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SUMMARY 

In most real-life production systems, both random machine breakdown and the production of 

nonconforming items are inevitable, and adopting a backlogging policy with a predetermined 

minimum acceptable service level can sometimes be an effective strategy to help the management 

reduce operating cost or smoothen the production schedule. With the aim of addressing the 

aforementioned practical situations in production, this study explores the optimal production 

runtime for the finite production rate (FPR) model with allowable backlogging and service level 

constraint, rework of defective products, and random machine breakdown. Mathematical 

modelling is employed along with optimization techniques to derive the optimal production 

runtime that minimizes the long-run average system costs for the proposed FPR model. The joint 

effects of the allowable backlogging with a planned service level, rework, and random machine 

breakdown on optimal runtime decision have been carefully investigated through a numerical 

example and sensitivity analysis. As a result, important insights regarding various system 

parameters are revealed in order to enable the management to better understand, plan, and 

control such a practical production system. 

KEY WORDS: production runtime, backlogging, service level constraint, breakdown, 

optimization, rework, mathematical modelling. 

1. INTRODUCTION 

This study explores the optimal replenishment runtime for a finite production rate (FPR) 

model with allowable backlogging and service level constraint, rework of defective products, 

and random machine breakdown. The conventional FPR model [1], also known as the 

economic production quantity (EPQ) model, derived the most economic lot size for a 

manufacturing system with no backlogging permitted, and implicitly assumed a perfect 

condition in production process. However, in real production planning, due to internal orders 
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of parts or materials and other operating conditions, adopting planned backlogging can be a 

strategy to effectively minimize the expected production-inventory system cost. While 

allowing backlogging, abusive shortage may cause an unacceptable service level and turn into 

possible losses of future sales (because of the loss of customer goodwill). Hence, the maximal 

allowable shortage level per replenishment cycle is often set as a business operating constraint 

in order to attain the minimal service level. Examples are surveyed as follows: Schneider [2] 

examined a (Q,s) model and determined the optimal order quantity Q and reorder point s in 

which the average annual costs of inventory and orders are minimal, provided that a certain 

service level is reached. De Kok [3] examined a single product inventory model with adjustable 

production rate that can cope with random fluctuations in demand. The demand process of the 

product is described by a compound Poisson process and excess demand is lost. They 

considered service measures as the average number of lost-sales occurrences per unit time 

and the fraction of demand that is lost. Using a two-critical-number control policy they derived 

practically useful approximations for the switch-over level in order to achieve the required 

service level. Yildirim et al. [4] considered a stochastic multi-period production planning and 

sourcing problem for a manufacturer with a number of plants (or subcontractors). Each 

source, has a different production cost, capacity, and lead time. The manufacturer has to meet 

the demand for different products according to the service level requirements set by its 

customers. The demand for each product in each period is random. They presented a 

methodology, based on mathematical programming, for the manufacturer to decide on the 

production quantity, when and where to produce, and the exact inventories to carry. Their 

approach yields the same result as the base stock policy for a single plant with stationary 

demand. Tsai and Zheng [5] used a simulation optimization algorithm to solve a two-echelon 

constrained inventory problem. Their goal was to determine the optimal setting of stocking 

levels that minimize total inventory investment costs, while satisfying the expected response 

time targets for each field depot. Their algorithm can be applied to any multi-item multi-

echelon inventory system, where the cost structure and service level function resemble what 

they assumed. Empirical studies were performed to compare the efficiency of the proposed 

algorithms with other existing simulation algorithms. A considerable amount of research has 

been carried out to address the service level constraint [6–12]. 

In addition, this study considers random machine breakdown and production of 

nonconforming items. In most real-world manufacturing systems, due to process deterioration 

or various other uncontrollable factors, these quality issues are inevitable. Groenevelt et al. 

