
 I L L I N O I S

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PRODUCTION NOTE

University of Illinois at
Urbana-Champaign Library
Large-scale Digitization Project, 2007.

Illinois Natural History Survey

Abundance of Fishes in the Navigation Channels of the Mississippi and Illinois Rivers with Implications for Estimation of Entrainment Mortality Caused by Towboats

July 1, 1995 through December 31, 1998
J.M. Dettmers, S. Gutreuter, R.M. Claramunt, D.A. Soluk, and D.H. Wail

Center for Aquatic Ecology
Illinois Natural History Survey
607 E. Peabody Drive
Champaign, IL 61820
U.S. Geological Survey, Upper Mississippi Science Center

2630 Fanta Reed Road
La Crosse, WI 54602

FINAL REPORT

Submitted to
Office of Resource Conservation Illinois Department of Natural Resources

600 N. Grand Ave., West
Springfield, IL 62706

December 1998

Abundance of Fishes in the Navigation Channels of the Mississippi and Illinois Rivers

with Implications for Estimation of Entrainment Mortality Caused by Towboats

July 1, 1995-December 31, 1998
John M. Dettmers', Steve Gutreuter ${ }^{2}$, Randall M. Claramunt ${ }^{1}$, Daniel Soluk ${ }^{1}$, and David H. Wahl ${ }^{1}$
${ }^{1}$ Center for Aquatic Ecology, Illinois Natural History Survey 607 E. Peabody Drive Champaign, Illinois 61820
${ }^{2}$ U.S. Geological Survey, Upper Mississippi Science Center
2630 Fanta Reed Road
La Crosse, Wisconsin 54602

FINAL REPORT

Submitted to the Office of Resource Conservation, Illinois Department of Natural Resources

Daniel A. Soluk co-Principal Investigator Center for Aquatic Ecology

Daniel A. Soluk, Director
Center for Aquatic Ecology
December 1998
This study is conducted under a memorandum of understanding between the Illinois Department of Natural Resources and the Board of Trustees of the University of Illinois and through a cooperative agreement between the U.S. Geological Survey and the Board of Trustees of the University of Illinois. The actual research was a collaborative effort by the Illinois Natural History Survey and the Upper Mississippi Science Center under the auspices of the Long-term Resource Monitoring Program. Steve Gutreuter served as the U.S. Geological Survey Principal Investigator and was responsible for overall project management. Primary funding for the project was provided by the U. S. Army Corps of Engineers, with additional support from the U. S. Geological Survey, the Illinois Department of Natural Resources, and the Illinois Natural History Survey. The form, content, and data interpretation are the responsibility of the U. S. Geological Survey, University of Illinois, and the Illinois Natural History Survey, not the Illinois Department of Natural Resources.

Table of Contents

List of Tables 4
List of Figures 6
Abstract 7
Introduction 9
Methods 10
Larval fish sampling. 11
Sampling small and 'adult' fishes by trawling 12
In situ forensic examination of wounded and dead fish 14
Trawling vessel 15
Rockhopper bottom trawl 17
Beam trawl 18
Measurement of rockhopper bottom trawl dimensions and estimation of area swept 18
Statistical analyses of trawl catches 20
Estimation of density and biomass of live fish the navigation channels 23
Results 24
Estimation of densities of larval fishes 24
Trawling performance 27
Catch and abundance of small fish captured with the beam trawl 27
Catch and abundance of 'adult' fishes captured by the rockhopper bottom trawl 28
Incidence of injured and dead fish in ambient and entrainment sampling 32
Discussion 34
Larval Fish Sampling 34
Abundance of small fishes in the navigation channels 37
Abundance of adult fishes in the navigation channels and implications for estimation of entrainment mortality 38
Summary 42
Literature Cited 44
Appendix A 104
Appendix B Appendix B, Page 1
Appendix C Appendix C, Page 1
Appendix D Appendix D, Page 1
Appendix E Appendix E, Page 1

List of Tables

Table 1. Accuracy and precision of Netmind ${ }^{\mathrm{ms}}$ acoustic trawl monitoring sensors.48Table 2. Parameter estimates for conversion of fish lengths $L(\mathrm{~mm})$ to weights L (g) 49
Table 3. Mean larval fish density expressed as number $/ \mathrm{m}^{3}(1 \mathrm{SE})$ for all taxa collected from the navigation channel of the lower Illinois River during May through July 1996. 50
Table 4. Mean larval fish density expressed as number $/ \mathrm{m}^{3}(1 \mathrm{SE})$ for each taxon collected from the navigation channel of the Illinois River during May-July 1996 51
Table 5. Mean larval fish density expressed as number $/ \mathrm{m}^{3}$ (1 SE) for all larval taxa collected from main channel, side channel, and backwater habitats in Pool 26 of the Mississippi River and the lower Illinois River during April-July 1997. 53
Table 6. Mean larval fish densities (1 SE) expressed as number $/ \mathrm{m}^{3}$ collected from main channel(MC; river mile 13.5), side channel (SC; river mile 13.5), and backwater (BW ; river mile9.3) habitat types in the Illinois River during May-July 1997. 54
Table 7. Mean larval fish density expressed as number $/ \mathrm{m}^{3}$ for all taxa combined collected from thenavigation channel of Pool 26 of the Mississippi River during May-July, 1996.56
Table 8. Mean larval fish density expressed as number $/ \mathrm{m}^{3}$ collected from the navigation channel in Pool 26 of the Mississippi River during May-July 1996. 57
Table 9. Mean larval fish density expressed as number $/ \mathrm{m}^{3}$ (1 SE) for each taxon collected in main channel habitat of Pool 26 of the Mississippi River during April-July 1997. 62
Table 10. Mean larval fish density expressed as number $/ \mathrm{m}^{3}(1 \mathrm{SE})$ of each species collected in side channel habitat in Pool 26 of the Mississippi River during April-July 1997 65
Table 11. Mean larval fish density expressed as number $/ \mathrm{m}^{3}$ (1 SE) of each taxon collected from backwater habitat (river mile 222.2) in the Mississippi River during April-June 1997. 67
Table 12. Mean monthly CPUE (1 SE) expressed as number of fish per hour of trawling for all small fish collected by bottom frame trawl in the lower Illinois River and in Pool 26 of the Mississippi River during July and September 1997. 68
Table 13. Minimal density and biomass estimates of fishes captured by the beam trawl in the lower Illinois River during 1997. 69
Table 14. Minimal density and biomass estimates of fishes captured by the beam trawl in Pool 26 of the Mississippi River during 1997. 70
Table 15. Mean, standard deviation (S.D.) and sample size (N) of lengths and weights of fishes captured by beam trawling 71
Table 16. Minimal density and biomass estimates of fishes captured by the rockhopper trawl in the lower Illinois River during 1996. 72
Table 17. Minimal density and biomass estimates of fishes captured by the rockhopper trawl in the lower Illinois River during 1997. 73
Table 18. Minimal density and biomass estimates of fishes captured by the rockhopper trawl in Pool 26 of the Mississippi River during 1996. 74
Table 19. Minimal density and biomass estimates of fishes captured by the rockhopper trawl in Pool 26 of the Mississippi River during 1997. 75
Table 20. Analysis of rockhopper trawl catches for all species combined. 76
Table 21. Analysis of rockhopper trawl catches for blue catfish. 77
Table 22. Analysis of rockhopper trawl catches for channel catfish 78
Table 23. Analysis of rockhopper trawl catches for common carp 79
Table 24. Analysis of rockhopper trawl catches for freshwater drum 80
Table 25. Analysis of rockhopper trawl catches for gizzard shad 81
Table 26. Analysis of rockhopper trawl catches for goldeye 82
Table 27. Analysis of rockhopper trawl catches for mooneye 83
Table 28. Analysis of rockhopper trawl catches for shovelnose sturgeon 84
Table 29. Analysis of rockhopper trawl catches for smallmouth buffalo 85
Table 30. Mean, standard deviation (S.D.) and sample size (N) of lengths and weights of fishes captured by rockhopper trawling. 86
Table 31. Information on dead and wounded fish, for which injuries could be attributed toentrainment through the propellers of the preceding towboat, collected during entrainmentsampling behind towboats passing upstream or downstream during 199688
Table 32. Dead and wounded fish collected during ambient sampling with the rockhopper trawl todetermine background occurrence of dead and wounded fish during 1996 and 1997 in Pool26 of the Upper Mississippi River and the lower 20 miles of the Illinois River89

List of Figures

Figure 1. Schematic representation of the $10.2-\mathrm{m}$ rockhopper bottom trawl as viewed from above 90
Figure 2. Minimal mean densities of fish of all species combined estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River92

Figure 3. Minimal mean densities of blue catfish estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River

Figure 4. Minimal mean densities of channel catfish estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River94

Figure 5. Minimal mean densities of common carp estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River95

Figure 6. Minimal mean densities of freshwater drum estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River96

Figure 7. Minimal mean densities of gizzard shad estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River 97
Figure 8. Minimal mean densities of goldeve estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River 98
Figure 9. Minimal mean densities of mooneye estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River

Figure 11. Minimal mean densities of smallmouth buffalo estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River101
Figure 12. Catch per unit effort (CPUE) of blue sucker captured by rockhopper bottom trawling in the navigation channel of Pool 26 of the Upper Mississippi River 102
Figure 13. Mean number of species per haul of the rockhopper bottom trawl in the Illinois River and Pool 26 of the Mississippi River, 1996-1997. 103

Abstract

Expansion of the capacity of the Upper Mississippi River System to support commercial navigation is being deliberated. This proposed expansion created the need to develop information on potential effects of commercial navigation on fishes of the Upper Mississippi River System. Our study objectives were to: 1) quantify the distribution and abundance of early life stages of fish for later incorporation into models of losses of adult-fish equivalents, production foregone and recruitment foregone; 2) develop methods to estimate abundance and entrainment mortality of juvenile and adult fishes in navigation channels; and 3) estimate abundance of juvenile and adult fishes in the navigation channels of Pool 26 of the Mississippi River and in the lower Illinois River for later incorporation into models to estimate entrainment mortality of juvenile and adult fishes. Total densities of larval fishes in the navigation channels generally did not exceed 3 fish $/ \mathrm{m}^{3}$ and tended to be greater in the lower Illinois River than in nearby Pool 26 of the Mississippi River. Larvae of common carp Cyprinus carpio and catostomids predominated in May but were replaced by clupeids, primarily gizzard shad Dorosoma cepedianum in June. Finally, freshwater drum Aplodinotus grunniens larvae predominated ichthyoplankton drift in late June and early July. Total minimal densities of fish longer than 10 cm total length averaged 157 and 177 fish/ha during 1996 and 1997 , respectively, in the lower Illinois River, and 109 and 55, respectively in Pool 26 of the Mississippi River. The assemblage of these larger fishes was dominated by freshwater drum, gizzard shad, channel catfish Ictalurus punctatus, and smallmouth buffalo Ictiobus bubalus. Additionally, shovelnose sturgeon Scaphirhynchus platorynchus were common the upper portion of Pool 26, but totally absent from the Illinois River. The core assemblage of larval fish taxa and larger fish species

present in Pool 26 of the Mississippi River and in the lower Illinois River was similar between years, but substantial variability in seasonal timing of appearance and in observed density of these fishes in the navigation channel exists. However, due to the short duration of the study, we cannot determine the potential magnitude of year-to-year changes in the density and seasonal appearance of fishes in the navigation channel, leaving substantial uncertainty as to how representative our estimates of fish density might be. Nevertheless, this study has clearly demonstrated that substantial numbers, biomass, and diversity of all life stages of fish occurs in the main channel of large floodplain rivers such as the Upper Mississippi River and the lower Illinois River. We believe that this habitat type must be more strongly considered in future management efforts of large floodplain rivers potentially affected by commercial navigation.

Introduction

Large rivers of the United States are managed by multiple agencies for multiple uses, including commercial navigation. Commercial vessels such as towboats entrain large volumes of water through their propellers, which may exceed 2.5 m in diameter. Fish that pass through those propellers may be injured or killed by shear stress, impact or pressure changes. Although mortality of eggs and larval fishes that pass through hydropower turbines is well known (Hesse et al. 1982; Englert and Boreman 1988; Cada 1990), little is known about mortality of early life stages of riverine fishes caused by entrainment through towboat propellers. Larval fish are present across all aquatic areas of the Upper Mississippi and the Illinois Rivers, including the navigation channels (Holland and Sylvester 1983; Holland-Bartels et al. 1995), and are therefore at risk of entrainment through by towboats. Holland (1986) studied short-term changes in distribution and catch of early-life stages of fish associated with towboat passage in Pools 7 and 8 of the Mississippi River and noted significant damage to eggs, but found no consistent effects on catches of age-0 and small adult fishes. Odom et al. (1992) attempted to estimate entrainment mortality of larval fishes by deploying plankton nets before and after barge-passage, but concluded that net and handling induced mortality may have masked any effects of towboats.

Mortality of larger fish caused by entrainment through towboat propellers has not previously been quantified, but has been reported anecdotally. In large open channels many fish may escape entrainment by avoiding oncoming tows. For instance, some fishes avoid large vessels in the marine environment (Neproshin 1978; Misund and Aglen 1992; Soria et al. 1996). Furthermore, Todd et al. (1989) observed radio-tagged channel catfish Ictalurus punctatus move in response to oncoming towboats in the Illinois River. Lowery et al. (1987) used hydroacoustic
sensing to monitor the responses of fishes to tow passages in the Cumberland River and found that some moved away from passing tows. The strength of this avoidance reaction seemed to vary with direction of tow travel (up-versus downbound) and whether or not the barges were loaded. However, some fish may not avoid entrainment. The magnitude, seasonal timing and spatial variation in tow-induced entrainment mortality of large riverine fishes is completely unknown.

