following relation for the q-Hermite based Apostol

type Frobenius-Euler polynomials HH
(s)
n,q(x, y;u;λ) holds true:

(2.10)

uHH(s)
n,q(x, y;u;λ)

=
n
∑

k=0

[

n

k

]

q

(

λHH
(s)
n−k,q(x, y;u;λ)− (1− u)H

(s)
n−k,q(0)(x+ y)kq

)

.

Proof. By using eq(t)Eq(−t) = 1, we consider the following identity:

u

λ(λeq(t)− u)eq(t)
=

1

(λeq(t)− u)
−

1

λeq(t)
.

Evaluating the following fraction using above identity, we find

u(1− u)eq

(

xt− st2

1+q

)

Eq(yt)

λ(λeq(t)− u)eq(t)

=
(1− u)eq

(

xt− st2

1+q

)

Eq(yt)

(λeq(t)− u)
−

(1− u)eq

(

xt− st2

1+q

)

Eq(yt)

λeq(t)
,
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which on using equations (2.1), (1.1) and (1.11) yields

u

∞
∑

n=0

HH(s)
n,q(x, y;u;λ)

tn

[n]q!

= λ
∞
∑

n=0

HH(s)
n,q(x, y;u;λ)

tn

[n]q!

∞
∑

k=0

tk

[k]q!

− (1− u)

∞
∑

n=0

H(s)
n,q(0)

tn

[n]q!

∞
∑

k=0

(x+ y)kq
tk

[k]q!
.

Making use of the Cauchy product rule in the r.h.s. of above equation
and then comparing the coefficients of tn/n! on both sides of the resultant
equation, we get relation (2.10).

Theorem 2.9. The following relation for the q-Hermite based Apostol

type Frobenius-Euler polynomials HH
(α,s)
n,q (x, y;u;λ) of order α holds true:

(2.11)

HH(α,s)
n,q (x, y;u;λ) =

1

1− u

n
∑

k=0

[

n

k

]

q

(

λHH
(α,s)
n−k,q(1, y;u;λ)Hk,q(x, 0;u;λ)

− uHH
(α,s)
n−k,q(x, 0;u;λ)Hk,q(0, y;u;λ)

)

.

Proof. Consider generating function (2.1) in the following form:
∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!

=

(

1− u

λeq(t)− u

)

Eq(yt)

(

λeq(t)− u

1− u

)(

1− u

λeq(t)− u

)α

eq

(

xt−
st2

1 + q

)

.

Simplifying the above equation and using equations (2.1) and (1.8), we find
∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!

=
1

1− u

(

λ

∞
∑

n=0

HH(α,s)
n,q (1, y;u;λ)

tn

[n]q!

∞
∑

k=0

Hk,q(x, 0;u;λ)
tk

[k]q!

− u

∞
∑

n=0

HH(α,s)
n,q (x, 0;u;λ)

tn

[n]q!

∞
∑

k=0

Hk,q(0, y;u;λ)
tk

[k]q!

)

.

Application of the Cauchy product rule in the r.h.s. and cancelation of the
coefficients of same powers of t in both sides of the resultant equation yields
relation (2.11).
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Theorem 2.10. The following relation between the q-Hermite based Apos-

tol type Frobenius-Euler polynomials HH
(α,s)
n,q (x, y;u;λ) and the q-Apostol-

Bernoulli polynomials Bn,q(x, y;λ) holds true

(2.12)
HH(α,s)

n,q (x, y;u;λ) =

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

(

λ

k
∑

r=0

[

k

r

]

q

Bk−r,q(0, y;λ)

−Bk,q(0, y;λ)
)

HH
(α,s)
n−k+1,q(x, 0;u;λ).

Proof. Consider generating function (2.1) in the following form

∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!

=

(

1− u

λeq(t)− u

)α

Eq(yt)

(

t

λeq(t)− 1

)(

λeq(t)− 1

t

)

eq

(

xt−
st2

1 + q

)

,

which on simplification and use of equations (2.1) and (1.5) (with α = 1) gives

(2.13)

∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!

=
1

t

(

λ
∞
∑

n=0

HH(α,s)
n,q (x, 0;u;λ)

tn

[n]q!

∞
∑

k=0

Bk,q(0, y;λ)
tk

[k]q!