[13] studied two production control policies that deal with random machine breakdown. The 

first policy assumes that production of the interrupted lot is not resumed (called NR policy) 

after a breakdown. The second policy considers that production of the interrupted lot will be 

immediately resumed (called abort/resume (AR) policy) after the breakdown is fixed and if 

the current on-hand inventory is below a certain threshold level. They assumed the repair time 

is negligible and studied the effects of machine breakdowns and corrective maintenance on 

economic lot size decisions. Dohi, et al. [14] derived the minimal repair policies for an 

economic manufacturing process. Two models with and without an infinite number of minimal 

repairs were formulated; and the optimal EMQ policies which minimize the expected costs 

were derived, respectively. Sana [15] proposed a model to determine the optimal product 

reliability and production rate that achieves the largest total integrated profit for an imperfect 

production system. He provided an optimal control formulation to the problem and developed 

necessary and sufficient conditions for the optimality of dynamic variables. Then, the Euler–

Lagrange method was used to obtain the optimal solutions for product reliability parameter 
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and dynamic production rate. Chakraborty et al. [16] examined economic manufacturing 

quantity model subject to stochastic breakdown, repair and stock threshold level. They 

considered production rate as a decision variable. Since the stress of the machine depends on 

production rate, hence failure rate of the machine will be a function of the production rate. 

Extra capacity of the machine was considered to buffer against the possible uncertainties of 

the production process where machine capacity is predetermined. The basic model was 

developed under general failure and general repair time distributions. They suggested two 

computational algorithms for determining production rate and stock threshold level, which 

minimize the expected cost rate in the steady state. Widyadana and Wee [17] studied EPQ 

models for deteriorating items with preventive maintenance (PM), random breakdown and 

immediate corrective action. Corrective and PM times were assumed to be stochastic and the 

unfulfilled demands are lost sales. Two economic production quantity models of uniform 

distribution and exponential distribution of corrective and maintenance times were developed 

and examined. An example and sensitivity analysis was provided for the purpose of illustrating 

the models. For the exponential distribution model, they showed that the corrective time 

parameter is one of the most sensitive parameters to optimal total cost. Additional studies that 

addressed various aspects of production systems with machine breakdown, defective product, 

or product quality assurance issues can also be found elsewhere [18–26]. 

Since little attention has been paid to the investigation of joint effects of backlogging and 

service level constraint, rework, and random machine breakdown on the optimal 

replenishment runtime of the FPR model, this study is intended to bridge the gap. Details of the 

proposed model are provided in the following section. 

2. THE PROPOSED FPR MODEL 

This study derives optimal runtime for the FPR model with allowable backlogging and service 

level constraint, rework, and random machine breakdown. Consider the production rate of an 

imperfect FPR model as P and during the fabrication process; an x portion of nonconforming 

items may be randomly produced at rate d, yielding d = Px. All nonconforming items are 

assumed to be repairable through a rework process at a rate of P1 right after the end of the 

regular production process in each replenishment cycle. During production uptime, the 

machine is subject to a random breakdown that follows the Poisson distribution. When a 

breakdown occurs, an abort/resume (AR) policy is adopted, wherein the machine repair is 

taken up immediately and the interrupted lot resumed right after the machine is repaired and 

restored. The machine repair time is assumed to be a constant (a spare machine is used if 

repair time exceeds the allowable time). Shortage is permitted and backordered in the 

proposed FPR model, and a unit shortage cost b per unit time is associated with it. In order to 

avoid an abusive backlogging situation, a minimum acceptable service level (1 – α)% is 

predetermined. 