An expansion of commercial navigation capacity is being considered for the Mississippi and Illinois Rivers above Lock and Dam 26 near St. Louis. Estimates of entrainment mortality and effects on fish populations are needed by decision makers including the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service. The goals of this study in Pool 26 of the Mississippi River and in the lower Illinois River were to: 1) quantify the distribution and abundance of early life stages of fish for later incorporation into models of losses of adult-fish equivalents, production foregone and recruitment foregone; 2) develop methods to estimate abundance and entrainment mortality of juvenile and adult fishes in navigation channels of large rivers; and 3) estimate abundance of juvenile and adult fishes in the navigation channels for later incorporation into models to estimate entrainment mortality of juvenile and adult fishes.

Methods

With the exception of additions and modifications described below, methods of sampling and data management conformed to Long Term Resource Monitoring protocols (Gutreuter et al. 1995). Water temperature, Secchi depth, and surface current velocity were measured and recorded before each fish sampling event. Surface current velocity was measured at $30-\mathrm{cm}$ depth
by using a Marsh-McBirney ${ }^{\text {TM }}$ Flow-Mate 2000 current meter. All names of fishes used in this report (Appendix A) conform to Robins et al. (1991).

Larval fish sampling.
We collected larval fishes every other week during May 1-August 1,1996 at up to 10 main channel sites (River Miles 203.2, 207.1, 211.2, 213.6, 215.7, 223.0, 225.8, 230.5, 233.5, and 240.2) on the Mississippi River and four sites (River Miles 4.5, 9.3, 13.5, and 18.7) on the Illinois River. All sampling sites were located in the center of the navigation channel and chosen such that the risk of a towboat appearing suddenly from around a blind bend was minimized. Sampling occurred in an upstream direction with paired $1-\mathrm{m}$ diameter, $500-\mu \mathrm{m}$ mesh ichthyoplankton nets mounted from a boom attached to the bow of a boat and pushed near the surface of the water alongside the boat at speed of $1.0-1.5 \mathrm{~m} / \mathrm{s}$. Each push lasted about 10 minutes (exact time recorded in seconds by stopwatch), after which larval fishes and drifting debris were preserved in 10% formalin or 95% ethanol. Sampling throughout a 24 -hour period was not conducted because two crew leaders were not available during 1996.

In 1997, larval fish sampling occurred in five locations, one on the lower Illinois River at River Mile 13.5, two on the Mississippi River above its confluence with the Illinois River at River Miles 223.0 and 233.5, and two on the Mississippi River below its confluence with the Illinois River at River Miles 208.5 and 215.7. These locations were selected so that 1) they were sites used in 1996 and 2) spatial distribution of larvae across main channel, side channel, and backwater habitats could be assessed. We followed a sampling protocol similar to that in 1996 at these sites, except that we 1) also sampled side channel and backwater sites, 2) sampled all sites
for about 6 minutes instead of 10 minutes to reduce the volume of extraneous debris and speed sample processing, and 3) sampled backwater sites with a $0.5-\mathrm{m}$ diameter ichthyoplankton net due to their lack of depth compared to main channel and side channel sites.

All fishes were identified, following the keys of Auer (1982) and Holland-Bartels et al. (1990), to the lowest possible taxonomic category (most often to family or genus) given the amount of time needed to process and count samples. As many as 100 larval fish of each taxon were randomly selected from each net tow within a paired sample and their individual total lengths were measured to the nearest 0.1 mm total length (TL) by using a drawing tube attached to a microscope and a computerized digitizing program. To estimate abundance of larval fishes at each sampling site and date, we used the simple mean density from the two paired nets.

Sampling small and 'adult' fishes by trawling.

We used bottom trawls to sample fishes in the navigation channels. Bottom trawls were chosen because most channel-dwelling fishes of the Upper Mississippi River System are primarily epibentic in their vertical distribution. Further, we sought to measure the quantity of fish that might be killed by entrainment through towboat propellers, which presented particular problems. This study was conducted under the philosophy that where uncertainty was unavoidable or where assumptions were required, we would reasonably avoid underestimation of impact. Fish killed by entrainment, and particularly those severed by propellers might have ruptured gas bladders and be negatively buoyant, tending to settle to the bottom. Therefore sampling high in the water column might tend to underestimate impacts, and we sampled the water immediately above the bottom.

We sampled small (2.5-15.0 cm TL) primarily epibentic fishes in the navigation channel by using a beam trawl (described below). The beam trawl was deployed at up to eight sites (from among River Miles 203.2, 207.1, 211.2, 213.6, 215.7, 223, 227.1, 233.5, and 238.2) on Pool 26 and three sites (River Miles 5.5, 9.3, and 13.5) on the lower Illinois River. The beam trawl was deployed approximately 45 m behind the trawler and towed upstream at speeds of approximately $4 \mathrm{~km} / \mathrm{h}(2.5 \mathrm{mi} / \mathrm{h})$ relative to the ground for a nominal duration of 10 minutes in July when small fishes were relatively common and for 20 minutes in September when many of these fishes had grown to larger sizes and were likely less vulnerable to the gear. A flowmeter was placed in the mouth of the net to determine the amount of water passing through the net mouth. All fishes $>2.5 \mathrm{~cm}$ were identified, measured, weighed, and immediately released, whereas small fishes $<2.5 \mathrm{~cm}$ were identified in the laboratory.

We used a rockhopper bottom trawl (described below) to sample 'adult' fish, here loosely defined as fish longer than 10 cm TL , in the navigation channel. Sampling occurred during August-December 1996 and March-October 1997 as equipment, weather, and flow rates permitted. Regular sampling sites in Pool 26 were located at River Miles 203.2, 207.2, 213.6, and $215.7,223.0,227.2,230.5,233.5$, and 238.2 during 1996. We sampled at River Miles 211.2 and 225.8 once during the process of site selection, but did not include these sites as part of our regular sampling. Sampling sites during 1997 were the same as for 1996 , except that the site at 230.5 was dropped after we lost a net there during April sampling and that sampling occasionally was done at river mile 240.2. Sampling sites in the Illinois River were located at River Miles $5.5,9.3,13.5$, and 18.7 during both 1996 and 1997. We sampled at River Mile 16.5 only once during 1996. The primary criterion used to select sampling sites within the larger study areas
was that we required an unobstructed view of the navigation channel in both directions so that we would not be surprised by the sudden approach of a tow and could maintain an unobstructed view of tows in the area. Our goal was to sample all of the sites listed above within a one-week time frame before starting another cycle of sampling.

We distinguish two types of trawling used in this study. We define ambient sampling as trawling done primarily to estimate ambient abundance of live fish in the navigation channel and to measure the background drift of injured and dead fish in the navigation channel. We define entrainment sampling as trawling conducted behind specific tows to provide the data necessary to estimate mortality caused by entrainment of fish through the propellers of towboats. Entrainment sampling also produces useful information on abundance of live fish. Due to time constraints, we performed entrainment sampling using only the rockhopper bottom trawl.

The sampling methods that follow immediately apply to both ambient and entrainment sampling. The rockhopper trawl was deployed approximately 30 m behind the trawler and towed at speeds of approximately $4 \mathrm{~km} / \mathrm{h}(2.5 \mathrm{mi} / \mathrm{h})$ relative to the ground for a nominal duration of 20 min. During 1997, when river conditions were favorable, an acoustic trawl monitoring system (see below) was used to measure the dimensions of the net mouth opening during trawling. This information permitted quantitative estimation the numbers of fish per square meter of river bottom. All fishes collected were identified, measured, weighed, and immediately released.

In situ forensic examination of wounded and dead fish.

For both ambient and entrainment sampling, we examined fish for injuries and recorded the characteristics of dead fish. We first determined the position of any wounds on the body,
scoring wound position as some combination of dorsal, ventral, anterior, and posterior on the body of the fish. If no obvious wound was found on a fish, scoring for wound position was left blank. We then estimated the age of the wound as 1) fresh, obvious fresh wound with no signs of clotting, 2) recent, wound less than one day old, still a fresh-looking wound, but clotting had begun, 3) old, wound older than 24 h , including healed scars or wounds clearly not recently made, and 4) wound marks on a dead, decomposing fish. If a fish was dead when we brought it on board, we also estimated the time of death as 1) recent, within 1 h , gill filaments still red and eyes clear, 2) recent, within several hours, gill filaments pink, eyes clouded, or 3) not recent, over several hours dead, gill filaments white/grey, eyes cloudy, body stiff. Finally, we determined whether the wound could have been caused by a propeller. If a wound was cleanly cut, we assumed a propeller could have caused the wound, but if not, we assumed that a propeller did not.

Trawling vessel.
The trawling vessel used in this study is based on a Munson Hammerhead ${ }^{\text {ma }}$ aluminum hull that is $7.31-\mathrm{m}(24-\mathrm{ft})$ long and has a beam of $2.74 \mathrm{~m}(9 \mathrm{ft})$. A $0.61-\mathrm{m}$ fantail afterdeck extends the total length to 7.92 m (26 ft). The trawler is powered by a $415-\mathrm{hp}$ engine and the outdrive unit has a single $0.5-\mathrm{m}$ (19.75 in) diameter propeller having a pitch of $0.48 \mathrm{~m}(19 \mathrm{in})$ or 3.26:1. The afterdeck is equipped with a custom aluminum trawling gantry supporting a pair of trawling blocks suspended approximately 0.5 m above the surface of the water. Accessory gear includes Raytheon marine radar. This trawler is small and light enough to be transported on a conventional boat trailer yet has some advanced trawling and safety features.

The trawling system consists of two trawling winches, an accessory net handling winch and accessory controls designed, manufactured and installed by Rapp-Hydema US, Seattle, Washington, nets and net-monitoring gear. Each trawling winch contained approximately 100 m of $6.4-\mathrm{mm}(0.25 \mathrm{in})$ diameter galvanized steel combination wire. The trawling gantry, winches and cable were designed to sustain a total load of approximately $9 \mathrm{kN}(2,000 \mathrm{lbs}$ force $)$. The hydraulic system was designed to maximize safety. When the trawl is under tow, the trawling winches are constantly active and the trawl is held in position by balancing the drag on the net with the pressure exerted by the winches. Therefore the winches automatically release cable when the net snags on an immovable object, thus preventing sudden and violent stops. In addition, the trawling winches are equipped with an emergency release that can be activated by the pilot to allow the winch drums to spool freely in the event of a severe snag. These features are critical in river trawling because of the frequency and severity of snags, the added difficulty of trawling in current, and the presence of commercial navigation. Trawl cable lengths are monitored by a Rapp-Hydema EMS $2000^{m 4}$ Warp Counter.

On the recommendations of a trawling expert, and based on our own preliminary tests, we conducted all trawling in the upstream direction to minimize risks to safety. Trawling upriver allows easier release of tension when snagged because it only requires reduction of throttle speed. Further, proper expansion of the doors and trawl, and therefore capture efficiency, relies on the speed of the trawl relative to the water. In the presence of current, obtaining a particular speed relative to the water requires lower speed relative to the ground when traveling upstream than when traveling downstream. Therefore trawling upstream results in less violent deceleration on immovable snags than does trawling downstream.

Rockhopper bottom trawl.

We relied primarily on a four-seam rockhopper bottom trawl (Figure 1) designed and manufactured by Wilcox Marine Supply, Mystic, Connecticut. Rockhopper trawls are designed to ride over the top of small obstacles and thereby reduce the frequency of snagging. The footrope of our nets had a length of $10.2 \mathrm{~m}(33.33 \mathrm{ft})$ and a headrope length of $8.0 \mathrm{~m}(26.25 \mathrm{ft})$. Mesh of the trawl mouth and cod end consisted on \#21 nylon twine with a bar-measure mesh size of $2.54 \mathrm{~cm}(1 \mathrm{in})$; stretch-measure is 2 x bar measure. The rockhopper consisted of $25-\mathrm{cm}$ ($10-\mathrm{in}$) diameter "cookies" cut from truck tire tread salvage threaded on the footrope and spaced approximately every $61 \mathrm{~cm}(2 \mathrm{ft})$ by $7.6-\mathrm{cm}(3 \mathrm{in})$ cookies. Four $20-\mathrm{cm}(8-\mathrm{in})$ diameter spherical trawl floats were equally spaced along the length of the headrope. The length of the cod end was approximately $2.4 \mathrm{~m}(8 \mathrm{ft})$, and the total length from the wings to the cod end was approximately 10.7 m (35 ft). The paired " V " doors were constructed of steel and measured 96 cm (38 in) long by $69 \mathrm{~cm}(27 \mathrm{in})$ high, and were attached to the trawl wings by $9.1-\mathrm{m}$ (30-ft) long "straight leg" ground cables of $0.63-\mathrm{cm}(0.25-\mathrm{in})$ galvanized steel combination wire.

The trawler was equipped with a Netmind ${ }^{\text {m" }}$ (Northstar Technical Inc., Vancouver, British Columbia, Canada) hydroacoustic trawl monitoring system which provides a continuous stream of measurements of the distance between trawl wings (Figure 1) and the distance from the headrope to the bottom for the rockhopper bottom trawl. The Netmind system consists of a paravane receiver which is towed over the port side of the trawler, a trawl monitor which displays net dimensions, wingspread master and slave sensors which are placed in net pockets at the forward end of each wing, and a trawl height sensor which is attached to the headrope at the midpoint between the wings. When the sensors were installed in the net, one additional $20-\mathrm{cm}$
diameter spherical trawl float was attached at the position of the headrope sensor, as per manufacturers specifications, to make that sensor neutrally buoyant. Wingspread sensors require no such buoyancy compensation. In tests, coefficients of mean variation of headrope height measurements were not greater than 3.6% and those for wingspread measurements were not greater than 1.7% (Table 1). Mean bias never exceeded $0.14 \mathrm{ft}(4.3 \mathrm{~cm})$. Because of the high cost of the sensors relative to the cost of rockhopper trawls, sensors were deployed in a subsample of the trawl samples to reduce the risk of loss. Despite that care, one set of sensors was lost with a trawl that became snagged under severe and threatening conditions.

Beam trawl.

