YU ISSN 0011-1643 539.19:516 Original Scientific Paper

Graph Theory and Molecular Orbitals. XIII. On the Stability of Annelated Tropylium Cations*

I. Gutman and N. Trinajstić**

Theoretical Chemistry Group, Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia, and Theoretical Chemistry Department, University of Oxford, Oxford OX1 3TG, England

Received May 27, 1974

A topological approach is used for studying the origin of differences in stabilities of benzoannelated, and furo- and/or thieno-annelated tropylium cations. Recently available experimental data could be thus rationalized and the $pK_{\rm R^+}$ values of yet unknown compounds in these series predicted.

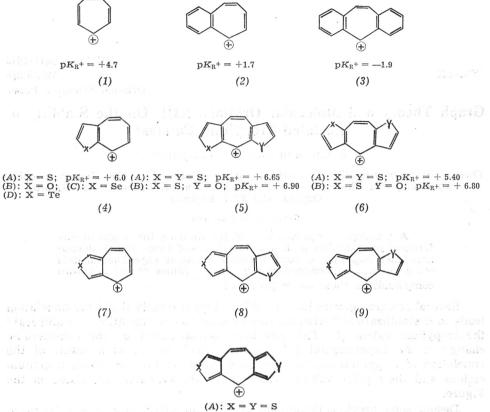
Several research groups have established quite clearly that benzoannelation leads to destabilization¹⁻³ whereas furo- and/or thienoannelation^{***} stabilizes⁴⁻⁶ the tropylium cation (1). This has been demonstrated by the considerable change in the experimental pK_{R^+} values which occurs as a result of the annelation of tropylium cations. The formulae of various annelated tropylium cations and their pK_{R^+} values, where these are available, are listed in the Figure.

Despite some previous theoretical work³⁻¹⁰, no satisfactory scheme for rationalizing these experimental findings has, it seems¹¹, yet been proposed.

In the last few years, a set of simple rules has been derived¹²⁻¹⁹ for predicting various properties of conjugated systems, these rules being purely based on inspection of the topology of the given molecule²⁰⁻²³ (that is to say a way in which atoms making up a particular molecule are connected). In the present work we show that this *topological approach* is an appropriate one for understanding and systematizing data such as that given in the Figure. In particular we should like to go some way towards answering the following questions:

(i) Why does benzoannelation decrease so drastically the stability of the tropylium cation?

(*ii*) Why are the stabilities of known furo- and/or thienoannelated tropylium cations only slightly different?

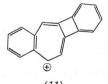

(*iii*) Why are the effects of benzoannelation, and furo- and/or thienoannelation so different?

CCA-841

 ^{*} Part XII: I. Gutman, B. Ruščić, N. Trinajstić, and C. F. Wilcox, Jr., J. Chem.
 Phys., in press
 ** Permanent address: Institute »Ruđer Bošković«, 41000 Zagreb, Croatia,

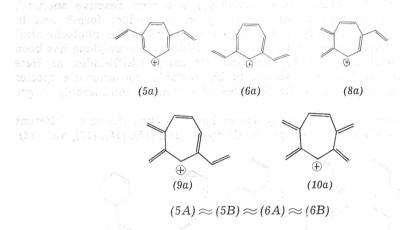
Yugoslavia
 *** A fusion of a furan and/or thiophene ring with their b-sides onto the

tropylium ion.



A):
$$X = Y = S$$

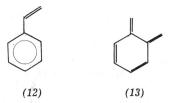
(10)


Figure - Annelated tropylium cations

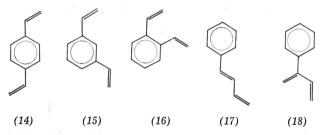
We try first to answer question (i). In our recent work¹⁷ we derived several rules which apply directly to this case, which we summarize here: annelation of an alternant moiety to a molecule qualitatively decreases the redox ability of the π -electron system. With this in mind we can immediately predict the stability order of the benzoannelated tropylium ions:

which, of course, parallels the experimental findings¹⁻³. Similarly, this pattern is also well fitted by the observations of Garratt and Vollhardt²⁴, who found that the pK_{R^+} value (-1.3) of (11) differs considerably from that of the tropylium cation.