The annual production rate P is assumed to be larger than the sum of annual demand rate λ 

and production rate of nonconforming items, i.e. (P – d – λ) > 0. All items produced are 

screened and the unit inspection cost is included in the unit production cost C. Cost-related 

parameters also include setup cost K, unit holding cost h, unit reworking cost CR, holding cost 

h1 for each reworked item, unit cost C1 and unit holding cost h3 per unit of safety stock, unit 

delivery cost CT; and machine repairing cost M per breakdown. Additional notations are listed 

as follows: 
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T1 = production uptime, the decision variable of the proposed FPR model, 

Q = replenishment lot size per production cycle, 

t = production time before a random breakdown occurs, 

tr = time required for repairing the machine, 

β = number of breakdowns per year, a random variable that follows the Poisson 

distribution, 

t1’ = uptime when stock piles up, 

t2’ = time to rework nonconforming items, 

t3’ = time to consume all available perfect quality items, 

t4’ = time in which backlogging accumulated, 

t5’ = uptime in which backlogging being satisfied, 

T’ = cycle length in the case of machine breakdown taking place, 

H = maximum level of on-hand inventory in units when the rework process finishes, 

H0 = level of backlogging when a machine breakdown occurs, 

H1 = the maximum level of on-hand inventory in units when regular production process 

ends, 

H2 = level of on-hand inventory when a machine breakdown occurs, 

B = maximum level of backlogging, 

t1 = uptime when stock piles up – in the case of no breakdown occurrence, 

t2 = rework time – in the case of no breakdown occurrence, 

t3 = time required for depleting all available perfect items – in the case of no breakdown 

occurrence, 

T = cycle length – in the case of no breakdown occurrence, 

T = cycle length whether machine breaks down or not, 

TC1(T1) = total system costs per cycle in the case of breakdown taking place in the backlogging 

stage, 

TC2(T1) = total system costs per cycle in the case of breakdown taking place in the stock pileup 

stage, 

TC3(T1) = total system costs per cycle in the case of no breakdown occurrence, 

E[TC1(T1)] = the expected total system costs per cycle in the case of breakdown taking place in 

backlogging stage, 

E[TC2(T1)] = the expected total system costs per cycle in the case of breakdown taking place in 

the stock pileup stage, 

E[TC3(T1)] = the expected system costs per cycle in the case of no breakdown occurrence, 

TCU(T1) = total system costs per unit time whether a breakdown takes place or not, 

E[TCU(T1)] = the expected system costs per unit time whether a breakdown takes place or not. 

Because the time before a breakdown during production uptime T1 is random, we must 

examine the following three possible cases of random breakdown. 
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2.1 CASE 1: t < t5’ 

In this case, a machine breakdown takes place in the backlogging stage, and as per the AR 

policy, the production of the interrupted lot is immediately resumed when the machine 

breakdown is fixed. The on-hand inventory level of perfect quality products in this case is 

illustrated in Figure 1. It is noted that when a breakdown occurs, the level of backlogging is H0, 

and after the machine is repaired and restored, the level of backlogging continues to reduce, 

and then changes to having positive stocks in t1’. At the end of production uptime, the level of 

on-hand inventory reaches H1. Subsequently, the rework process starts and brings the on-hand 

perfect quality items to a maximum level of H, at the end of t2’. It follows that all available 

products are consumed in t3’, followed by a shortage in t4’ until they accumulate to a maximum 

allowable level of backlogging B (i.e. a predetermined level based on the minimum acceptable 

service level constraint). Then, the uptime of the following replenishment cycle begins. The 

following formulae can be observed directly from Figure 1: 

 

Fig. 1  The on-hand inventory level of perfect quality products in the proposed FPR model when breakdown 

occurs in the backlogging stage 
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The on-hand inventory level of nonconforming items in the proposed FPR model is depicted in 

Figure 2. The maximum level of nonconforming products at the end of the uptime is d1T1 and 

the reworking time is: 
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Fig. 2  The on-hand inventory level of nonconforming items in the proposed FPR model when breakdown 

occurs in the backlogging stage 

The total system costs per cycle in the case of a breakdown during the backlogging stage 

consist of production setup cost, variable fabrication costs, variable reworking costs, fixed 

machine breakdown repairing cost, holding and purchasing costs of safety stock (to cope with 

breakdown occurrence), holding costs in the rework and regular process, variable shipping 

costs, and variable backordering costs. Therefore, TC1(T1) is: 
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By substituting Eqs. (1) to (10) in Eqs. (11), and with further derivations, we obtain TC1(T1) as 

shown in Appendix A. 