We used a beam (frame) trawl manufactured by Wilcox Marine Supply, Mystic, Connecticut to sample small fishes. This trawl consisted of a heavy aluminum alloy frame containing bottom skids and a net made from 3.2-mm ($0.125-\mathrm{in}$) "Ace" nylon mesh. This beam trawl has a rectangular opening when towed over level bottom that is $2.44-\mathrm{m}(8-\mathrm{ft})$ wide and $1.52-\mathrm{m}(5-\mathrm{ft})$ high, and has a surface area of $3.71 \mathrm{~m}^{2}\left(40 \mathrm{ft}^{2}\right)$.

Measurement of rockhopper bottom trawl dimensions and estimation of area swept.
Estimation of density (number/hectare) and biomass ($\mathrm{kg} / \mathrm{hectare}$) of epibentic fish requires measurement of the area swept by the rockhopper trawl. Estimation of entrainment mortality also requires estimation of volume strained by the rockhopper trawl. In turn, we required measurements of the wingspread of the rockhopper trawl and estimates of the surface area of the mouth of the trawl in the plane perpendicular to the direction of the trawler.

Measurements from the Netmind ${ }^{m \times}$ acoustic trawl monitoring system were recorded at approximately $1-\mathrm{min}$ intervals during the course of 18 trawl hauls. For hauls of full duration of $20-\mathrm{min}$, this yielded 20 sets of recordings. The durations of some hauls were abbreviated because of snags or development of hazards. Further, signal interference or other factors occasionally caused measurements of headrope height and wingspread to be missed. In total, we obtained 265 recordings of headrope height and 258 recordings of wingspread during normal trawling operations.

To estimate the surface area of the projection of the mouth of the rockhopper trawl onto the vertical plane perpendicular to the towing direction, we modeled that projection of the mouth as a half-ellipse with major axis w and minor axis $2 h$ (Figure 1). That area is given by

$$
\begin{equation*}
\alpha=\frac{\pi}{4} h w . \tag{1}
\end{equation*}
$$

For the 18 rockhopper bottom trawl hauls that were monitored by using the Netmind ${ }^{\text {m4 }}$ system, we computed the bottom area swept as the product of the length of the trawl haul and the mean wingspread from measurements recorded during the particular haul. Similarly, we estimated mouth areas as the means of areas computed from the individual measurements taken at $1-m i n$ intervals during the particular haul. For the hauls that were not monitored with the Netmind ${ }^{\text {mis }}$ system, we computed the area swept as the length of the haul times the mean wingspread from all 258 measurements obtained during the 18 monitored hauls. Similarly, we
estimated mouth areas of unmonitored hauls as the mean of the 258 areas computed from the 18 monitored hauls.

We measured the lengths of 41 trawl hauls by using the differences between radar measurements of a prominent stationary object made at the start and finish of the haul. From these we computed the mean and variance of trawl speed. The lengths of unmeasured trawl hauls were obtained as the product of trawl time and mean speed. The variances of these lengths were obtained as the products of the variance of speed and time squared (Hogg and Craig 1970).

Statistical analyses of trawl catches.
Let $C_{i j k m}$ denote the number of fish of a species caught in trawl sample m from pool i, segment j within pool i, during year k. To examine pattern in the trawl catch data, we began with the conventional catch equation $C=q f N$, where q is the catchability coefficient, f is fishing effort (min), and N is abundance (Ricker 1975). This conventional catch equation provides the basis for our statistical model of catch given by

$$
\begin{equation*}
C_{i j k m}=f \exp \left(\lambda_{0}+y_{i}+p_{j}+l_{j(k)}+\beta_{1} t+\beta_{2} t^{2}+\beta_{3} t^{3}\right) \tag{2}
\end{equation*}
$$

where we model $q N$ by

$$
\begin{equation*}
q N=\exp \left(\lambda_{0}+y_{i}+p_{j}+l_{ر(k)}+\beta_{1} t+\beta_{2} t^{2}+\beta_{3} t^{3}\right) \tag{3}
\end{equation*}
$$

where λ_{0} is a free constant parameter, y_{i} is the effect of year i, p_{j} is the effect of pool $j, l_{(k)}$ is the effect of longitudinal zone l nested within pool j, t is the effect of time measured as month of the year, and the $\beta_{1} \ldots \beta_{3}$ are parameters for the linear, quadratic and cubic effects of time, respectively. Note that our goal here was not to distinguish q from N, but rather to formulate a statistical model for effects of year, pool, location and month on catch that is consistent in form with the conventional catch equation. Because catch is an integer-valued random variable, it can be modeled naturally using the Poisson distribution given by

$$
\begin{equation*}
f(\mathbf{C} \mid \mu)=\frac{\exp (-\mu) \mu^{C_{i j k}}}{C_{i j k}!} \tag{4}
\end{equation*}
$$

where \mathbf{C} is the vector of catches $C_{i j k}$ and μ is the distribution mean. We assumed the conditional distribution of trawl catches was overdispersed Poisson having mean μ and variance $\phi \mu$, where ϕ is a multiplicative overdispersion parameter. This distribution reduces to the conventional Poisson distribution when $\phi=1$. We fitted equation (1) to the overdispersed Poisson distribution by using maximum quasilikelihood estimation (McCullagh and Nelder 1989) in the generalized linear model formalism. We modeled the Poisson mean μ as

$$
\begin{equation*}
\mu=f \exp \left(\lambda_{0}+y_{i}+p_{j}+l_{j(k)}+\beta_{1} t+\beta_{2} t^{2}+\beta_{3} t^{3}\right) \tag{5}
\end{equation*}
$$

The linear predictor η corresponding to the logarithmic link function (McCullagh and Nelder 1989) is given by

$$
\begin{equation*}
\eta=\log (\mu)=\log (f)+\lambda_{0}+y_{i}+p_{j}+l_{ر(k)}+\beta_{1} t+\beta_{2} t^{2}+\beta_{3} t^{3} \tag{6}
\end{equation*}
$$

which can be viewed as an extension of an analysis of covariance to the Poisson distribution with offset $\log (f)$. This model assumes that catches are mutually independent. These models were fitted by using the SAS GENMOD procedure (SAS Institute 1997). We used likelihood ratio chi-square tests to assess the statistical significance of model parameters.

Because trawl samples were taken from particular areas though time, it is reasonable to expect that trawl catches may not be mutually independent, but rather may be serially correlated. To include this possibility, we also modeled the catches (equation 1) as realizations of an overdispersed Poisson distribution including a first-order autoregressive process [AR(1)], and fitted this model by using population-averaged generalized estimating equations (Zeger et al. 1988). We fitted these models using the SAS GENMOD procedure (SAS Institute 1997) and assessed the statistical significance of model parameters based on normal-theory Z scores.

For some species, the Newton-Raphson iterations for maximization of the quasilikelihood or the iterative generalized estimating equation algorithms failed to converge. For these cases we fitted, by ordinary least-squares estimation, a corresponding Gaussian-errors (normal distribution theory) model given by

$$
\begin{equation*}
\log \left(\frac{C}{f}+1\right)=\lambda_{0}+y_{i}+p_{j}+l_{j(k)}+\beta_{1} t+\beta_{2} t^{2}+\beta_{3} t^{3} \tag{7}
\end{equation*}
$$

where ϵ is normally distributed random error.

Estimation of density and biomass of live fish the navigation channels.
We estimated the density (number per unit area) of fishes by dividing the catch from each sample by the area swept. We emphasize that this is a minimal estimate of density because some unknown fraction of live fish avoid capture by the trawl.

Biomass is the mass of live fish per unit area. For some fish, we made measurements of individual mass (g) in the field by using a spring-loaded scale. We measured individual lengths (mm) of all fish captured. For fish for which we measured only length L, we estimated mass W by using the conventional weight-length equation

$$
\begin{equation*}
W=10^{a} L^{b} \tag{8}
\end{equation*}
$$

(Anderson and Gutreuter 1983). We used estimates of a and b (Table 2) obtained from ordinary least-squares regressions of $\log _{10} W$ on $\log _{10} L$ using data obtained by the Long Term Resource Monitoring Program of the Upper Mississippi River System (Gutreuter et al. 1995). Biomass was computed as total mass divided by area swept by the trawl a. This provides a minimal
estimate of actual biomass because some unknown fraction of live fish avoid the trawl or are not retained in it.

Results

Estimation of densities of larval fishes.

Illinois River-During 1996, larval fish density was lowest during July, averaging 0.96 larvae $/ \mathrm{m}^{3}$ and greatest during June, at $1.65 \mathrm{larvae} / \mathrm{m}^{3}$ (Table 3). Nine larval taxa were identified in the navigation channel drift during May (Table 4), with common carp and clupeid, primarily Dorosoma, larvae the two dominant taxa. In June, eight larval taxa were present, with clupeid and common carp larvae again dominant (Table 4). Seven taxa occurred during July; freshwater drum larvae were more abundant than any other larval taxon by at least an order of magnitude (Table 4).

Larvae were sampled in main channel, side channel, and backwaters at one site in the Illinois River, during 1997. Once again, mean larval density in the main channel was greatest during June, at 4.13 larvae $/ \mathrm{m}^{3}$, and lowest during July, at 0.10 larvae $/ \mathrm{m}^{3}$ (Table 5). A similar pattern held in the side channel, where larval abundance peaked in June at a mean of $7.43 / \mathrm{m}^{3}$ and was lowest in July at 0.03 larvae $/ \mathrm{m}^{3}$ (Table 5). Backwater larval fish densities were greatest during May (6.99 larvae $/ \mathrm{m}^{3}$) and lowest during June (1.70 larvae $/ \mathrm{m}^{3}$; Table 5).

Four to eight taxa were represented in the main channel during the sampling period (Table 6). Clupeid larvae were dominant during May, followed by freshwater drum in June and catostomids during July (Table 6). Three to seven larval taxa were present in the side channel, with freshwater drum dominant during May and June, and clupeid larvae dominant in July (Table 6). Taxonomic diversity was consistent at four or five taxa in the Illinois River backwater
throughout the May-July sampling period (Table 6). Clupeid larvae predominated in the backwater during May but centrarchids were the dominant larvae during June and July (Table 6).

Mississippi River-In 1996, larval fish density was greatest during May, averaging 0.84 larvae $/ \mathrm{m}^{3}$ and least in June, averaging 0.54 larvae $/ \mathrm{m}^{3}$ (Table 7). Ten taxa were present in May, with common carp larvae the dominant taxon; clupeid, primarily Dorosoma, and catostomid larvae also were relatively abundant (Table 8). During June, eleven taxa occurred. Abundance of common carp larvae declined whereas clupeid and freshwater drum larvae increased, generating a larval assemblage with several important taxa represented (Table 8). Six larval taxa were represented during July; freshwater drum was the dominant taxon present (Table 8).

Sampling during 1997 included four paired main channel and side channel sites as well as one backwater. Main channel larval fish density was greatest during June, at 0.54 larvae $/ \mathrm{m}^{3}$ and least in April, at <0.01 larvae $/ \mathrm{m}^{3}$ (Table 5). Side channel larvae exhibited a similar pattern of density, peaking in June at 1.25 larvae $/ \mathrm{m}^{3}$ but present at <0.01 larvae $/ \mathrm{m}^{3}$ in April (Table 5). Larvae were much more abundant in the backwater, generating 27.47 larvae $/ \mathrm{m}^{3}$ in June and 3.60 larvae $/ \mathrm{m}^{3}$ in May, the only two months in which larvae were collected in the backwater (Table 5). Larvae were not present in the backwater during April and we could not sample the backwater in July because the water level had receded sufficiently to prevent our nets from fishing.

Seven to nine larval taxa were present in the main channel during April-July (Table 9).
No taxon was dominant in April, all larvae being present at trace levels. Percid, hiodontid, and catostomid larvae were prevalent during May, whereas freshwater drum, clupeid and catostomid
larvae were most dense in June. Cyprinid larvae were most abundant in July (Table 9). In side channels, taxonomic diversity was highest during May and June, when nine and ten larval taxa occurred, respectively; only percid larvae were present in April (Table 10). Hiodontids and catostomids were most prevalent in May. Clupeid and freshwater drum larvae dominated the June samples, and cyprinid larvae comprised most of the larvae collected in July (Table 10). Seven and six larval taxa were present in the backwater during May and June, respectively (Table 11). Clupeid and centrarchid larvae were the two dominant taxa throughout the sampling period.

Larval fish present in the navigation channel of both rivers during both years exhibited a predictable pattern of appearance. Common carp larvae and some catostomids, primarily ictiobid larvae, were the first dominant larval group appearing during May. At the end of May and into June, clupeid larvae were the dominant representative in the larval drift. Finally, freshwater drum larvae dominated in late June and July. Percid larvae, primarily Stizostedion spp., occurred primarily during May but never approached dominant levels. Centrarchid and Morone larvae also appeared in relatively small numbers during late May through June.

Detailed summaries of volumes of river water strained during ichthyoplankton sampling are included in Appendix B. Density estimates (number $/ \mathrm{m}^{3}$) from each sample are included in Appendix C.

Trawling performance.

Trawl speed relative to the ground averaged $1.1 \mathrm{~m} / \mathrm{sec}(4.0 \mathrm{~km} / \mathrm{hr})$ with standard deviation $0.2 \mathrm{~m} / \mathrm{sec}(0.7 \mathrm{~km} / \mathrm{hr})$ over 43 measured hauls. Mean wingspread of the rockhopper
trawl averaged 3.9 m with standard deviation 0.7 m over 258 measurements made during 18 trawl hauls monitored by using the hydroacoustic net measurement system.

Catch and abundance of small fish captured with the beam trawl.

In the Illinois River, catch per unit effort (CPUE; fish/hr trawling) averaged 120 fish per hour during September 1997 (Table 12). Seven species were captured by beam trawling in the Illinois River. Freshwater drum were most abundant, with estimated densities averaging 88.9 fish/ha, followed by gizzard shad and channel catfish (Table 13). Total estimated densities averaged 125 fish/ha and total biomass averaged $5.3 \mathrm{~kg} / \mathrm{ha}$. Detailed CPUE data, by month and river mile, are included in Appendix D.