∞
∑

r=0

tr

[r]q !

−

∞
∑

n=0

HH(α,s)
n,q (x, 0;u;λ)

tn

[n]q!

∞
∑

k=0

Bk,q(0, y;λ)
tk

[k]q!

)

.

On equating the coefficients of same powers of t after using Cauchy product
rule in equation (2.13), assertion (2.12) follows.

Theorem 2.11. The following relation between the q-Hermite based Apos-

tol type Frobenius-Euler polynomials HH
(α,s)
n,q (x, y;u;λ) and the q-Apostol-

Euler polynomials En,q(x, y;λ) holds true:

(2.14)
HH(α,s)

n,q (x, y;u;λ) =
1

2

n
∑

k=0

[

n

k

]

q

(

λ

k
∑

r=0

[

k

r

]

q

Ek−r,q(x, 0;λ)

+ Ek,q(x, 0;λ)
)

HH
(α,s)
n−k,q(0, y;u;λ).
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Proof. Consider generating function (2.1) in the following form:

∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!

=

(

1− u

λeq(t)− u

)α

Eq(yt)

(

2

λeq(t) + 1

)(

λeq(t) + 1

2

)

eq

(

xt−
st2

1 + q

)

.

Simplifying the above equation and then making use of equations (2.1) and
(1.13) (with α = 1), it follows that

∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!

=
1

2

(

λ
∞
∑

n=0

HH(α,s)
n,q (0, y;u;λ)

tn

[n]q!

∞
∑

k=0

∞
∑

r=0

Ek,q(x, 0;λ)
tk

[k]q!

tr

[r]q !

+

∞
∑

n=0

HH(α,s)
n,q (0, y;u;λ)

tn

[n]q!

∞
∑

k=0

Ek,q(x, 0;λ)
tk

[k]q!

)

,

which on using the Cauchy product rule and equating the coefficients of same
powers of t in resultant equation yields relation (2.14).

Theorem 2.12. The following relation between the q-Hermite based Apos-

tol type Frobenius-Euler polynomials HH
(α,s)
n,q (x, y;u;λ) and the q-Apostol-

Genocchi polynomials Gn,q(x, y;λ) holds true:

(2.15)
HH(α,s)

n,q (x, y;u;λ) =
1

2

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

(

λ

k
∑

r=0

[

k

r

]

q

Gk−r,q(0, y;λ)

+ Gk,q(0, y;λ)
)

HH
(α,s)
n−k+1,q(x, 0;u;λ).

Proof. Consider generating function (2.1) in the following form:

(2.16)

∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!

=

(

1− u

λeq(t)− u

)α

Eq(yt)

(

2t

λeq(t) + 1

)(

λeq(t) + 1

2t

)

eq

(

xt−
st2

1 + q

)

.
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Simplifying equation (2.16) and using equations (2.1) and (1.7) (with α = 1),
we find

∞
∑

n=0

HH(α,s)
n,q (x, y;u;λ)

tn

[n]q!

=
1

2t

(

λ
∞
∑

n=0

HH(α,s)
n,q (x, 0;u;λ)

tn

[n]q!

∞
∑

k=0

Gk,q(0, y;λ)
tk

[k]q!

∞
∑

r=0

tr

[r]q !

+

∞
∑

n=0

HH(α,s)
n,q (x, 0;u;λ)

tn

[n]q!

∞
∑

k=0

Gk,q(0, y;λ)
tk

[k]q!

)

.

Comparison of the like powers of tn/n! after using the Cauchy product rule
in the above equation yields desired identity (2.15).

In the next section, we introduce the 2D q-Hermite based Apostol-
Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials and establish
some relations for these hybrid polynomials.

3. 2D q-Hermite based Apostol-Bernoulli, Apostol-Euler and

Apostol-Genocchi polynomials

Keleshteri and Mahmudov in [10] introduced and studied the 2D q-Appell
polynomials An,q(x, y) which are the 2-variable generalizations of the q-Appell
polynomials An,q(x) [1]. The 2D q-Appell polynomials An,q(x, y) are defined
by means of the following generating function:

1

gq(t)
eq(xt)Eq(yt) =

∞
∑

n=0

An,q(x, y)
tn

[n]q!
, An,q := An,q(0, 0).