Let us now consider question (*ii*). We have recently demostrated²⁵⁻²⁷ that the stability order of a series of heterocyclic conjugated isomers (containing $[\sigma + \sigma]$ — bivalent heteroatoms) may be predicted by considering only the topology of the »parent hydrocarbons« — *i. e.* the hydrocarbon obtained by »removing« the heteroatoms. A similar idea has also recently been proposed by Watson and Warrener²⁸. If we now inspect the carbon skeleton of the isomeric molecules (5), (6), (8)—(10), we can immediately note several points; firstly, there is essentially no difference between (5*a*) and (6*a*), and thus the prediction



is readily made and it is fully in agreement with experimental observations⁴⁻⁶. If, however, we inspect the structures (4a)—(10a), we observe that the quality of the molecular branching differs. It should be noted that in the isomeric structures studied [*i. e.*: (5a), (6a), (8a), (9a), and (10a); (4a) and (7a)] all the other main


structural factors (the number of atoms and bonds, the type of ring) determining the total π -electronic energy²⁹ (and thus stability)³⁰ are identical. It follows, therefore, that the *degree* and the *type* of ring branching may be expected to provide qualitative insight into, and a simple criterion of, the stability of isomeric conjugated systems. This much should also be of help in answering question (*iii*). Before doing this, however, we mention a few additional details; firstly, a major part of the total π -electronic energy is determined by the number of atoms and bonds contained within a particular molecule^{23,29,31}; ring branching (which, however, may have a dominant influence on the molecular stability) makes a relatively small contribution to the energy ($<5^{0}/_{0}$)³¹. An important fact to note is that an *even* chain causes only a small perturbation of the ring system^{17,23,29,32}, whereas an *odd* chain perturbs ring systems quite considerably.

A classic example is provided by a comparison between styrene (12) and its valence isomer *o*-xylylene (13):

Styrene is stable, aromatic compound³³ which has been well-characterized³⁴, while o-xylylene (1,2-benzenequinododimethide) is a very reactive species³⁵, which has been characterized only indirectly in the adduct form³⁶ and in metal complex³⁷. Very recently, it has been also described the photochemical preparation of o-xylylene in rigid glass³⁸. The stability of o-xylylene has been discussed by Gleicher, Newkirk, and Arnold³⁹ using REPE-index of Hess and Schaad⁴⁰ and it has been shown to be unstable non-aromatic species (REPE = 0.005 β). The value of REPE index of styrene is considerably larger (0.043 β).

In similar way it could be easily shown how the even chains of different type perturb only slightly a ring system. Compare (14), (15), (16), (17), and (18):

whose E_{π} values $(E_{\pi} (14) = 12.86 \ \beta; E_{\pi} (15) = 12.85 \ \beta; E_{\pi} (16) = 12.86 \ \beta; E_{\pi} (17) = 12.93 \ \beta; E_{\pi} (18) = 12.86 \ \beta)^{41}$ differ insignificantly.

On the basis of the above discussion, the following order of stabilities may be predicted for a sequence of furo- and/or thienoannelated tropylium cations (after inspection of the carbon skeleton of their respective »parent hydrocarbons«):

$$(4) \approx (5A) \approx (5B) \approx (6A) \approx (6B) > (7) \approx (8) \approx (9) > (10)$$

This prediction is actually in accord with experimental evidence, where it is available. We point out that the preparation of (10A) is under way⁴², and it will be of considerable interest to see how well our prediction agrees with subsequent experimental findings.

The presence of various $(\sigma+\sigma)$ -bivalent heteroatoms may cause minor differences in the stabilities of heterocyclic fused tropylium cations, because it is known that furan and thiophene rings differ in their stabilities⁴³. However, the experimental u.v. spectra⁴² of (5A), (5B), (6A) and (6B) show only small differences due to a change of a heteroatom.