In Pool 26 of the Mississippi River, total CPUE of small fish averaged 105.4 per hour in July but only 11.5 per hour in September 1997 (Table 12). A total of nine species were captured by beam trawling in Pool 26. Channel catfish were, by far, the most abundant species with estimated densities averaging 39.4 fish/ha, followed by freshwater drum and mooneye (Table 14). Total estimated densities of small fish in Pool 26 averaged 57.6 fish per ha in 1997, with an average estimated biomass of $1 \mathrm{~kg} / \mathrm{ha}$ (Table 14).

The beam trawl captured primarily small fishes (Table 15) including juvenile channel catfish and freshwater drum which averaged 43 mm and 26 mm in length, respectively in the Mississippi River, and 70 mm and 93 mm respectively in the Illinois River. Occasionally large adult fish were captured in the beam trawl, and this reflected in the sometimes large standard
deviations for length and the large mean weights, which are particularly sensitive to the presence of only a few large fish.

Catch and abundance of 'adult' fishes captured by the rockhopper bottom trawl.
During the course of this study, monthly mean estimated densities of all species combined varied by two orders of magnitude in the navigation channels of both the lower Illinois River and in Pool 26 of the Mississippi River (Figure 2). Total fish densities in the lower Illinois River averaged 157.3 (Table 16) and 177.7 fish/ha (Table 17) in 1996 and 1997, respectively. Corresponding mean estimated biomasses were 26.5 and $32.2 \mathrm{~kg} / \mathrm{ha}$. Total fish densities in Pool 26 of the Mississippi River averaged 109.0 (Table 18) and 55.5 fish/ha (Table 19) in 1996 and 1997, respectively. Corresponding mean estimated biomasses were 22.7 and $19.2 \mathrm{~kg} / \mathrm{ha}$. In our effort-adjusted catch model given by equations (2) and (4), total catch differed significantly between rivers (Table 20; $P=0.01$) and, in Pool 26, was $100 \exp \left(p_{1}\right)=52 \%$ of that in the lower Illinois River. All parameters for the cubic polynomial in month were statistically significant (Table 20) indicating that the seasonal rise and fall of total estimated densities apparent in Figure 4 is real. Our conclusions are unchanged by the relaxed assumption of autoregressive serial correlation in catches, and are therefore unlikely to be an artifact of a particular model choice. The extra-Poisson scale parameter indicated that the variance of our total catch data was approximately nine-fold greater than expected from the Poisson distribution.

Blue catfish densities peaked during late summer and fall, and were greater in the lower portion of Pool 26 than in the upper portion or in the Illinois River (Figure 3). Densities of blue catfish averaged 0.8 and 0.6 fish/ha during 1996 (Table 16) and 1977 (Table 17), respectively, in
the navigation channel of the Illinois River, and averaged 2.0 (Table 18) and 1.3 fish/ha (Table 19) during those years in Pool 26. Effort-adjusted catches of blue catfish differed significantly between upper and lower Pool $26(P<0.01)$, but did not differ significantly between years or rivers (Table 21). Catches tended to be $\exp \left(l_{(1)}\right)=9.8$ times greater in lower Pool 26 than in the upper segment. Catch did not change linearly with month, but the quadratic and cubic effects of month (Table 21) indicate that the seasonal peak in density during late summer and fall is real. Again, our results were invariant under the assumptions of serially independent and serially autoregressive catches.

Estimated densities of channel catfish appeared greater in the navigation channel of the Illinois River than in Pool 26 (Figure 4). Densities of channel catfish averaged 18.9 and 10.3 fish/ha during 1996 (Table 16) and 1977 (Table 17), respectively, in the navigation channel of the Illinois River, and averaged 8.8 (Table 18) and 7.1 fish/ha (Table 19) during those years in Pool 26. Average estimated biomasses ranged from 0.8 to $1.8 \mathrm{~kg} / \mathrm{ha}$ (Tables $16-19$) in these navigation channels. Effort-adjusted catch differed significantly ($P \leq 0.05$) between rivers, and in Pool 26 was $100 \exp \left(p_{1}\right)=24 \%$ of that from the lower Illinois River (Table 22). Catch also differed significantly between upper and lower Pool $26(P<0.01)$, and was 3.5 times greater in the lower portion of that pool. Catches of channel catfish did not show any significant seasonal response (Table 22).

Monthly mean estimated densities of common carp tended to peak during fall (Figure 5). Mean estimated densities for each combination of river and year ranged from 0.4 to 4.2 fish/ha, and corresponding estimated biomasses ranged from 0.5 to $5.0 \mathrm{~kg} / \mathrm{ha}$ (Tables 16-19). Effortadjusted catches of common carp could not be fitted to our Poisson models, and therefore our
analysis is based on equation (7). Log(CPUE) did not differ significantly between rivers, years or between locations in Pool 26 (Table 23). However, the parameter estimates for the cubic polynomial in month indicate the seasonal fall peak was real (all $P \leq 0.02$).

Monthly mean estimated densities of freshwater drum seemed to differ among river segments and showed a strong seasonal response with maxima during late fall (Figure 6). This species typically dominated density and biomass in our rockhopper bottom trawl samples (Tables 16-19), with mean annual density exceeding 122 fish/ha in the lower Illinois River during 1996. Effort-adjusted catches of freshwater drum differed significantly between rivers ($P<0.01$), and location within Pool 26 ($P \leq 0.01$), but not between years (Table 24). The quadratic seasonal response was marginally significant ($P<0.09$), and the cubic effect was clearly important ($P \leq 0.04$), indicating that the seasonal fall peak is real. Our results were again insensitive to model choice, and the variance of catch was 6.2 times greater than expected from the Poisson distribution.

Estimated densities of gizzard shad varied by two orders of magnitude during this study (Figure 7). Because this species is largely pelagic, our bottom trawl samples likely underestimate their true areal abundance. The Gaussian errors model indicated that \log (CPUE) differed significantly between rivers, locations within Pool 26 and over seasons (Table 25).

Estimated densities of goldeye showed no consistent pattern over this study (Figure8). The Gaussian errors model showed marginally significant differences between rivers ($P=0.10$), between locations within Pool $26(P=0.08)$, but showed no seasonal effect (Table 26). The closely related mooneye showed a somewhat similar pattern in estimated density, although their apparent abundance seemed to peak during 1996 (Figure 9). The Gaussian errors model for
mooneye indicated that \log (CPUE) differed significantly between years $(P<0.01)$ and between locations in Pool 26 ($P<0.01$; Table 27). Like goldeye, mooneye showed no significant seasonal response (Table 27).

Estimated densities of shovelnose sturgeon differed greatly among river sections, and in upper Pool 26 averaged over 18 fish/ha in June 1997 (Figure 10). Log(CPUE) differed significantly between years and locations within Pool 26 (Table 28). This pattern reflects a strong preference for upper Pool 26 , which tends to be more riverine than the other study areas. Seasonal effects were only marginally significant ($0.06 \geq \mathrm{P} \geq 0.07$).

Estimated densities of smallmouth buffalo showed a strong seasonal pattern with peak abundance typically occurring during early fall (Figure 11). Effort-adjusted catches of smallmouth buffalo differed significantly between upper and lower Pool 26 ($P \leq 0.03$) but not between years or rivers (Table 29). The parameter estimates for the cubic polynomial in month indicated a significant seasonal effect (Table 29), and we conclude that the peaks in Figure 13 are real. Again, our results were insensitive to model choice.

The distribution of blue suckers (and other species) in our samples was sufficiently restricted that we did not attempt formal analyses of abundance. However, the blue sucker is an important species because of common perceptions about its status. We encountered blue suckers only in the upper portion of Pool 26 , where catch rates frequently exceeded 1 fish/h of trawling effort (Figure 12). This is consistent with the fact that the blue sucker is a habitat specialist preferring areas of relatively swift current. Our results suggest that the blue sucker may not be uncommon in deep riverine channels of the Upper Mississippi River. Detailed summaries of

CPUE of all species captured by the rockhopper bottom trawl are included as Appendix Tables E1-E8.

A detailed analysis of species richness is well beyond the scope of this study, and would be difficult because the numbers of species observed is a nearly intractable (from a statistical perspective) increasing function of sampling effort (Bunge and Fitzpatrick 1993). Instead, we note informally the seasonal tendency for the mean numbers of species per trawl haul to peak during fall (Figure 13). These data and our underlying catches suggest that some species use the main channel only seasonally.

The rockhopper bottom trawl captured primarily large-bodied fish (Table 30). Black buffalo, common carp, flathead catfish, lake sturgeon, shortnose gar and shovelnose sturgeon captured by this gear averaged nearly 0.5 m or more in length.

Incidence of injured and dead fish in ambient and entrainment sampling.

While using the rockhopper trawl for entrainment sampling behind towboats, we collected three gizzard shad during 1996 that were most likely killed as a result of impact with the propellers of the preceding tows, but no killed or wounded fish were collected while entrainment sampling during 1997 (Table 31). The sizes of these gizzard shad strongly suggest they were spawned in 1996. While conducting ambient sampling using the rockhopper bottom trawl, we collected 27 fish that were either dead, wounded, or alive with wound scars in Pool 26 and the lower Illinois River during 1996 and 1997 (Table 32). Of these 27, one fish was a smallmouth buffalo, five were shovelnose sturgeon, and the rest were gizzard shad. The smallmouth buffalo and one shovelnose sturgeon were freshly wounded fish with serious injuries
consistent with propeller wounding. Most gizzard shad had been dead for some time and were collected during November-March, suggesting that these fish had died during this period because of natural causes during the winter (Bodensteiner and Lewis 1994). No injured or dead fish were collected during the ambient beam trawling.

Discussion

Larval Fish Sampling.
Larval fish had a distinct temporal component to their arrival in the main channel drift during both years. Ictiobid and common carp larvae dominated the larval assemblage through the end of May, to be replaced by shad larvae as the dominant taxon. Freshwater drum larvae were the last major taxon present in larval samples during both years. Peak larval diversity appears at about the end of May to early June. These results are consistent with other larval fish studies in the Upper Mississippi and Illinois Rivers, which also indicate that clupeid and freshwater drum larvae form a major component of main channel larval fish assemblages throughout the length of the Upper Mississippi River System (Holland and Sylvester 1983; Holland-Bartels et al. 1996).

Variability between years was evident, both in terms of larval density and composition of the larval assemblage. Larval densities were greater during 1996, possibly because of the more extensive flood that allowed more fishes to take advantage of the flood pulse (Junk et al. 1989). Cyprinid larvae were present in 1997, but not in 1996. Common carp larvae were much more numerous during 1996 than 1997, perhaps because of a larger flood more closely timed to the peak of carp spawning.

During 1997, larval density and composition varied across larval habitats. Larval densities were greatest in backwaters, intermediate in side channels, and lowest in the main channel. Centrarchids were dominant only in backwaters, although they appeared in small numbers at main channel and side channel sites. Conversely, freshwater drum larvae were dominant at main channel and side channel sites, rarely occurring in backwaters. Shad larvae
were common across all aquatic areas, suggesting that adults of this taxon spawn successfully in all areas. In the Illinois River backwater, larval fish composition was less diverse than main channel and side channel habitats, supporting only four or five taxa, whereas up to eight taxa were collected in flowing water habitat. The Mississippi River backwater contained a more diverse larval fish assemblage than the Illinois River backwater, with six or seven taxa present, reflecting the greater diversity of large fishes collected by trawling in the Mississippi River, as compared to the lower Illinois River.

Main channel and side channel areas generally produced similar assemblages of larvae, whereas backwater areas supported a very different larval assemblage than channels. Backwaters were dominated by clupeid, primarily Dorosoma spp., and centrarchid larvae. Other taxa frequently present included brook silverside and Gambusia spp. larvae. Of these common backwater larval taxa, only clupeid larvae also were common in channels. Conversely, percid, Morone, freshwater drum, and common carp larvae were rarely or never found in backwaters. Thus, we might expect that effects of commercial navigation will be most severe on fishes whose larvae reside primarily in the flowing water habitats, especially the navigation channel, and minimal for fishes spawning primarily in backwaters

Most of the fishes commonly collected by rockhopper trawling were also encountered as larvae. However, larvae thought to be primarily benthic in nature were not sampled particularly well with our pelagic sampling regime. In particular, larvae of catfish and sturgeon were rare or absent from our larval samples, despite the abundance of adults our in trawl catches from the Mississippi River. The beam trawl used to collect small fishes does appear to be an effective gear to sample fishes with benthic early life stages, especially catfishes and freshwater drum.

Early life stages of shovelnose sturgeon or paddlefish were not collected by either of these gears, suggesting that 1) their abundance is extremely dilute within the system, 2) they use other riverine habitats for spawning and early life stages, or 3) the gears we used were not effective for larvae of these species. For species that we sampled poorly as larvae but well at older life stages, conclusions should not be drawn regarding the impact of commercial navigation on the larval stages until future research can generate quantitative estimates of their larval density and determine their spatial distribution.

Sampling of larval fishes in the navigation channel during two years reveals that dymamic shifts in both the abundance and composition of larvae occur among years. Peak density did not differ greatly between these years, but the timing of the peak did. Peak larval density occurred in May, 1996 in Pool 26 but in July in the Illinois River, whereas larval density peaked in both rivers during June, 1997. Larval density during 1996 was relatively constant during May-July; larval density peaked in June of 1997 in both rivers, at least an order of magnitude greater than larval density in any other month.

Some major shifts in the composition of larvae also occurred between years. Cyprinid larvae were present only during 1997; these larvae were an important component of the lateseason larval assemblage. Hiodontid and percid larvae also were a greater component of the larval assemblage during 1997 than in 1996. Conversely, common carp and freshwater drum larval abundance dropped substantially in 1997, compared to 1996, despite still being a major component of the larval assemblage. Given these major swings in larval composition and seasonal abundance, additional larval fish sampling would be required to determine the extent of
year-to-year variability in abundance and composition of the larval fish assemblage in the Upper Mississippi and Illinois Rivers.