The 2D q-Bernoulli polynomialsBn,q(x, y), q-Euler polynomialsEn,q(x, y)
and q-Genocchi polynomials Gn,q(x, y) are the particular members of the 2D
q-Appell family. Several important relations and formulas for these polyno-
mials and for their generalizations are derived in [16, 18, 20, 5, 6].

The approach used in previous section is further exploited to introduce the
2D q-Hermite-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi
polynomials. First, we give the following definitions.

Definition 3.1. The 2D q-Hermite based Apostol-Bernoulli polynomials

(2DqHbABP) of order α, HB
(α,s)
n,q (x, y;u;λ) (q ∈ C, α ∈ N, 0 < |q| < 1) are

defined by the following generating function

(3.1)

(

t

λeq(t)− 1

)α

eq

(

xt−
st2

1 + q

)

Eq(yt) =

∞
∑

n=0

HB
(α,s)
n,q (x, y;λ)

tn

[n]q!
,
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where HB
(α,s)
n,q (λ) := HB

(α,s)
n,q (0, 0;λ) are the 2D q-Hermite-based Apostol-

Bernoulli numbers. The 2DqHbABP HB
(α,s)
n,q (x, y;λ) are 2D q-Appell for

gq(t) =
(

λeq(t)−1
t

)α

eq

(

st2

1+q

)

.

Definition 3.2. The 2D q-Hermite based Apostol-Euler polynomials

HE
(α,s)
n,q (x, y;u;λ) (2DqHbAEP) of order α (q ∈ C, α ∈ N, 0 < |q| < 1)

are defined by the following generating function

(3.2)

(

2

λeq(t) + 1

)α

eq

(

xt−
st2

1 + q

)

Eq(yt) =

∞
∑

n=0

HE
(α,s)
n,q (x, y;λ)

tn

[n]q!
,

where HE
(α,s)
n,q (λ) := HE

(α,s)
n,q (0, 0;λ) are the 2D q-Hermite-based Apostol-

Euler numbers. The 2DqHbAEP HE
(α,s)
n,q (x, y;λ) are 2D q-Appell for gq(t) =

(

λeq(t)+1
2

)α

eq

(

st2

1+q

)

.

Definition 3.3. The 2D q-Hermite based Apostol-Genocchi polynomials

HG
(α,s)
n,q (x, y;u;λ) (2DqHbAGP) of order α (q ∈ C, α ∈ N, 0 < |q| < 1) are

defined by the following generating function

(3.3)

(

2t

λeq(t) + 1

)α

eq

(

xt−
st2

1 + q

)

Eq(yt) =

∞
∑

n=0

HG(α,s)
n,q (x, y;λ)

tn

[n]q!
,

where HG
(α,s)
n,q (λ) := HG

(α,s)
n,q (0, 0;λ) are the 2D q-Hermite-based Apostol-

Genocchi numbers. The 2DqHbAGP HG
(α,s)
n,q (x, y;λ) are 2D q-Appell for

gq(t) =
(

λeq(t)+1
2t

)α

eq

(

st2

1+q

)

.

Analogous to the results obtained for the qHbATFEP in Section 2, we
obtain the series representations, summation formulas and recursive formulas
for the 2DqHbABP, 2DqHbAEP and 2DqHbAGP. We present these results
in TABLE 1 (I, II-IV, V-VI, respectively).

Next, we establish certain summation relations for the 2DqHbABP,
2DqHbAEP and 2DqHbAGP by proving the following results.

Theorem 3.4. The following relations for the 2D q-Hermite based

Apostol-Bernoulli polynomials HB
(α,s)
n,q (x, y;λ) hold true:

(a)

HB
(α,s)
n,q (x, y;λ) =

1

2mn

n
∑

k=0

[

n

k

]

q

mk
(

HB
(α,s)
k,q (x, 0;λ)

+m−kλ

k
∑

r=0

[

k

r

]

q

mr
HB

(α,s)
r,q (x, 0;λ)

)

En−k,q(0,my;λ),
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(b)

HB
(α,s)
n,q (x, y;λ) =

1

2mn

n
∑

k=0

[

n

k

]

q

mk
(

HB
(α,s)
k,q (0, y;λ)

+m−kλ

k
∑

r=0

[

k

r

]

q

mr
HB

(α,s)
r,q (0, y;λ)