Finally, we attempt an answer to question *(iii)*. Combining all the rules that have so far been mentioned, we can predict the following order of stabilities:

(a) for mono-annelated tropylium cations

 $(4) \{\approx (1)\} > (7) > (2)$

The stabilities of (1) and (4) are expected to be comparable because of the small (second order) perturbation associated with even chains, but some differences may occur, as we pointed out, because of the presence of heteroatoms. Unfortunately, the pK_{R^+} value of only the thienotropylium cation (4A) is known, and so we can at present only speculate how different the pK_{R^+} values of other possible heterocyclic b-side monoannelated tropylium cations (4B) - (4D)might be. If we are willing to accept that the effect of a heteroatom is going to decrease with increase of its size, and the C-X bond length, then going from (4B) through (4A), (4C), to (4D) should bring us closer to (1). It remains to be seen how accurate this prediction will turn out to be in practice.

(b) for di-annelated tropylium cations a similar consideration gives

$$(5A) \approx (5B) \approx (6A) \approx (6B) > (8) \approx (9) > (10) > (11) \approx (3)$$

Acknowledgements. — We should like to thank Drs. R. B. Mallion and C. F. Wilcox for helpful comments and help in the presentation of this work. The stay of one of us (N. T.) at the Department of Theoretical Chemistry, University of Oxford was made possible through a grant of Royal Society of London which has been greatly appreciated.

REFERENCES

- 1. W. v. E. Doering and L. H. Knox, J. Amer. Chem. Soc. 76 (1954) 3203.
- 2. H. H. Reinhard, E. Heilbronner, and E. Eschenmoser, Chem. Ind. (London) (1955) 415.
- 3. G. J. Berti, J. Org. Chem. 22 (1957) 330.
- 4 R. G. Turnbo, D. L. Sallivan, and R. Pettit, J. Amer. Chem. Soc. 86 (1964) 5630.
- 5. S. Gronowitz and B. Yom-Tov, Z. Chem. 10 (1970) 389. 6. S. Gronowitz, B. Yom-Tov, and U. Michael, Acta Chem. Scand. 27 (1973) 2257.
- 7. M. Stiles and A. J. Libbey, J. Org. Chem. 22 (1957) 1243.
- 8. D. Meuche, W. Simon, and E. Heilbronner, Helv. Chim. Acta 41 (1958) 47; ibid. 41 (1958) 414.
- 9. S. Gronowitz, Arkiv Kemi 13 (1958) 295.
- 10. G. Naville, H. Strauss, and E. Heilbronner, Helv. Chim. Acta 43 (1960) 1221.
- 11. C. W. Bird and G. W. H. Cheeseman, in: A. Specialist Periodical Report, Aromatic and Heteroaromatic Chemistry, Vol. 1, The Chemical Society, London 1973, p. 1. 12. A. T. Balaban, Rev. Roum. Chim. 15 (1970) 1243; Tetrahedron 27 (1972) 6115.
- 13. H. Hosoya, Bull. Chem. Soc. Jap. 44 (1971) 2332; Theor. Chim. Acta 25 (1972) 215.
- 14. A. Graovac, I. Gutman, N. Trinajstić, and T. Živković, Theor. Chim. Acta 26 (1972) 67.
- 15. D. Cvetković, I. Gutman, and N. Trinajstić, Croat. Chem. Acta 44 (1972) 365; Chem. Phys. Lett. 16 (1972) 614; J. Chem. Phys. 61 (1974) 2700; Theor. Chim. Acta 34 (1974) 129.
- 16. I. Gutman and N. Trinajstić, Chem Phys. Lett. 20 (1973) 257; Naturwissenschaften 60 (1973) 475; Croat. Chem. Acta 45 (1973) 423. 17. I. Gutman, N. Trinajstić, and T. Živković, Tetrahedron 29 (1973)
- 3449.
- 18. I. Gutman, J. V. Knop, and N. Trinajstić, Z. Naturforsch. 29b (1974) 52.
- 19. M. Randić, Tetrahedron 30 (1974) 2067.
- 20. M. Gordon and T. G. Parker, Proc. Roy. Soc. (Edinburgh) 69 (1971) 13.
- M. Gordon and J. W. Kennedy, J. C. S. Faraday II (1973) 484.
 I. Gutman and N. Trinajstić, Topics Curr. Chem. 42 (1973) 49.
 B. J. McClleland, J. Chem. Phys. 54 (1971) 640, I. Gutman, M. Milun, and N. Trinajstić, ibid. 59 (1973) 2772.