2.2 CASE 2: t5’ < t < t1 

In this case, a machine breakdown occurs in the stock pileup stage (see Figure 3). An 

additional formula can be observed directly from Figure 3 as follows: 
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Fig. 3  The on-hand inventory level of perfect quality products in the proposed FPR model when breakdown 

occurs in the stock pileup stage 

Similarly, total system costs per cycle in this case consist of production setup cost, variable 

fabrication costs, variable reworking costs, fixed machine breakdown repairing cost, holding 

and purchasing costs of safety stock, holding costs in the rework and regular process, variable 

shipping costs, and variable backordering costs. Hence, TC2(T1) is: 
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By substituting Eqs. (1) to (4), (6) to (10), and (12) in Eq. (13), and with further derivations, 

we obtain TC2(T1) as shown in Appendix A. 

2.3 CASE 3: t ≧ t1 

In this case, no machine breakdown occurs during production uptime T1 (see Figure 4). The 

following formula can be obtained directly from Figure 4: 
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Fig. 4  The on-hand inventory level of perfect quality products in the proposed FPR model when breakdown 

does not occur 
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The total system costs per cycle in this case consist of production setup cost, variable 

fabrication costs, variable reworking costs, holding and purchasing costs of safety stock, 

holding costs in the rework and regular process, variable shipping costs, and variable 

backordering costs. Hence, TC3(T1) is: 
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By substituting Eqs. (14) to (22) in Eq. (23), and with further derivations, we obtain TC3(T1) as 

shown in Appendix A. As stated earlier, in order to avoid an abusive backlogging situation, a 

minimum acceptable service level (1 – α)% is predetermined for the proposed study. From 

prior literature [10], we obtain the following relationship between the maximum backlogging 

level and the service level indicator α: 

 [ ] [ ] 1
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2.4 INTEGRATION OF THE PROPOSED FPR MODEL WITH/WITHOUT BREAKDOWN 

First, the machine breakdown is assumed to be a random variable that follows the Poisson 
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exponential distribution, with density function f(t) = βe–βt and cumulative density function F(t) 
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where the expected cycle length E[T] is: 
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We use the expected values of x to cope with the randomness of the nonconforming rate in the 

cost analysis first to obtain E[TC1(T1)], E[TC2(T1)], and E[TC3(T1)]. Then, in order to solve the 

integration of mean-time-to-breakdown in the expected system cost function E[TCU(T1)], we 

substitute E[TC1(T1)], E[TC2(T1)], E[TC3(T1)], f(t), and E[T] in Eq. (25), and with further 

derivations, E[TCU(T1)] can be obtained as follows: 
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where v, z1, Y1, s, w1, w2, w3, w4, and w5 denote the following: 
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To determine the optimal replenishment runtime T1*, the following theorem is proposed. Let 

y(T1) denote the following term: 

 ( ) 2
1

3 4

α
y T

α α
=

+
 (33) 

where: 

 
( ) ( )

( )

1 1

1 1 1 1 1

1 1 1

1 1 1 1

βT βT s
2 1 1 3 4

1 1

2 5 5
2 2

3 1 1
2 2

5 5

2 2 2
4 1 3 3 1 4 4

βT βT βT s βT βT s

βT βT s βT s

βT βT βT s βT s

α 2z 2w 2w e 2w e

w e w e e 2sw e e
α T β

s w e e s w e

α T β w e 2βw e T β s w e 2βsw e

− −

− −

−

− − − − −

− − −

− − − −

 = + + +
 

 + ⋅ − ⋅ 
= − ⋅  

 + ⋅ +  

 = − − − −
 

  

Theorem 1: E[TCU(T1)] is convex if 0 < T1 < y(T1). 