)

En−k,q(mx, 0;λ),

(c)
HB

(α,s)
n,q (x, y;λ) =

1

2mn

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

mk
(

m−kλ
k

∑

r=0

[

k

r

]

q

mr

HB
(α,s)
r,q (0, y;λ) + HB

(α,s)
k,q (0, y;λ)

)

Gn−k+1,q(mx, 0;λ),

(d)
HB

(α,s)
n,q (x, y;λ) =

1

2mn

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

mk
(

m−kλ

k
∑

r=0

[

k

r

]

q

mr

HB
(α,s)
r,q (x, 0;λ) + HB

(α,s)
k,q (x, 0;λ)

)

Gn−k+1,q(0,my;λ).

Proof. (a) Consider generating function (3.1) in the following form:

∞
∑

n=0

HB
(α,s)
n,q (x, y;λ)

tn

[n]q!
=

(

t

λeq(t)− 1

)α

eq

(

xt−
st2

1 + q

)

Eq

(

t

m
.my

)

(

2

λeq(t/m) + 1

)(

λeq(t/m) + 1

2

)

,

which on simplification becomes
(3.4)
∞
∑

n=0

HB
(α,s)
n,q (x, y;λ)

tn

[n]q!

=
1

2

(

λ

(

t

λeq(t)− 1

)α

eq

(

xt−
st2

1 + q

)

Eq

(

t

m
.my

)(

2

λeq(t/m) + 1

)

eq
( t

m

)

+

(

t

λeq(t)− 1

)α

eq

(

xt−
st2

1 + q

)

Eq

(

t

m
.my

)(

2

λeq(t/m) + 1

))

.

Now, using equations (3.1) and (1.6) in equation (3.4), we find

∞
∑

n=0

HB
(α,s)
n,q (x, y;λ)

tn

[n]q!

=
1

2

(

λ

∞
∑

n=0

m−n
En,q(0,my;λ)

tn

[n]q!

∞
∑

k=0

∞
∑

r=0

m−k
HB

(α,s)
r,q (x, 0;λ)

tk

[k]q!

tr

[r]q !

+

∞
∑

n=0

m−n
En,q(0,my;λ)

tn

[n]q!

∞
∑

k=0

HB
(α,s)
k,q (x, 0;λ)

tk

[k]q!

)

.
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Table 1. Results for HB
(α,s)
n,q (x, y;λ), HE

(α,s)
n,q (x, y;λ),

HG
(α,s)
n,q (x, y;λ)
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Further, making use of the Cauchy product rule in the r.h.s. of above equation
and comparing the coefficients of like powers of t, assertion (a) follows.

(b) Consider generating function (3.1) in the following form:

∞
∑

n=0

HB
(α,s)
n,q (x, y;λ)

tn

[n]q!
=

(

t

λeq(t)− 1

)α

eq

(

t

m
.mx

)

eq

(

−
st2

1 + q

)

Eq(yt)

(

2

λeq(t/m) + 1

)(

λeq(t/m) + 1

2

)

.

Following the same lines of proof as in (a), we are led to assertion (b).
(c) Consider generating function (3.1) in the following form:

∞
∑

n=0

HB
(α,s)
n,q (x, y;λ)

tn

[n]q!
=

(

t

λeq(t)− 1

)α

eq

(

t

m
.mx

)

eq

(

−
st2

1 + q

)

Eq(yt)

(

2t

λeq(t/m) + 1

)(

λeq(t/m) + 1

2t

)

.

Simplifying the above equation and using equations (3.1) and (1.7), we find

∞
∑

n=0

HB
(α,s)
n,q (x, y;λ)

tn

[n]q!

=
1

2t

(

m1−nλ

∞
∑

n=0

Gn,q(mx, 0;λ)
tn

[n]q!

∞
∑

k=0

∞
∑

r=0

m−k
HB

(α,s)
r,q (0, y;λ)

tk

[k]q!

tr

[r]q!

+m1−n
∞
∑

n=0

Gn,q(mx, 0;λ)
tn

[n]q!

∞
∑

k=0

HB
(α,s)
k,q (0, y;λ)

tk

[k]q!

)

.

Use of the Cauchy product rule in the r.h.s. of the simplified form of the
above equation and finally equating the coefficients of same powers of t gives
assertion (c).