- 24. P. J. Garratt and K. P. C. Vollhardt, Chem. Commun. (1971) 1143.
- 25. J. V. Knop, N. Trinajstić, I. Gutman, and L. Klasinc, Naturwissenschaften 60 (1973) 475. 26. J. V. Knop, N. Trinajstić, and T. Živković, Coll. Czech. Chem.
- Commun. 39 (1974) 2431.

- Commun. 39 (1974) 2431.
 27. N. Trinajstić and T. Živković, to be published.
 28. P. L. Watson and R. N. Warrener, Aust. J. Chem. 26 (1973) 1725.
 29. I. Gutman and N. Trinajstić, Chem. Phys. Lett. 17 (1972) 53530. L. J. Schaad and B. A. Hess, Jr., J. Amer. Chem. Soc. 94 (1972) 3068.
 31. I. Gutman, Chem. Phys. Lett. 24 (1974) 283; I. Gutman, Ph. D. Thesis, University of Zagreb, 1973.
- 32. I. Gutman, N. Trinajstić, and T. Živković, Chem. Phys. Lett 14 (1972) 342.
- 33. M. J. S. Dewar and C. de Llano, J. Amer. Chem. Soc. 91 (1969) 789-34. e.g., P. Karrer, Organic Chemistry. Elsevier, Amsterdam 1950, p. 402, L. F. Fieser and M. Fieser, Organic Chemistry, Reinhold, New York 1956, p. 549.
- B. Elpern and K. Flesel, Organic Chemistry, Itemiolic, New York, 1959, 1954.
 B. Elpern and F. C. Nachod, J. Amer. Chem. Soc. 72 (1958) 3379.
 M. P. Cava and A. A. Deanna, J. Amer. Chem. Soc. 81 (1959) 4266.
 W. R. Roth and J. D. Meier, Tetrahedron Lett. (1967) 2053.
 C. R. Flynn and J. Michl, J. Amer. Chem. Soc. 95 (1973) 5802.
- 39. G. J. Gleicher, D. D. Newkirk, and J. C. Arnold, J. Amer. Chem. Soc. 95 (1973) 2526.
- 40. B. A. Hess, Jr. and L. J. Schaad, J. Amer. Chem. Soc. 93 (1971) 305
- 41. C. A. Coulson and A. Streitwieser, Jr., Dictionary of π -Electron Calculation, Pergamon Press, Oxford 1965.
- 42. T. Liljefors, U. Michael, B. Yom-Tov, and S. Gronowitz, Acta Chem. Scand. 27 (1973) 2485.
- 43. e.g., N. Trinajstić, Rec. Chem. Progr. 32 (1971) 85.

SAŽETAK

Teorija grafova i molekularne orbitale. XIII. O stabilnosti aneliranih tropilijevih kationa

I. Gutman i N. Trinajstić

822 1913년 전 1913년 전 1917년 교교에 가지 전 1917년 191 1913년 전 1916년 4월 2017년 1917년 전 1917년 1917년 전 1824년 4월 1911년 4월 1913년 전 전 1917년 1917년 1917년 1917년 1917년 1917년 1917년 1918년 1917년 1913년 전 전 1917년 1918년 전 1917년 1917년 1918년 1917년 1917년

Primijenjen je topološki pristup za istraživanje podrijetla razlikâ u stabilnosti benzo-aneliranih, te furo- i/ili tieno-aneliranih tropilijevih kationa. Raspoloživi eksperimentalni podaci mogu se tako objasniti, a također se mogu proreći pK_{R+} -vrijednosti za do sada nepoznate spojeve iz toga reda.

INSTITUT »RUĐER BOŠKOVIĆ« 41000 ZAGREB i

Primljeno 27. svibnja 1974.

ODJEL TEORIJSKE KEMIJE, SVEUČILIŠTE U OXFORDU M. A. Graceriet, J. Bactawi, J. J. J. CEAR Fell Merry & 15, D. Orielizer, C. J. S. Controlitor and D. Noriasia C. Color Mark Just and Orielizer, C. J. S. Control and C. Markov, C. Control Mark and Orielizer, Control and Specific Control Control of the Distribution States. International Science 2014; 2017 International Control of the Distribution States. 2018; 1997; 2017.