The first and second derivatives of E[TCU(T1)] are: 
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If the second derivative of E[TCU(T1)] is greater than zero, then E[TCU(T1)] is convex. From Eq. 

(35), with further derivations, we obtain the following: 
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Eq. (37) must be satisfied so that E[TCU(T1)] has a minimum value. Now, searching for the 

optimal value of T1* that yields minimum cost, one can set the first derivative of E[TCU(T1)] 

equal to 0. From Eq. (34), with further derivations, we obtain: 

 
2

a 1 b 1 cδ T δ T δ 0+ + =
 (38) 

where δa, δb, and δc denote the following: 
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( ) ( )1 1βT βT s
b 3 4δ 2β w e 2βs w e− − = − −

 

  

(40) 

 

( ) ( )1 1βT βT s
c 1 1 3 4δ 2z 2w 2 w e 2 w e− − = − − − −

 

  

(41) 

By applying the square root solution of Eq. (38) we obtain the following: 
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( )2

b b a c*
1

a

δ δ 4δ δ
T

2δ

− ± −
=  (42) 

In addition, by rearranging Eq. (34), we obtain: 

 { } ( )1

1
1
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1 1 4
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e
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=
+ − + +

 (43) 

Although the optimal runtime T1* cannot be expressed in a closed form, it can be located 

through the use of a searching algorithm based on the existence of bounds for e–βT1 and T1*. 

Since e–βT1 is the complement of the cumulative density function, F(T1) = (1–e–βT1) and 0 ≦ 

F(T1) ≦ 1. Hence, 0 ≦ e–βT1 ≦ 1. If e–βT1 = 0 and e–βT1 = 1, we can find the initial upper bound 

(i.e. T1U) and the lower bound (i.e., T1L) for the replenishment runtime, and use them to find the 

updated value of e–βT1U and e–βT1L. Back and forth, we repeatedly compute Eqs. (42) and (43) 

until there is no significant difference between the upper bound T1U and lower bound T1L. 

Subsequently, the optimal production runtime T1* is derived. 

3. NUMERICAL EXAMPLE 

Suppose a manufacturing firm can fabricate a product at an annual rate of P = 10,000 units in 

order to meet its annual demand rate λ = 4,000 units. A FPR-based model with backlogging and 

a predetermined minimum acceptable 80% (i.e., (1 – α)%) service level is adopted by the firm. 

During the production, random nonconforming rate is assumed to be uniformly distributed 

over the interval [0, 0.2]. All nonconforming products can be repaired through a rework 

process, which starts when regular production ends, at a rate of P1 = 5,000 units per year. 

Moreover, the production equipment is subject to a random breakdown that follows a Poisson 

distribution with mean β = 0.5 times per year. An AR policy is used when a breakdown takes 

place. 

Other values of parameters used by this example include: C = $2 per unit; K = $450 per 

production run; h = $0.8 per item per unit time; b = $0.1 for each backordering item; CR = $0.5 

repaired cost for each reworked item; h1 = $0.8 per reworked item per unit time; h3 = $0.6 per 

unit per unit time and C1 = $2 per unit of safety stock; CT = $0.01 per unit; M = $500 repair cost 

for each machine breakdown; g = 0.018 years (i.e. tr, the fixed machine repair time). 

For convexity of E[TCU(T1)] (Eq. (37)), at β = 0.5, by verifying both of the upper and lower 

bounds (from Eqs. (42) and (43)) of T1*, we found that T1U* = 0.5441 < y(T1U*) = 2.4355 and T1L* 

= 0.3396 < y(T1L*) = 2.1339 (see Table 1). Therefore, Eq. (37) holds and E[TCU(T1)] is convex. A 

further investigation utilizing different β values to test the satisfaction of Eq. (37) is presented 

in Table 1. 