Abundance of small fishes in the navigation channels.
Results of our beam trawling are limited in scope due to the time constraints placed on the project associated with delays in initially making funding available and further complications following a mid-project temporary funding suspension. However, results reveal that the beam trawl, when fished on the bottom in the navigation channel, will be useful primarily during late June through September, when age-0 fishes in the main channel are small enough to be captured efficiently by the gear. As fish grow larger they avoid the gear, rendering it ineffective.

Age-0 channel catfish, freshwater drum, and mooneye were common near the bottom of the navigation channel of the Mississippi River, suggesting that this habitat is an important area for these young fish. Age-0 freshwater drum and gizzard shad were common near the bottom of the lower Illinois River main channel, whereas channel catfish, freshwater drum, and mooneye were most abundant in Pool 26. Because we did not sample higher in the water column, we do not know whether more pelagic species (e.g., skipjack herring, gizzard shad, and white bass) are efficiently sampled by this gear. However, from larval sampling and sampling with the rockhopper trawl, these fish are regularly collected in the main channel, so we would expect that they are present in the main channel at sizes between 25 and 100 mm .

Additional investigation of potential indirect effects of commercial navigation on small fishes residing in the main channel seems warranted. Due to the short duration of this study and restricted spatial extent, we do not believe that a complete picture of either 1) potential
vulnerability of small fishes to entrainment mortality or 2) the abundance and distribution of small fishes has been developed. Given that small fish, primarily age-0 fishes growing after the spring and early summer spawning season, are abundant in the main channel, it also seems appropriate to determine to what extent these fishes may be behaviorally and energetically impacted.

Abundance of adult fishes in the navigation channels and implications for estimation of entrainment mortality.

Our results from rockhopper trawling indicate that the navigation channels of Pool 26 of the Mississippi River and the lower Illinois River provide important habitat for large riverine fishes. The fish species composition in our main-channel sites was quite different from that apparent from other aquatic areas in Pool 26 or the La Grange Pool of the Illinois River (Burkhardt et al. 1997). The navigation channel seems particularly important to riverine species such as the sturgeons, buffaloes, blue catfish and blue sucker, for examples, which are less commonly encountered in aquatic areas sampled by the Long Term Resource Monitoring Program (Burkhardt et al. 1997).

Although the catch rates, expressed as number of fish per hour of sampling effort, are comparable with those from other sampling gear in other habitat types associated with the Upper Mississippi River (Gutreuter 1997), our trawling swept larger sampling areas and therefore CPUE does not provide an adequate basis for comparison of abundance with other data. Our estimated biomass estimates are less than 10% of the biomass of the littoral fish community as measured by toxicant sampling in other areas of the Upper Mississippi River (Pitlo 1987).

However, we do not believe that this necessarily reflects a lesser importance of riverine channels as fish habitat. First, our biomass and density estimates are minimal because they do not include fishes that escaped our gear. Escapement is perhaps less likely in toxicant sampling because treated areas are enclosed with a barrier net. Avoidance of our bottom trawls is particularly important for pelagic fishes that were suspended above their tops. Our biomass estimates for pelagic species such as gizzard shad and white bass, for examples, are likely biased quite low. Second, channels comprise a large fraction of the aquatic area of the Upper Mississippi River System and seem to support greater abundances of some characteristically riverine fishes such as shovelnose sturgeon, blue sucker and blue catfish, than other aquatic areas. For these reasons the ecological importance of large deep channels may far exceed that reflected by simple comparisons of fish biomass with other aquatic areas.

Fishes, both in terms of biomass and species richness, were most abundant in the navigation channel during fall (September-November), coinciding with the time of year when large floodplain river hydrographs are low (Sparks 1995) and water temperatures are moderate. Nevertheless, several common fishes were present in the main channel throughout the year (e.g., shovelnose sturgeon, channel catfish, and gizzard shad), revealing that a considerable number of species and individuals do thrive in the extreme abiotic conditions present in the navigation channel.

Catch rates were generally lower during 1997 than in 1996. This may be due to what appears to be a relatively poor year in 1997 (compared to 1996) for recruitment of pelagic fishes including gizzard shad, mooneye, and freshwater drum, as well as for blue catfish and channel catfish. Young-of-year of these species were very abundant in our trawls during fall 1996, but
occurred only occasionally during 1997. Without multiple years of sampling, we cannot fully describe the extent to which fish populations in the navigation channel may fluctuate on a yearly basis. In addition to shifts in reproductive success, flow rate and temperature shifts are likely to influence the magnitude and timing of any seasonal migration into the main channel. This annual variation is particularly important because the magnitude of entrainment mortality is likely an increasing function of population density and therefore is unlikely to remain constant through time. Additional sampling during at least 3-5 years would be needed to more completely determine the magnitude of temporal variation in the abundance of fishes in the navigation channel.

Our results also suggest that the navigation infrastructure affects the distribution of fishes. The locks and dams create both tailwater areas having relatively high current velocities and lower-gradient impounded areas of navigation channels. Fishes adapted to survive in swifter current (e.g., shovelnose sturgeon and blue sucker) were distributed almost exclusively above the control point in Pool 26, whereas channel-dwelling fishes preferring lower current velocities (e.g., blue and channel catfish) were most abundant in the lower portion of Pool 26 and in the lower Illinois River. Thus the locks and dams may have created, or at least may be maintaining, important physical heterogeneity at the spatial scale of pools. This effect is potentially important in the assessment of effects of navigation because is suggests that stratified estimation of entrainment mortality may improve precision for spatially restricted species such as shovelnose sturgeon. However, we did not attempt that given our distribution of samples, and therefore our estimates are averages over all study areas.

Abundance of several species differed between Pool 26 of the Mississippi River and our study section on the lower Illinois River. This difference suggests that variation among other navigation pools of the Upper Mississippi River System may also be important, and is consistent with results obtained from the Long Term Resource Monitoring Program of the Upper Mississippi River System (LTRMP). Fish assemblage composition differed significantly among the six LTRMP study reaches during 1990 (Gutreuter 1992). For many species, including gizzard shad and smallmouth buffalo, linear trends in relative abundance from 1990-1994 also differed significantly among reaches (Gutreuter 1997). Because entrainment mortality is likely and increasing function of abundance, these results suggest that entrainment mortality may also differ among navigation pools. However, our entrainment sampling was insufficient to resolve any such effect.

We can hardly overstate the difficulties of trawling in these navigation channels. Gear loss and damage were routine due to the forces inherent in trawling and the hazards of the main channel. Therefore equipment repair and the resulting sampling delays were common. Any future work should better accommodate the occurrence of these hazards through a longer timetable and a larger reserve of contingency gear.

We recognize the capabilities of some fish to avoid approaching vessels (Lowery et al. 1987; Todd et al. 1989; Soria et al. 1996). However, we know too little about the acoustic emissions of riverine tows and the behavioral responses of channel-dwelling fishes. More detailed study could produce estimates of the fractions of resident fish that successfully avoid tows, and these would assist interpretation of estimates of entrainment mortality. Further, investigation of sound emissions and behavioral responses might possibly lead to development of
emitting hydrophones to maximize the avoidance response and thereby minimize the risks of entrainment. However, avoidance reactions incur bioenergetic costs because movement requires energy. This cost can presently be quantified by using electromyelographic transmitters which monitor the activity of fish muscle in situ. Another approach to indirect estimation of longerterm avoidance effects is estimation of abundance of fish in paired areas of navigation channel and large riverine side channels which are approximately similar to the navigation channel except for the occurrence of tow traffic.

Summary.

Results from this study have quantified the abundance and composition of larval fishes in the navigation channel, as well as side channel and backwater areas, for the purpose of providing these data for input into models of losses of adult-fish equivalents, production foregone, and recruitment foregone. We also have developed methods to estimate abundance and entrainment mortality of juvenile and adult fishes in navigation channels of large rivers. Our current estimates of the abundance of all life stages of fish suggest that substantial year-to-year variability in timing of appearance in the navigation channel and in density of fishes does occur, but the duration of the current study was not sufficient to determine to what extent this variability will affect the potential impacts of estimates of entrainment mortality on river fish populations. This work has provided a much clearer picture of the fish assemblage that uses the navigation channel and has demonstrated that fishes are frequent users of main channel habitat. However, substantial variability exists around these advances, suggesting the need for additional refinement
as river managers seek to determine the potential impacts of commercial navigation on fishes using the navigation channel.

Acknowledgments

This work was funded by a Memorandum of Understanding between the Illinois Department of Natural Resources and the Board of Trustees of the University of Illinois and under Cooperative Agreement 1434-HQ-97-AG-01771 with the U.S. Geological Survey. We thank Rodger Anderson, Jim Boase, Steve Chipps, Chad Dolan, Lisa Einfalt, Eric Gittinger, Jodi Goodrich, Brian Herwig, Jory Jonas, Cindy Kolar, Eric Larsen, John Rader, Karen Schnake, Eric Stark, and Frank Wadda for their efforts in the field and lab, and with analytical support.

Literature Cited

Anderson, R. O., and S. J. Gutreuter. 1983. Length, weight and associated structural indices.
Pages 283-300 in L. A. Nielsen, and D. L. Johnson, editors. Fisheries techniques. American Fisheries Society, Bethesda, Maryland.

Auer, N. A. 1982. Identification of larval fishes of the Great Lakes basin with emphasis on the Lake Michigan drainage. Great Lakes Fishery Commission, Special Publication 82-3, Ann Arbor, Michigan.

Bodensteiner, L. R., and W. M. Lewis. 1994. Downstream drift of fishes in the Upper Mississippi River during winter. Journal of Freshwater Ecology 9:45-56.

Bunge, J., and M. Fitzpatrick. 1993. Estimating the number of species: A review. Journal of the American Statistical Association 88:364-373.

Burkhardt, R. W., and 13 coauthors. 1997. 1996 annual status report: A summary of fish data in six reaches of the Upper Mississippi River System. U.S. Geological Survey, Environmental Management Technical Center, Onalaska, Wisconsin. LTRMP 97-P011.

Cada, G. F. 1990. A review of studies relating to the effects of propeller-type turbine passage on fish early life stages. North American Journal of Fisheries Management 10:418-426.

Englert, T. L., and J. Boreman. 1988. Historical review of entrainment impact estimates and the factors influencing them. American Fisheries Society Monograph 4:143-151. American Fisheries Society, Bethesda, Maryland.

Gutreuter, S. 1992. Systemic features of fisheries of the Upper Mississippi River System: 1990 fisheries component annual report. U.S. Fish and Wildlife Service, Environmental Management Technical Center, Onalaska, Wisconsin. EMTC 93-T001.

Gutreuter, S. 1997. Fish monitoring by the Long Term Resource Monitoring Program on the Upper Mississippi River System: 1990-1994. U. S. Geological Survey Environmental Management Technical Center, Onalaska, Wisconsin. LTRMP 97-T004.

Gutreuter, S., R. Burkhardt, and K. Lubinski. 1995. Long Term Resource Monitoring Program procedures: Fish monitoring. National Biological Service, Environmental Management Technical Center, Onalaska, Wisconsin. LTRMP 95-P002-1.

Hesse, L. W., Q. P. Bliss, G. J. Zuerlein. 1982. Some aspects of the ecology of adult fishes in the channelized Missouri River with special reference to the effects of two nuclear power generating stations. Pages 225-276 in The Middle Missouri River. L. W. Hesse, S. D. Reetz, and A. B. Schesinger, editors.

Hogg, R. V., and A. T. Craig. 1970. Introduction to mathematical statistics, $3^{\text {rd }}$ edition. Macmillan Publishing, New York.

Holland, L. E. 1986. Effects of barge traffic on distribution and survival of ichthyoplankton and small fishes in the Upper Mississippi River. Transactions of the American Fisheries Society 115:162-165.

Holland, L. E., and J. R. Sylvester. 1983. Distribution of larval fishes related to potential navigation impacts on the Upper Mississippi River, Pool 7. Transactions of the American Fisheries Society 113:293-301.

Holland-Bartels, L. E., M. R. Dewey, and S. J. Zigler. 1995. Ichthyoplankton abundance and variance in a large river system: Concerns for long-term monitoring. Regulated Rivers: Research and Management 10:1-13.

Holland-Bartels, L., S. Littlejohn, and M. Huston. 1990. A guide to larval fishes of the Upper Mississippi River. Minnesota Extension Service, University of Minnesota, St. Paul. 107 pp.

Junk, W. J., P. B. Bayley, and R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems. Pages 110-127 in D. P. Dodge, editor. Proceedings of the International Large River Symposium. Canadian Special Publication in Fisheries and Aquatic Sciences 106. Department of Fisheries and Oceans, Ottawa, Ontario.

Lowery, D. R., R. W. Pasch, and E. M. Scott. 1987. Hydroacoustic survey of fish populations of the lower Cumberland River. Final Report to the U.S. Army Corps of Engineers. U.S. Army Corps of Engineers, Nashville, Tennessee.

Misund, O. A., and A. Aglen. 1992. Swimming behaviour of fish schools in the North Sea during acoustic surveying and pelagic trawl sampling. ICES Journal of Marine Science 49: 325-334.

McCullagh, P., and J. A. Nelder. 1989. Generalized linear models, $2^{\text {nd }}$ edition. Chapman and Hall, London, UK.

Neproshin, A. Y. 1978. Behaviour of pacific mackerel, Pneumatophorus japonicus, when affected by vessel nose. Journal of Ichthyology 18:695-699.

Odom, M. C., D. J. Orth, and L. A. Nielsen. 1992. Investigation of barge-associated mortality of larval fishes in the Kanawha River. Virginia Journal of Science 43:41-45.