(d) Consider generating function (3.1) in the following form:

∞
∑

n=0

HB
(α,s)
n,q (x, y;λ)

tn

[n]q!
=

(

t

λeq(t)− 1

)α

Eq

(

t

m
.my

)

eq

(

xt−
st2

1 + q

)

(

2t

λeq(t/m) + 1

)(

λeq(t/m) + 1

2t

)

.

Proceeding on the same lines of proof as in (c), we are led to relation (d).
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Theorem 3.5. The following relations for the 2D q-Hermite based

Apostol-Euler polynomials HE
(α,s)
n,q (x, y;λ) hold true:

(a)
HE

(α,s)
n,q (x, y;λ) =

1

mn

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

mk
(

m−kλ

k
∑

r=0

[

k

r

]

q

mr

HE
(α,s)
r,q (0, y;λ)− HE

(α,s)
k,q (0, y;λ)

)

Bn−k+1,q(mx, 0;λ),

(b)
HE

(α,s)
n,q (x, y;λ) =

1

mn

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

mk
(

m−kλ

k
∑

r=0

[

k

r

]

q

mr

HE
(α,s)
r,q (x, 0;λ)− HE

(α,s)
k,q (x, 0;λ)

)

Bn−k+1,q(0,my;λ),

(c)
HE

(α,s)
n,q (x, y;λ) =

1

2mn

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

mk
(

m−kλ
k

∑

r=0

[

k

r

]

q

mr

HE
(α,s)
r,q (0, y;λ) + HE

(α,s)
k,q (0, y;λ)

)

Gn−k+1,q(mx, 0;λ),

(d)
HE

(α,s)
n,q (x, y;λ) =

1

2mn

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

mk
(

m−kλ

k
∑

r=0

[

k

r

]

q

mr

HE
(α,s)
r,q (x, 0;λ) + HE

(α,s)
k,q (x, 0;λ)

)

Gn−k+1,q(0,my;λ).

Proof. Taking suitable arrangements of generating function (3.2) and
proceeding on the same lines of proof as in Theorem 3.4, assertions (a)–(d)
can be proved. Thus, we omit it.

Theorem 3.6. The following relations for the 2D q-Hermite based

Apostol-Genocchi polynomials HG
(α,s)
n,q (x, y;λ) hold true:

(a)
HG(α,s)

n,q (x, y;λ) =
1

mn

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

mk
(

m−kλ

k
∑

r=0

[

k

r

]

q

mr

HG(α,s)
r,q (0, y;λ)− HG

(α,s)
k,q (0, y;λ)

)

Bn−k+1,q(mx, 0;λ),

(b)
HG(α,s)

n,q (x, y;λ) =
1

mn

n+1
∑

k=0

1

[n+ 1]q

[

n+ 1

k

]

q

mk
(

m−kλ
k
∑

r=0

[

k

r

]

q

mr

HG(α,s)
r,q (x, 0;λ)− HG

(α,s)
k,q (x, 0;λ)

)

Bn−k+1,q(0,my;λ),
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(c)

HG(α,s)
n,q (x, y;λ) =

1

2mn

n
∑

k=0

[

n

k

]

q

mk
(

HG
(α,s)
k,q (x, 0;λ) +m−kλ

k
∑

r=0

[

k

r

]

q

mr
HG(α,s)

r,q (x, 0;λ)
)

En−k,q(0,my;λ),

(d)

HG(α,s)
n,q (x, y;λ) =

1

2mn

n
∑

k=0

[

n

k

]

q

mk
(

HG
(α,s)
k,q (0, y;λ) +m−kλ

k
∑

r=0

[

k

r

]

q

mr
HG(α,s)

r,q (0, y;λ)
)

En−k,q(mx, 0;λ).

Proof. Considering appropriate arrangements of generating function
(3.3) and following the same lines of proof as in Theorem 3.4, we get as-
sertions (a)-(d). Thus, we omit it.

In the next section, we introduce a new class of the 2D q-Hermite based
Appell polynomials (2DqHbAP) by means of generating function and series
representation.

4. 2D q-Hermite based Appell polynomials

First, we establish the generating function for the 2DqHbAP by making
use of replacement technique. For, this we consider the following definitions.