For determining the optimal production runtime T1*, we first let e–βT1 = 0 and e–βT1 = 1, and by 

using Eq. (42), we obtain the initial upper bound T1U = 0.5441 and lower bound T1L = 0.3396. 

Then, by applying Eq. (27), we obtain E[TCU(T1U)] = $9,688.73 and E[TCU(T1L)] = $9,625.20. By 

substituting the initial values of T1U and T1L in Eq. (43), we obtain e–βT1U = 0.7618 and e–βT1L = 

0.8438 as the starting exponential values for the second iteration. 

By repeatedly applying Eqs. (42) and (27), we get a new set of T1U = 0.4015 and T1L = 0.3809; 

and obtain E[TCU(T1U)] = $9,616.15 and E[TCU(T1L)] = $9,615.27. It is noted that the difference 

between E[TCU(T1U)] and E[TCU(T1L)] in the second iteration becomes smaller. Table 2 
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displays the results of this recursive searching algorithm for T1* after a few iterations, at β = 0.5 

and (1 – α)% = 80%. 

Table 1 The effect of variations in β on T1U*, y(T1U*), T1L*, and y(T1L*) 

β 1/β T1U* y(T1U*) T1L* y(T1L*) 

10.00 0.10 0.5226 11.6176 0.1049 0.3371 

9.00 0.11 0.5227 7.9549 0.1143 0.3673 

8.00 0.13 0.5229 5.6054 0.1253 0.4031 

7.00 0.14 0.5231 4.0639 0.1385 0.4462 

6.00 0.17 0.5234 3.0387 0.1545 0.4993 

5.00 0.20 0.5237 2.3556 0.1739 0.5663 

4.00 0.25 0.5243 1.9107 0.1978 0.6547 

3.00 0.33 0.5253 1.6491 0.2276 0.7802 

2.00 0.50 0.5272 1.5701 0.2650 0.9860 

1.00 1.00 0.5329 1.8345 0.3119 1.4581 

0.50 2.00 0.5441 2.4355 0.3396 2.1339 

: : : : : : 

0.01 100.00 1.2159 6.3508 0.3698 5.4807 

Table 2 Results of iterations of the proposed recursive searching algorithm for T1* 

β 
Iterati

on 
e–βT1U T1U e–βT1L T1L* 

Difference 
between 
T1U & T1L 

E[TCU(T1U)] E[TCU(T1L)] 
Diff. b/w 

E[TCU(T1U)] & 

E[TCU(T1L)] 

0.5 initial 0.000 0.5441 1.000 0.3396 0.2045 $9,688.73 $9,625.20 $63.53 

 2nd 0.7618 0.4015 0.8438 0.3809 0.0206 $9,616.15 $9,615.27 $0.88 

 3rd 0.8181 0.3874 0.8266 0.3853 0.0021 $9,615.18 $9,615.17 $0.01 

 4th 0.8239 0.3859 0.8248 0.3857 0.0002 $9,615.17 $9,615.17 $0.00 

 5th 0.8245 0.3858 0.8246 0.3858 0.0000 $9,615.17 $9,615.17 $0.00 

From Table 2, it is noted that E[TCU(T1)] is convex and the optimal run time T1* falls within the 

interval of [T1L*, T1U*]. By using the proposed recursive searching algorithm for T1*, for β = 0.5 

and (1 – α)% = 80%, we can locate optimal replenishment runtime T1* = 0.3858 and the 

expected system costs per unit time E[TCU(T1*)] = $9,615.17. The behaviour of E[TCU(T1)] with 

respect to run time T1 is illustrated in Figure 5. 
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Fig. 5  The behaviour of E[TCU(T1)] with respect to run time T1 

The joint effects of the backlogging level B and the service level (1 – α)% on the expected 

system costs E[TCU(T1)] are depicted in Figure 6. It is noted that as backlogging level B 

increases, the expected system costs E[TCU(T1)] notably reduces; and as service level (1 – α)% 

raises, the expected E[TCU(T1*)] significantly boosts. 