Pitlo, J., Jr. 1987. Standing stock of fishes in the Upper Mississippi River. Upper Mississippi Conservation Committee Fisheries Section, Rock Island, Illinois.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin 191 of the Fisheries Research Board of Canada, Ottawa, Ontario.

Robins, C. R., and six coauthors. 1991. Common and scientific names of fishes from the United States and Canada, $5^{\text {th }}$ edition. Special Publication 20. American Fisheries Society, Bethesda, Maryland.

SAS Institute. 1997. SAS/STAT Software: Changes and enhancements through Release 6.12. SAS Institute, Inc., Cary, North Carolina.

Sparks, R. E. 1995. Need for ecosystem management of large rivers and their floodplains. BioScience 45:168-182.

Soria, M., P. Fréon, and F. Gerlotto. 1992. Analysis of vessel influence on spatial behavior of fish schools using a multi-beam sonar and consequences for biomass estimates by echosounder. ICES Journal of Marine Science 53:453-458.

Todd, B. L., F. S. Dillon, and R. E. Sparks. 1989. Barge effects on channel catfish. Aquatic Ecology Technical Report 89/5. Illinois Natural History Survey, Champaign, Illinois.

Zeger, S. L., K-Y. Liang, and P. S. Albert. 1988. Models for longitudinal data: A generalized estimating equation approach. Biometrics 44:1049-1060.

Table 1. Accuracy and precision of Netmind ${ }^{m 4}$ acoustic trawl monitoring sensors. Ten measurements were made at each fixed distance. The coefficient of mean variation is the standard error (SE)/mean, and mean bias the difference between measurement means and actual distances. Measurements were made in a test tank by Northstar Technical, Vancouver, British Columbia, Canada (J. Hall, personal communication). All measurements were made in feet (1 ft $=0.3048 \mathrm{~m})$.

Actual distance (ft)	Measurement means (SE)	Coefficient of mean variation (\%)	Mean bias (ft)
Headrope height			
3	3.06 (0.11)	3.6	0.06
6	5.91 (0.05)	0.8	-0.09
9	9.02 (0.08)	0.9	0.02
Wingspread			
9	8.93 (0.15)	1.7	-0.07
12	12.10 (0.12)	1.0	0.10
15	14.86 (0.15)	1.0	-0.14
18	17.95 (0.18)	1.0	-0.05
21	21.05 (0.16)	0.8	0.05
24	24.04 (0.19)	0.8	0.04
27	26.87 (0.20)	0.8	-0.13

Table 2. Parameter estimates for conversion of fish lengths L (mm) to weights L (g). Estimates were obtained from ordinary least-squares regressions of $\log _{10}$ (weight) on $\log _{10}$ (length) obtained by the Long Term Resource Monitoring Program of the Upper Mississippi River. Weight is given by $W=10^{a} L^{b}$.

Common name	a	b
Bigmouth buffalo	-5.0259	3.09248
Black buffalo	-4.5351	2.86949
Black crappie	-5.1740	3.15754
Blue catfish	-4.7467	2.86173
Blue sucker	-5.2630	3.06332
Channel catfish	-4.8697	2.90154
Common carp	-4.7180	2.93829
Flathead catfish	-4.8603	2.95780
Freshwater drum	-5.0166	3.03092
Gizzard shad	-4.9405	2.97189
Goldeye	-4.9496	2.97128
Highfin carpsucker	-4.7740	2.95227
Lake sturgeon	-4.6474	2.78062
Mooneye	-5.3446	3.13296
Quillback	-4.7555	2.93778
River carpsucker	-4.9245	3.01383
Sauger	-5.6274	3.21970
Shorthead redhorse	-4.8011	2.92351
Shortnose gar	-5.5697	3.03535
Shovelnose sturgeon	-5.2691	2.86491
Silver chub	-4.9915	2.96721
Skipjack herring	-4.8758	2.90371
Smallmouth bass	-4.8701	2.99699
Smallmouth buffalo	-4.9549	3.04769
Speckled chub	-4.3945	2.54206
White bass	-5.0174	3.04664

Table 3. Mean larval fish density expressed as number $/ \mathrm{m}^{3}(1 \mathrm{SE})$ for all taxa collected from the navigation channel of the lower Illinois River during May through July 1996.

	Mean larval fish density (1 SE) number per m^{3}		
River mile	May	June	July
4.5	$3.09(2.15)$	$2.34(0.83)$	0.14
9.3	$0.90(0.43)$	$1.39(0.98)$	1.02
13.5	$1.09(0.18)$	$1.68(1.01)$	0.71
18.7	$1.45(0.88)$	$1.17(0.30)$	2.00

Table 4. Mean larval fish density expressed as number $/ \mathrm{m}^{3}(1 \mathrm{SE})$ for each taxon collected from the navigation channel of the Illinois River during May-July 1996.

Fish taxon	River mile	Mean larval fish density (SE) number per m^{3}		
		May	June	July
Channel catfish	13.5	0	0	<0.01
Common carp	4.5	2.94 (0.002)	0.62 (0.48)	0.01
	9.3	0.80 (0.52)	0.54 (0.46)	0
	13.5	0.87 (0.37)	0.45 (0.42)	<0.01
	18.7	1.23 (1.02)	0.41 (0.33)	0.01
Freshwater drum	4.5	0.04 (0.04)	0.08 (0.03)	0.08
	9.3	0.02 (0.02)	0.08 (0.04)	0.90
	13.5	0.02 (0.02)	0.06 (0.05)	0.58
	18.7	0.01 (0.01)	0.05 (0.01)	1.88
Lepisosteidae	13.5	$<0.01(<0.01)$	0	0
	18.7	$<0.01(<0.01)$	<0.01 (<0.01)	0
Mosquitofish	4.5	<0.01 (<0.01)	0	0
Clupeidae	4.5	0.05 (0.05)	1.61 (1.25)	0.04
	9.3	0.05 (0.05)	0.07 (0.05)	0.06
	13.5	0.14 (0.14)	1.15 (0.55)	0.08
	18.7	0.13 (0.13)	0.69 (0.03)	0.07
Catostomidae	4.5	0.04 (0.04)	$0.01(0.01)$	0.01
	9.3	0.01 (0.003)	0.01 (0.01)	0.06
	13.5	0.03 (0.003)	$0.01(0.01)$	0.01
	18.7	0.05 (0.02)	0.01 (0.01)	0.02

Table 4 continued...

Mean larval fish density (1 SE)

		number per m		
Fish	River			
taxon	mile	May	June	July
Centrarchidae	4.5	$0.01(0.01)$	$0.02(0.02)$	0
	9.3	$0.01(0.01)$	$0.01(0.01)$	0
	13.5	$0.03(0.03)$	$<0.01(<0.01)$	0
Morone	18.7	$0.02(0.02)$	$<0.01(<0.01)$	<0.01
	4.5	$<0.01(<0.01)$	$0.01(0.01)$	0.01
	9.3	$<0.01(<0.01)$	$0.01(0.01)$	<0.01
	13.5	$0.01(0.01)$	$0.01(0.004)$	<0.01
Percidae	18.7	$0.01(0.01)$	$<0.01(<0.01)$	0
Unidentified	18.7	$<0.01<(0.01)$	0	0
	4.5	$0.01(0.01)$	$<0.01(<0.01)$	<0.01
	9.3	$<0.01(<0.01)$	$0.08(0.08)$	<0.01
	13.5	$<0.01(<0.01)$	$0.01(0.01)$	0.01
	18.7	$0.01(0.01)$	$<0.01(<0.01)$	0.02

Table 5. Mean larval fish density expressed as number $/ \mathrm{m}^{3}(1 \mathrm{SE})$ for all larval taxa collected from main channel, side channel, and backwater habitats in Pool 26 of the Mississippi River and the lower Illinois River during April-July 1997. DNS = did not sample.

River			Mean larval numb	density (1 SE) per m^{3}	
mile	Habitat type	April	May	June	July
Illinois River					
13.5	Main channel	DNS	0.68 (0.35)	4.13 (0.87)	0.10 (0.050)
13.5	Side channel	DNS	0.55 (0.29)	7.43 (5.43)	0.03 (0.01)
9.3	Backwater	DNS	6.99 (4.76)	1.70 (0.83)	5.30 (2.18)
Mississippi River					
208.5	Main channel	0.001 (0.001)	0.07	0.89 (0.52)	0.05 (0.02)
	Side channel	0	0.12	2.10 (0.75)	0.14
215.7	Main channel	0.004 (0.003)	0.01	0.46 (0.04)	0.05 (0.03)
	Side channel	0	0.10	2.47	0.15 (0.12)
223.0	Main channel	0.001 (0.001)	0.06 (0.01)	0.24 (0.23)	0.09 (0.01)
	Side channel	0.001 (0.001)	0.07 (0.05)	0.28 (0.25)	0.13 (0.06)
	Backwater	0	3.60 (2.99)	27.47 (1.19)	DNS
233.5	Main channel	<0.01 (<0.02)	0.06 (0.01)	0.58 (0.57)	0.10 (0.01)
	Side channel	0	0.04 (0.02)	0.18 (0.17)	0.22 (0.10)

Table 6. Mean larval fish densities (1 SE) expressed as number $/ \mathrm{m}^{3}$ collected from main channel (MC; river mile 13.5), side channel (SC; river mile 13.5), and backwater (BW; river mile 9.3) habitat types in the Illinois River during May-July 1997.

Mean larval fish density (1 SE)

Fish taxon	Habitat type	number/m ${ }^{3}$		
		May	June	July
Brook silverside	BW	$<0.01(<0.01)$	0.22(0.21)	0.59(0.08)
Common carp	MC	$<0.01(<0.01)$	$0.19(0.13)$	0
	SC	$<0.01(<0.01)$	0.08(0.02)	0
	BW	0	<0.01 (<0.01)	0
Freshwater drum	MC	0.12(0.12)	$3.37(0.49)$	0
	SC	0.51(0.41)	7.02(5.13)	$<0.01(<0.01)$
	BW	0	0	0
Mosquitofish	MC	0	$<0.01(<0.01)$	0
	SC	0	0	0
	BW	0.01(0.001)	0	0.02(0.02)
Cyprinidae	MC	0	$<0.01(<0.01)$	0.01(0.01)
	SC	$<0.01(<0.01)$	0.01(0.01)	$<0.01(<0.01)$
	BW	0	0	0
Clupeidae	MC	0.47(0.40)	0.06(0.02)	0.04(0.01)
	SC	$0.30(0.28)$	0.03(0.02)	0.02(0.01)
	BW	6.93(4.77)	0.44(0.28)	$<0.01(<0.01)$
Catostomidae	MC	0	0.49(0.48)	0.05(0.05)
	SC	$<0.01(<0.01)$	0.24(0.24)	0
	BW	0.01(0.001)	0	0
Centrarchidae	MC	0	$<0.01(<0.01)$	$<0.01(<0.01)$

Table 6 continued...

Mean larval fish density (1 SE)

		number $/ \mathrm{m}^{3}$		
Fish taxon	Habitat type	May	June	July
Centrarchidae	SC	0	$<0.01(<0.01)$	0
Morone	BW	$0.03(0.03)$	$1.03(0.89)$	$4.63(2.12)$
	MC	$0.08(0.05)$	$<0.01(<0.01)$	0
Unidentified	SC	$0.01(0.01)$	$<0.01(<0.01)$	0
	BW	0	0	0
	MC	$0.01(0.01)$	$0.01(0.01)$	0
	SC	$0.01(0.003)$	$0.04(0.001)$	0
	BW	$0.02(0.01)$	$0.01(0.01)$	0

Table 7. Mean larval fish density expressed as number $/ \mathrm{m}^{3}$ for all taxa combined collected from the navigation channel of Pool 26 of the Mississippi River during May-July, 1996. DNS= did not sample.

	Mean larval fish density (l SE) number/m		
River mile	May	June	July
203.2	$0.98(0.71)$	$0.63(0.56)$	0.59
207.1	2.38	$0.30(0.18)$	0.51
208.5	$1.11(0.27)$	0.39	1.02
211.2	$0.46(0.18)$	0.23	0.55
213.5	1.02	0.75	0.82
215.7	0.56	$1.40(0.70)$	0.86
223.0	$0.22(0.06)$	0.30	0.20
225.8	0.26	$0.20(0.17)$	0.39
230.5	DNS	$0.75(0.72)$	DNS
233.5	0.54	$0.48(0.45)$	0.46
240.2	DNS		DNS

Table 8. Mean larval fish density expressed as number $/ \mathrm{m}^{3}$ collected from the navigation channel in Pool 26 of the Mississippi River during May-July 1996.

Fish taxon	River mile	Mean larval fish density (1 SE) number per m^{3}		
		May	June	July
Bowfin	203.2	0	<0.01 (<0.01)	0
Ictiobidae	203.2	0	0.02 (0.02)	0
	207.1	0	0.01 (0.01)	0
	208.5	0.10(0.10)	0.01	0
	211.2	0.01 (0.01)	0.01	0
	213.5	0	0.02	0
	215.7	0	$<0.01(<0.01)$	0
	230.5	DNS	0.01 (0.003)	DNS
Common carp	203.2	0.91 (0.76)	0.29 (0.27)	<0.01
	207.1	2.28	0.14 (0.09)	<0.01
	208.5	0.67 (0.64)	0.18	<0.01
	211.2	0.32 (0.12)	0	0
	213.5	0.97	0.13	0.01
	215.7	0.50	0.28 (0.13)	<0.01
	223.0	0.19 (0.05)	0.01	0
	225.8	0.22	0.02 (0.01)	0
	230.5	DNS	0.02 (0.001)	DNS
	233.5	0.44	0.02 (0.01)	<0.01
	240.2	DNS	DNS	<0.01

Table 8 continued...