Definition 4.1. The 2D q-Hermite based Appell polynomials HA
(s)
n,q(x, y)

(q ∈ C, 0 < |q| < 1) are defined by means of the following generating function:

(4.1)

1

gq(t)
eq

(

xt−
st2

1 + q

)

Eq(yt) =

∞
∑

n=0

HA(s)
n,q(x, y)

tn

[n]q!
,

HA(s)
n,q := HA(s)

n,q(0, 0).

Definition 4.2. The 2D q-Hermite based Appell polynomials HA
(s)
n,q(x, y)

are defined by the following series representation:

HA(s)
n,q(x, y) =

n
∑

k=0

[

n

k

]

q

Ak,q(x, y)H
(s)
n−k,q(0).

Note. We note that by taking gq(t) = 1 in equation (4.1), the 2DqHbAP

HA
(s)
n,q(x, y) reduce to 2D q-Hermite polynomials H

(s)
n,q(x, y). Thus, we have

the following definition.

Definition 4.3. The 2D q-Hermite polynomials H
(s)
n,q(x, y) are defined

by means of the following generating function:

(4.2) eq

(

xt−
st2

1 + q

)

Eq(yt) =

∞
∑

n=0

H(s)
n,q(x, y)

tn

[n]q!
.
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Remark 4.4. From definitions 4.1 and 4.3, it is clear that

HA(s)
n,q(x, 0) = HA(s)

n,q(x), H(s)
n,q(x, 0) = H(s)

n,q(x),

where HA
(s)
n,q(x) and H

(s)
n,q(x) are the q-Hermite based Appell polynomials and

the q-Hermite polynomials, respectively.

To study the two-variable forms of the q-polynomials from determinant
point of view is a new investigation. In particular, the determinant definition
for the 2D q-Appell polynomials is considered in [10]. Motivated by this, we

find the determinant definition for the 2DqHbAP HA
(s)
n,q(x, y).

• By using a similar approach as in [10, p.359 Theorem 7] and taking
help of equations (4.1) and (4.2), we find the following determinant

definition for the 2DqHbAP HA
(s)
n,q(x, y).

Definition 4.5. The 2D q-Hermite based Appell polynomials HA
(s)
n,q(x, y)

of degree n are defined by
(4.3)

HA
(s)
0,q(x, y) =

1
β0,q

,

HA
(s)
n,q(x, y)

= (−1)n

(β0,q)
n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 H
(s)
1,q (x, y) H

(s)
2,q (x, y) · · · H

(s)
n−1,q(x, y) H

(s)
n,q(x, y)

β0,q β1,q β2,q · · · βn−1,q βn,q

0 β0,q

[

2
1

]

q
β1,q · · ·

[

n−1
1

]

q
βn−2,q

[

n

1

]

q
βn−1,q

0 0 β0,q · · ·

[

n−1
2

]

q
βn−3,q

[

n

2

]

q
βn−2,q

. . . · · · . .

. . . · · · . .

0 0 0 · · · β0,q

[

n

n−1

]

q
β1,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where n = 1, 2, . . . , β0,q 6= 0; β0,q, β1,q, β2,q, . . . , βn,q ∈ R.

For suitable choices of gq(t), different members belonging to the family
of 2DqHbAP can be obtained. Particularly, we note that the 2DqHbABP,
2DqHbAEP and 2DqHbAGP are the special members of the 2DqHbAP

HA
(s)
n,q(x, y).

• We conclude that for λ = 1, the polynomials HB
(α,s)
n,q (x, y;λ),

HE
(α,s)
n,q (x, y;λ) and HG

(α,s)
n,q (x, y;λ) reduce to the 2D q-Hermite based

Bernoulli polynomials HB
(α,s)
n,q (x, y), 2D q-Hermite based Euler poly-

nomials HE
(α,s)
n,q (x, y) and 2D q-Hermite based Genocchi polynomials

HG
(α,s)
n,q (x, y), each of order α. For α = 1, these polynomials reduce
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to the 2D q-Hermite based Bernoulli polynomials HB
(s)
n,q(x, y), 2D q-

Hermite based Euler polynomials HE
(s)
n,q(x, y) and 2D q-Hermite based

Genocchi polynomials HG
(s)
n,q(x, y).