 

Fig. 6  The joint effects of the backlogging level B and the service level (1 – α)% on the expected system costs 

E[TCU(T1*)] 

Analytical results of the effects of variations in service levels on maximum inventory holding 

level H, annual expected holding cost, maximum backlogging level B, annual expected 

backordering cost, the optimal runtime T1*, and annual expected system costs E[TCU(T1*)], 

respectively, are exhibited in Table 3. It is noted that the lowest system cost falls to 11% of the 

service level (i.e. 89% of time the system runs out of stock). If the manufacturing firm decides 

to keep the service level at greater than or equal to 80% to cope with customer satisfaction in 

purchasing, then the analytical result (see Table 3) indicates that there is an increase in the 

cost of $594.67 (i.e. $9,615.17 – $9,020.50) or 6.56% of the annual system cost increases for 

raising the service level from 20% to 80%. 
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Table 3 Analytical results of the effects of variations in service levels on different system parameters and 

their related costs 

(1 – α)% H 
Annual expected 

holding cost 
B 

Annual 
expected 

backordering 
cost 

T1* E[TCU(T1*)] 

100% 1640 $746 0 $0 0.3154 $9,889.89  

90% 1614 $675 193 $2 0.3475 $9,750.71  

80% 1577 $603 429 $4 0.3858 $9,615.17  

70% 1525 $530 719 $11 0.4315 $9,484.62  

60% 1447 $456 1080 $22 0.4860 $9,361.05  

50% 1332 $381 1527 $38 0.5498 $9,247.50  

40% 1159 $305 2070 $62 0.6209 $9,148.44  

30% 906 $232 2689 $94 0.6914 $9,070.19  

20% 563 $167 3311 $133 0.7450 $9,020.50  

11% 195 $124 3768 $168  0.7620 $9,005.94  

Further analysis reveals the joint effects of the mean-time-to-breakdown 1/β and service level 

(1 – α)% on the expected system costs E[TCU(T1*)] as depicted in Figure 7. It is noted that as 

the service level (1 – α)% raises, annual expected system costs E[TCU(T1*)] increases; and as 

the mean-time-to-breakdown 1/β increases, E[TCU(T1*)] decreases. When 1/β reaches the 

infinite value, the proposed FPR model becomes the same as the FPR model without machine 

breakdown [10]; and if the service level (1 – α)% increases to 100%, the proposed FPR model 

becomes the same as the FPR model without backlogging [22]. 

 

Fig. 7  The joint effects of the mean-time-to-breakdown 1/β and service level (1 – α)% on the expected 

system costs E[TCU(T1*)] 



S.W. Chiu, C.-J. Liu, Y.-R. Chen, Y.-S.P. Chiu: Finite production rate model with backlogging, service level constraint, rework, and 

random breakdown 

78 ENGINEERING MODELLING 30 (2017) 1-4, 63-80 

4. CONCLUSIONS 

This study determines the optimal replenishment runtime for the FPR model with allowable 

backlogging and service level constraint, rework, and random machine breakdown. As a result, 

we provide a complete solution procedure for such a practical manufacturing system, which 

includes applying a mathematical model to the problem, deriving the system cost function 

from integration of cost functions of three separate sub-problems, proposing a way to verify 

the convexity of system cost function, presenting a recursive runtime searching procedure, and 

providing a numerical demonstration with sensitivity analysis to confirm the applicability of 

our research results. 

Without an in-depth investigation of the problem, the optimal replenishment runtime, the 

relationship between backlogging level and the service level, the effect of variations in mean 

time to breakdown on optimal runtime and expected system cost, and various critical system 

information, etc. cannot be revealed. For future research, an interesting topic will be to explore 

the effect of discontinuous inventory issuing policy on the same model. 
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6. APPENDIX – A 

Results of derivations for TC1(T1), TC2(T1) and TC3(T1). 
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