Mean larval fish density (1 SE)

Fish	River	number per m^{3}		
taxon	mile	May	June	July
Freshwater drum	203.2	0.00	0.01 (0.01)	0.57
	207.1	0	0.01 (0.01)	0.45
	208.5	<0.01 (<0.01)	0.01	0.97
	211.2	<0.01	0	0.54
	213.5	0	0.01	0.71
	215.7	0	0.14 (0.14)	0.84
	223.0	0	0.28	0.20
	225.8	0	0.18 (0.18)	0.39
	230.5	DNS	0.71 (0.71)	DNS
	233.5	0	0.45 (0.45)	0.46
	240.2	DNS	DNS	0.70
Lepisosteidae	203.2	<0.01 (<0.01)	0	0
	207.1	0	<0.02 (<0.02)	0
	213.5	0	<0.01	0
	225.8	0	<0.01	0
	230.5	DNS	<0.01 (<0.01)	DNS
	233.5	0	<0.01 (<0.01)	0
Hiodontidae	203.2	<0.01 (<0.01)	0	0
	207.1	0	<0.01 (<0.01)	0
	208.5	0	<0.01	0
	211.2	0	<0.01	0

Table 8 continued...

Mean larval fish density (1 SE)

Fish taxon	River mile	Mean larval fish density (1 SE) number per m^{3}		
		May	June	July
Hiodontidae	215.7	<0.01	0	0
	223.0	0	<0.01	0
	230.5	DNS	$<0.01(<0.01)$	DNS
	233.5	0	<0.01 (<0.01)	0
Percidae	203.2	<0.01 (<0.01)	<0.01 (<0.01)	0
	207.1	0.01	0	0
	208.5	<0.01 (<0.01)	0	0
	213.5	<0.01	0	0
	215.7	0.01	$<0.01(<0.01)$	0
	223.0	0.01 (0.01)	0	0
	225.8	0.01	0	0
	233.5	0.01	0	0
Clupeidae	203.2	0.03 (0.03)	0.28 (0.24)	0.02
	207.1	0.08	0.12 (0.07)	0.05
	208.5	0.29 (0.29)	0.18	0.03
	211.2	0.02 (0.02)	0.11	<0.01
	213.5	0	0.57	0.10
	215.7	0	0.89 (0.35)	0.01
	223.0	0	0.01	0
	225.8	0.01 (<0.01)	0	0
	230.5	DNS	<0.01 (<0.01)	DNS

Table 8 continued...

Table 8 continued...

		Mean larval fish density (1 SE) number per m^{3}		
Fish taxon	River mile	May	June	July
Morone	215.7	0	<0.01 (<0.01)	0
	233.5	0	<0.01	0
Unidentified	203.2	0.01 (0.01)	$<0.01(<0.01)$	<0.01
	207.1	0	<0.01 (<0.01)	0
	208.5	0	<0.01	<0.01
	211.2	0	0	<0.01
	213.5	0	<0.01	<0.01
	215.7	0	0.01 (0.01)	0
	223.0	<0.01	<0.01	0
	225.8	0	0.01 (0.01)	0
	230.5	DNS	<0.01 (<0.01)	DNS
	233.5	0	<0.01 (<0.01)	0.01
	240.2	DNS	DNS	<0.01

Table 9. Mean larval fish density expressed as number $/ \mathrm{m}^{3}(1 \mathrm{SE})$ for each taxon collected in main channel habitat of Pool 26 of the Mississippi River during April-July 1997.

Fish taxon	River mile	Mean larval fish density (1 SE) number/m ${ }^{3}$			
		April	May	June	July
Common carp	208.5	0	<0.01	<0.01 (<0.01)	<0.01 (<0.01)
	215.7	<0.01 (<0.01)	0	$<0.01(<0.01)$	0
	223.0	0	$<0.01(<0.01)$	$<0.01(<0.01)$	0
	233.5	0	0	<0.01 (<0.01)	0
Freshwater drum	208.5	0	0	0.62 (0.53)	0
	215.7	<0.01 (<0.01)	0	0.33 (0.06)	$<0.01(<0.01)$
	223.0	0	0	0.16 (0.16)	$<0.01(<0.01)$
	233.5	<0.01 (<0.01)	0	0.50 (0.50)	0.01 (0.004)
Lepisosteidae	223.0	0	0	0	$<0.01(<0.01)$
Hiodontidae	208.5	0	0	$<0.01(<0.01)$	0
	215.7	<0.01 (<0.01)	<0.01	$<0.01(<0.01)$	0
	223.0	0	0.01 (0.01)	0	0
	233.5	0	0.02 (0.02)	0	$<0.01(<0.01)$
Mosquitofish	208.5	0	0	0	0
	215.7	<0.01 (<0.01)	0	0	<0.01 (<0.01)
	223.0	0	0	0	0
	233.5	0	<0.01 (<0.01)	0	$<0.01(<0.01)$
Cyprinidae	208.5	0	0	0	0.04 (0.01)
	215.7	0	0	0	0.04 (0.02)
	223.0	0	0	0.01 (0.01)	0.07 (0.02)

Table 9 continued...

Mean larval fish density (1 SE)

Fish taxon	River mile	Mean larval fish density (1 SE) number/m ${ }^{3}$			
		April	May	June	July
Cyprinidae	233.5	0	<0.01 (<0.01)	0.01 (0.01)	0.08 (0.02)
Clupeidae	208.5	0	0	0.14 (0.07)	<0.01 (<0.01)
	215.7	0	<0.01	0.06 (0.05)	<0.01 (<0.01)
	223.0	0	0	0.02 (0.02)	0.01 (0.01)
	233.5	0	0	0.01 (0.01)	<0.01 (<0.01)
Catostomidae	208.5	0	0.05	0.12 (0.09)	0.01 (0.002)
	215.7	$<0.01(<0.01)$	0	0.07 (0.06)	0.01 (0.01)
	223.0	0	0.03 (0.01)	0.05 (0.04)	0.01 (0.001)
	233.5	0	0.02 (0.01)	0.05 (0.04)	0.01 (0.002)
Centrarchidae	208.5	0	0	0	<0.01 (<0.01)
	215.7	0	0	0	0
	223.0	0	$<0.01(<0.01)$	0	0
	233.5	0	0	0	$<0.01(<0.01)$
Percidae	208.5	$<0.01(<0.01)$	0.02	0	0
	215.7	0	0	0	0
	223.0	<0.01	0.09 (0.01)	0	0
	233.5	0	0.01 (0.002)	$<0.01(<0.01)$	0
Morone	208.5	0	0	0	0
	215.7	0	0	0	0
	223.0	0	<0.01 (<0.01)	0	0
	233.5	0	0	$<0.01(<0.01)$	0

Table 9 continued...

		Mean larval fish density (1 SE) number $/ \mathrm{m}^{3}$			
Fish	River				
taxon	mile	April	May	June	July
Unidentified	208.5	0	<0.01	0	0
	215.7	0	0	0	0
	223.0	0	0	$<0.01(<0.01)$	0
	233.5	0	0	0	0

Table 10. Mean larval fish density expressed as number $/ \mathrm{m}^{3}(1 \mathrm{SE})$ of each species collected in side channel habitat in Pool 26 of the Mississippi River during April-July 1997.

Table 10 continued...

Common name	River mile	Mean larval fish density (1 SE) number/m ${ }^{3}$			
		April	May	June	July
Catostomidae	223.0	0	<0.01 (<0.01)	0.02 (0.02)	0.01 (0.01)
	233.5	0	$<0.01(<0.01)$	0.02 (0.02)	<0.01 (<0.01)
	208.5	0	0.07	0.03 (0.02)	0.03
	215.7	0	0.04	0.10	0
Centrarchidae	223.0	0	0.03 (0.02)	0.10 (0.09)	0.02 (0.01)
	233.5	0	0.02 (0.02)	0.02 (0.02)	0.01 (0.004)
	208.5	0	0	<0.01 (<0.01)	0
	215.7	0	$0.01{ }^{\text { }}$	0.01	0
Percidae	223.0	0	0.01 (0.01)	0	$<0.01(<0.01)$
	233.5	0	<0.01 (<0.01)	<0.01 (<0.01)	0
	208.5	0	0.04	<0.01 (<0.01)	0
	215.7	0	0.01	0	0
Morone	223.0	$<0.01(<0.01)$	$<0.01(<0.01)$	0	0
	233.5	0	0.01 (0.01)	0	0
	208.5	0	0	0.01 (0.001)	0
	215.7	0	<0.01	0	0
Unidentified	223.0	0	<0.01 (<0.01)	$<0.01(<0.01)$	0
	233.5	0	0	$<0.01(<0.01)$	0
	208.5	0	<0.01	0	0
	215.7	0	0	0.01	$<0.01(<0.01)$
	223.0	0	$<0.01(<0.01)$	0.02 (0.01)	$<0.01(<0.01)$
	233.5	0	$<0.01(<0.01)$	<0.01 (<0.01)	$<0.01(<0.01)$

Table 11. Mean larval fish density expressed as number $/ \mathrm{m}^{3}$ (1 SE) of each taxon collected from backwater habitat (river mile 222.2) in the Mississippi River during April-June 1997.

Fish taxon	Mean larval fish density (1 SE) number/m ${ }^{3}$		
	April	May	June
Bighead carp	0	0	<0.01 (<0.01)
Brook silverside	0	0	$<0.01(<0.01)$
Common carp	0	0.03 (0.03)	0
Freshwater drum	0	$<0.01(<0.01)$	0
Mosquitofish	0	0	0.73 (0.73)
Cyprinidae	0	0.01 (0.01)	0.07 (0.03)
Percidae	0	0.01 (0.01)	0
Clupeidae	0	3.01 (2.50)	14.62 (13.63)
Centrarchidae	0	0.49 (0.44)	12.04 (11.67)
Morone	0	0.010 (0.004)	0
Unidentified	0	0.020(0.02)	0

Table 12. Mean monthly CPUE (1 SE) expressed as number of fish per hour of trawling for all small fish collected by bottom frame trawl in the lower Illinois River and in Pool 26 of the Mississippi River during July and September 1997. DNT = did not trawl.

		Mean CPUE (1 SE) number/h
River	July	September
Illinois	DNT	$120.0(25.0)$
Mississippi	$105.4(18.0)$	$11.5(4.6)$

Table 13. Minimal density and biomass estimates of fishes captured by the beam trawl in the lower Illinois River during 1997. Sample size is denoted by N and S.E. is the standard error of the mean.

		Density (no./ha)			Biomass (kg/ha)		
	Species	N	Median		Mean	S.E.	Median
Mean	S.E.						
Blue catfish	3	0	1.4	1.4	0	0	0
Channel catfish	3	8.3	9.7	1.4	0	0	0
Common carp	3	0	2.8	2.8	0	0	0
Freshwater drum	3	95.8	88.9	11.4	1.1	1.3	0.7
Gizzard shad	3	4.2	16.7	14.6	0	0.1	0.1
Goldeye	3	0	0	0	0	0	0
Mooneye	3	0	0	0	0	0	0
River carpsucker	3	0	1.4	1.4	0	1.5	1.5
Shovelnose sturgeon	3	0	0	0	0	0	0
Skipjack herring	3	0	0	0	0	0	0
Smallmouth buffalo	3	4.2	4.2	0	2.2	2.3	0.3
Unidentified Lepomis	3	0	0	0	0	0	0
White bass	3	0	0	0	0	0	0
Total fish	3	112.5	125	26	3.1	5.3	2.2

Table 14. Minimal density and biomass estimates of fishes captured by the beam trawl in Pool 26 of the Mississippi River during 1997. Sample size is denoted by N and S.E. is the standard error of the mean.

Species		Density (no./ha)			Biomass (kg/ha)		
	N	Median	Mean	S.E.	Median	Mean	S.E.
Blue catfish	15	0	0	0	0	0	0
Channel catfish	15	9.4	39.4	12.8	0	0.8	0.7
Common carp	15	0	0	0	0	0	0
Freshwater drum	15	0	8.7	5.5	0	0	0
Gizzard shad	15	0	0.3	0.3	0	0	0
Goldeye	15	0	1.5	0.7	0	0.1	0.1
Mooneye	15	0	6.5	2.5	0	0	0
River carpsucker	15	0	0	0	0	0	0
Shovelnose sturgeon	15	0	0.4	0.4	0	0	0
Skipjack herring	15	0	0.2	0.2	0	0	0
Smallmouth buffalo	15	0	0	0	0	0	0
Unidentified Lepomis	15	0	0.3	0.3	0	0	0
White bass	15	0	0.4	0.4	0	0.1	0.1
Total fish	15	31.2	57.6	15.7	0.1	1	0.7

Table 15. Mean, standard deviation (S.D.) and sample size (N) of lengths and weights of fishes captured by beam trawling.

Species	Pool 26, Mississippi River						Illinois River Length (mm)		
	Mean	S.D.	N	Mean	S.D.	N	Mean	S.D.	N
Blue catfish							101		1
Channel catfish	43	63	87	133	466	14	70	25	7
Common carp							14	1	2
Freshwater drum	36	52	18	74	97	2	93	71	37
Gizzard shad	92		1	8		1	79	23	2
Goldeye	168	126	4	196	66	2			
Mooneye	71	50	16	23	2	4			
River carpsucker							438		
Shovelnose sturgeon	93		1						
Skipjack herring	107		1	9		1			
Smallmouth buffalo							333	24	3
Unidentified Lepomis	13		1						
White bass	233		1	155		1			

Table 16. Minimal density and biomass estimates of fishes captured by the rockhopper trawl in the lower Illinois River during 1996. Sample size is denoted by N and S.E. is the standard error of the mean.