Recently, Riyasat et al. in [25] gave the determinant definitions of
the q-Bernoulli, q-Euler and q-Genocchi polynomials. First, we slightly
focus on the determinant definitions of the 2D q-Bernoulli, q-Euler and
q-Genocchi polynomials.

• By taking

(

β0,q = 1, βi,q =
1

[i+ 1]q

)

;
(

β0,q = 1, βi,q =
1

2

)

and
(

β0,q = 1, βi,q =
1

2[i+ 1]q

)

i = 1, 2, · · · , n, respectively in determinant definition of the 2D q-
Appell polynomials [10, p.359 Theorem 7], we can obtain the determi-
nant definitions of the 2D q-Bernoulli, q-Euler and q-Genocchi poly-
nomials Bn,q(x, y), En,q(x, y) and Gn,q(x, y), respectively.

• Again, by taking
(

β0,q = 1, βi,q = 1
[i+1]q

)

;
(

β0,q = 1, βi,q = 1
2

)

and
(

β0,q = 1, βi,q = 1
2[i+1]q

) (i = 1, 2, · · · , n
)

, respectively in determinant

definition (4.3) of the 2D q-Hermite based Appell polynomials, we find

the following determinant definitions for the polynomials HB
(s)
n,q(x, y),

HE
(s)
n,q(x, y) and HG

(s)
n,q(x, y), respectively.

Definition 4.6. The 2D q-Hermite based Bernoulli polynomials of degree

n HB
(s)
n,q(x, y) are defined by

HB
(s)
0,q(x, y) = 1,

HB
(s)
n,q(x, y)

= (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 H
(s)
1,q (x, y) H

(s)
2,q (x, y) · · · H

(s)
n−1,q(x, y) H

(s)
n,q(x, y)

1 1
[2]q

1
[3]q

· · ·

1
[n]q

1
[n+1]q

0 1
[

2
1

]

q

1
[2]q

· · ·

[

n−1
1

]

q

1
[n−1]q

[

n

1

]

q

1
[n]q

0 0 1 · · ·

[

n−1
2

]

q

1
[n−2]q

[

n

2

]

q

1
[n−1]q

. . . · · · . .

. . . · · · . .

0 0 0 · · · 1
[

n

n−1

]

q

1
[2]q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

n = 1, 2, · · · .
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Definition 4.7. The 2D q-Hermite based Euler polynomials HE
(s)
n,q(x, y)

of degree n are defined by

HE
(s)
0,q(x, y) = 1,

HE
(s)
n,q(x, y)

= (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 H
(s)
1,q (x, y) H

(s)
2,q(x, y) · · · H

(s)
n−1,q(x, y) H

(s)
n,q(x, y)

1 1
2

1
2

· · ·

1
2

1
2

0 1 1
2

[

2
1

]

q
· · ·

1
2

[

n−1
1

]

q

1
2

[

n

1

]

q

0 0 1 · · ·

1
2

[

n−1
2

]

q

1
2

[

n

2

]

q

. . . · · · . .

. . . · · · . .

0 0 0 · · · 1 1
2

[

n

n−1

]

q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

n = 1, 2, · · · .

Definition 4.8. The 2D q-Hermite based Genocchi polynomials of degree

n HG
(s)
n,q(x, y) are defined by

HG
(s)
0,q(x, y) = 1,

HG
(s)
n,q(x, y)

= (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 H
(s)
1,q (x, y) H

(s)
2,q (x, y) · · · H

(s)
n−1,q(x, y) H

(s)
n,q(x, y)

1 1
2[2]q

1
2[3]q

· · ·

1
2[n]q

1
2[n+1]q

0 1
[

2
1

]

q

1
2[2]q

· · ·

[

n−1
1

]

q

1
2[n−1]q

[

n

1

]

q

1
2[n]q

0 0 1 · · ·

[

n−1
2

]

q

1
2[n−2]q

[

n

2

]

q

1
2[n−1]q

. . . · · · . .

. . . · · · . .

0 0 0 · · · 1
[

n

n−1

]

q

1
2[2]q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

n = 1, 2, · · · .

The q-difference equations for the 2D q-Appell and composite 2D q-Appell
polynomials are established in [11, 24]. This provides motivation to establish
q-difference equations for the 2D q-Hermite based Appell polynomials and also
for their composite forms. This aspect will be taken in next investigation.
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