Species	N	Density (no./ha)			Biomass (kg/ha)		
		Median	Mean	S.E.	Median	Mean	S.E.
Bighead carp	21	0	0	0	0	0	0
Bigmouth buffalo	21	0	0.5	0.3	0	0.4	0.2
Black buffalo	21	0	0	0	0	0	0
Black crappie	21.	0	0	0	0	0	0
Blue catfish	21	0	0.8	0.4	0	0	0
Blue sucker	21	0	0	0	0	0	0
Channel catfish	21	8.2	18.9	6.1	0.7	1.8	0.7
Common carp	21	2.7	3.1	0.8	2.2	4	1.2
Flathead catfish	21	0	0.4	0.3	0	0.1	0.1
Freshwater drum	21	32.3	122.3	34.9	6.8	15.9	4.4
Gizzard shad	21	1.9	3.6	1.4	0	0.2	0.1
Goldeye	21	0	0	0	0	0	0
Highfin carpsucker	21	0	0.2	0.2	0	0.1	0.1
Lake sturgeon	21	0	0	0	0	0	0
Mooneye	21	0	0	0	0	0	0
Quillback	21	0	0	0	0	0	0
River carpsucker	21	0	0	0	0	0	0
Sauger	21	0	0.5	0.3	0	0.2	0.1
Shorthead redhorse	21	0	0.2	0.1	0	0.1	0.1
Shortnose gar	21	0	0.1	0.1	0	0.1	0.1
Shovelnose sturgeon	21	0	0	0	0	0	0
Silver chub	21	0	0	0	0	0	0
Skipjack herring	21	0	0	0	0	0	0
Smallmouth buffalo	21	1.6	5.4	2.2	1.1	3.7	1.7
Speckled chub	21	0	0	0	0	0	0
White bass	21	0	1.3	0.6	0	0	0
Total fish	21	83.5	157.3	41.1	15.7	26.5	6.3

Table 17. Minimal density and biomass estimates of fishes captured by the rockhopper trawl in the lower Illinois River during 1997. Sample size is denoted by N and S.E. is the standard error of the mean.

		Density (no./ha)			Biomass (kg/ha)		
	Species	Median	Mean	S.E.	Median	Mean	S.E.
Bighead carp	16	0	0	0	0	0	0
Bigmouth buffalo	16	0	0	0	0	0	0
Black buffalo	16	0	0	0	0	0	0
Black crappie	16	0	0	0	0	0	0
Blue catfish	16	0	0.6	0.4	0	0.1	0
Blue sucker	16	0	0	0	0	0	0
Channel catfish	16	5.1	10.3	3.6	0.4	0.8	0.2
Common carp	16	0.9	3.9	1.7	1.5	5	1.9
Flathead catfish	16	0	0.6	0.3	0	1	0.5
Freshwater drum	16	60.6	89.7	21.9	12.9	15.7	4.5
Gizzard shad	16	0.8	59.4	55.6	0	1	0.8
Goldeye	16	0	0	0	0	0	0
Highfin carpsucker	16	0	0	0	0	0	0
Lake sturgeon	16	0	0	0	0	0	0
Mooneye	16	0	0.2	0.2	0	0	0
Quillback	16	0	0	0	0	0	0
River carpsucker	16	0	0.4	0.2	0	0.3	0.2
Sauger	16	0	0	0	0	0	0
Shorthead redhorse	16	0	0	0	0	0	0
Shortnose gar	16	0	0	0	0	0	0
Shovelnose sturgeon	16	0	0	0	0	0	0
Silver chub	16	0	0	0	0	0	0
Skipjack herring	16	0	0	0	0	0	0
Smallmouth buffalo	16	7.1	12.4	4.2	3.7	8.3	2.9
Speckled chub	16	0	0	0	0	0	0
White bass	16	0	0.2	0.2	0	0	0
Total fish	16	119	177.7	53.6	28.1	32.2	6.8

Table 18. Minimal density and biomass estimates of fishes captured by the rockhopper trawl in Pool 26 of the Mississippi River during 1996. Sample size is denoted by N and S.E. is the standard error of the mean.

		Density (no./ha) Species			N	Median	Mean
Sighead carp	65	0	0	0	Biomass (kg/ha)		
Median	Mean	S.E.					
Bigmouth buffalo	65	0	2	0.9	0	0	0
Black buffalo	65	0	0.1	0.1	0	1.4	0.6
Black crappie	65	0	0	0	0	0	0.2
Blue catfish	65	0	2	0.7	0	0.1	0
Blue sucker	65	0	0.1	0.1	0	0	0
Channel catfish	65	3.8	8.8	2	0.1	1.2	0.3
Common carp	65	0	4.2	1.5	0	3.1	1.1
Flathead catfish	65	0	0.3	0.1	0	0.6	0.2
Freshwater drum	65	4	27.9	5.9	0.3	4	0.7
Gizzard shad	65	0	42.1	19	0	0.5	0.1
Goldeye	65	0	0.2	0.1	0	0	0
Highfin carpsucker	65	0	0.1	0.1	0	0	0
Lake sturgeon	65	0	0.3	0.1	0	0.7	0.3
Mooneye	65	0	5	2.9	0	0.1	0.1
Quillback	65	0	0.5	0.1	0	0.3	0.1
River carpsucker	65	0	0.2	0.1	0	0.2	0.1
Sauger	65	0	0.6	0.2	0	0.3	0.1
Shorthead redhorse	65	0	0.5	0.2	0	0.3	0.1
Shortnose gar	65	0	0	0	0	0	0
Shovelnose sturgeon	65	0	4.2	1	0	2	0.4
Silver chub	65	0	0.1	0	0	0	0
Skipjack herring	65	0	0	0	0	0	0
Smallmouth buffalo	65	2	9.4	2	2.2	7.6	1.4
Speckled chub	65	0	0	0	0	0	0
White bass	65	0	0.5	0.2	0	0	0
Total fish	65	39.1	109	23.4	13.8	22.7	3.1
					0		

Table 19. Minimal density and biomass estimates of fishes captured by the rockhopper trawl in Pool 26 of the Mississippi River during 1997. Sample size is denoted by N and S.E. is the standard error of the mean.

		Density (no./ha)			Biomass (kg/ha)		
Species	Nedian	Mean	S.E.	Median	Mean	S.E.	
Bighead carp	49	0	0.1	0.1	0	0	0
Bigmouth buffalo	49	0	0.5	0.2	0	0.6	0.3
Black buffalo	49	0	0.1	0.1	0	0.1	0.1
Black crappie	49	0	0	0	0	0	0
Blue catfish	49	0	1.3	0.5	0	0.5	0.2
Blue sucker	49	0	0.1	0.1	0	0.1	0.1
Channel catfish	49	1.5	7.1	2	0	1.4	0.4
Common carp	49	0	0.4	0.2	0	0.5	0.3
Flathead catfish	49	0	0.3	0.1	0	0.7	0.4
Freshwater drum	49	1.9	23.3	7.2	0.2	2	0.6
Gizzard shad	49	0	3.6	1.4	0	0.2	0
Goldeye	49	0	0.3	0.1	0	0.1	0
Highfin carpsucker	49	0	0.3	0.1	0	0.2	0.1
Lake sturgeon	49	0	0	0	0	0	0
Mooneye	49	0	1.1	0.4	0	0	0
Quillback	49	0	2.1	0.9	0	1.3	0.5
River carpsucker	49	0	2.4	1.1	0	2.2	1
Sauger	49	0	0.5	0.2	0	0.2	0.1
Shorthead redhorse	49	0	0.2	0.1	0	0.1	0.1
Shortnose gar	49	0	0	0	0	0	0
Shovelnose sturgeon	49	0	4.1	1.2	0	2	0.6
Silver chub	49	0	0	0	0	0	0
Skipjack herring	49	0	0.2	0.1	0	0	0
Smallmouth buffalo	49	1.9	7.5	2.3	0.9	6.9	1.9
Speckled chub	49	0	0.2	0.2	0	0	0
White bass	49	0	0.1	0.1	0	0	0
Total fish	49	15.2	55.5	13.5	4.6	19.2	4.5

Table 20. Analysis of rockhopper trawl catches for all species combined.

Parameter	Poisson model			Poisson autoregressive model		
	Estimate	S.E.	P-value	Estimate	S.E.	P-value
Intercept λ_{0}	7.908	4.744	0.100	9.218	5.983	0.12
Year $y_{1}, 1996$	0.343	0.252	0.89	-0.045	0.357	0.90
Year $y_{2}, 1997$	0	0		0	0	
Pool p_{1}, Pool 26	-0.653	0.260	0.01	-0.728	0.376	0.05
Pool p_{2}, Illinois River		0		0	0	
Location in pool $l_{1(1)}$ (lower 26)	0.008	0.266	0.97	-0.020	0.396	0.96
Location in pool $l_{1(2)}$ (upper 26)		0		0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0		0	0	
Month β_{1}	-4.833	1.996	0.02	-5.44	2.54	0.03
Month (quadratic) β_{2}	0.800	0.265	<0.01	0.876	0.340	0.01
Month (cubic) β_{3}	-0.038	0.011	<0.01	-0.040	0.014	<0.01
Scale ϕ	8.890			8.89		

Table 21. Analysis of rockhopper trawl catches for blue catfish.

Parameter	Poisson model			Poisson autoregressive model		
	Estimat e	S.E.	P-value	Estimat e	S.E.	P-value
Intercept λ_{0}	6.685	16.37	0.68	6.735	16.51	0.68
Year $y_{1}, 1996$	0.123	0.340	0.72	0.123	0.344	0.72
Year $y_{2}, 1997$	0	0		0	0	
Pool p_{1}, Pool 26	-0.732	0.671	0.28	-0.728	0.679	0.28
Pool p_{2}, Illinois River	0	0		0	0	
Location in pool $l_{1(1)}$ (lower 26)	2.278	0.542	<0.01	2.274	0.548	<0.01
Location in pool $l_{1(2)}$ (upper 26)		0		0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0		0	0	
Month β_{t}	-9.016	6.021	0.13	-9.039	6.075	0.14
Month (quadratic) β_{2}	1.552	0.737	0.04	1.555	0.744	0.04
Month (cubic) β_{3}	-0.075	0.030	0.01	-0.0752	0.030	0.01
Scale ϕ	1.469			1.469		

Table 22. Analysis of rockhopper trawl catches for channel catfish.

Parameter	Poisson model			Poisson autoregressive model		
	Estimat e	S.E.	P-value	Estimat e	S.E.	P-value
Intercept λ_{0}	0.122	4.279	0.98	0.174	4.363	0.97
Year $y_{1}, 1996$	0.385	0.312	0.22	0.382	0.320	0.23
Year $y_{2}, 1997$	0	0		0	0	
Pool p_{1}, Pool 26	-1.425	0.394	<0.01	-1.424	0.404	<0.01
Pool p_{2}, Illinois River	0	0		0	0	
Location in pool $l_{1(1)}$ (lower 26)	1.246	0.376	<0.01	1.243	0.387	<0.01
Location in pool $l_{1(2)}$ (upper 26)	0	0		0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0		0	0	
Month β_{1}	-1.476	1.808	0.41	-1.499	1.845	0.42
Month (quadratic) β_{2}	0.279	0.241	0.25	0.282	0.246	0.25
Month (cubic) β_{3}	-0.014	0.010	0.16	-0.014	0.010	0.16
Scale ϕ	3.211			3.211		

Table 23. Analysis of rockhopper trawl catches for common carp.

Parameter	Gaussian errors model		
	Estimate	S.E.	P-value
Intercept λ_{0}	0.536	0.259	0.04
Year $y_{1}, 1996$	-0.043	0.030	0.15
Year $y_{2}, 1997$	0	0	
Pool p_{1}, Pool 26	-0.013	0.030	0.65
Pool p_{2}, Illinois River	0	0	
Location in pool $l_{1(1)}$ (lower 26)	-0.036	0.026	0.17
Location in pool $l_{1(2)}$ (upper 26)	0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0	
Month β_{1}	-0.280	0.119	0.02
Month (quadratic) β_{2}	0.044	0.017	0.01
Month (cubic) β_{3}	-0.002	0.001	<0.01

Table 24. Analysis of rockhopper trawl catches for freshwater drum.

Parameter	Poisson model			Poisson autoregressive model		
	Estimat e	S.E.	P-value	Estimat e	S.E.	P-value
Intercept λ_{0}	2.720	7.202	0.70	3.591	7.726	0.64
Year $y_{1}, 1996$	0.175	0.263	0.50	0.199	0.299	0.50
Year $y_{2}, 1997$	0	0		0	0	
Pool p_{1}, Pool 26	-2.061	0.371	<0.01	-2.067	0.426	<0.01
Pool p_{2}, Illinois River	0	0		0	0	
Location in pool $l_{1(1)}$ (lower 26)	1.091	0.387	<0.01	1.072	0.446	0.01
Location in pool $l_{1(2)}$ (upper 26)	0	0		0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0		0	0	
Month β_{1}	-2.841	2.680	0.29	-3.218	2.900	0.27
Month (quadratic) β_{2}	0.550	0.328	0.09	0.601	0.358	0.09
Month (cubic) β_{3}	-0.028	0.013	0.03	-0.030	0.014	0.04
Scale ϕ	6.23			6.23		

Table 25. Analysis of rockhopper trawl catches for gizzard shad.

Parameter	Gaussian errors model		
	Estimate	S.E.	P-value
Intercept λ_{0}	2.119	0.979	0.03
Year $y_{1}, 1996$	-0.013	0.114	0.91
Year $y_{2}, 1997$	0	0	
Pool p_{1}, Pool 26	0.128	0.112	0.03
Pool p_{2}, Illinois River	0	0	
Location in pool $l_{1(1)}($ lower 26)	-0.191	0.098	0.05
Location in pool $l_{1(2)}$ (upper 26)	0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0	
Month β_{1}	-1.117	0.451	0.01
Month (quadratic) β_{2}	0.169	0.063	0.01
Month (cubic) β_{3}	-0.007	0.003	0.01
Scale ϕ			

Table 26. Analysis of rockhopper trawl catches for goldeye.

Parameter	Gaussian errors model		
	Estimate	S.E.	P-value
Intercept λ_{0}	-0.003	0.032	0.92
Year $y_{1}, 1996$	-0.006	0.004	0.10
Year $y_{2}, 1997$	0	0	
Pool p_{1}, Pool 26	0.004	0.004	0.26
Pool p_{2}, Illinois River	0	0	
Location in pool $l_{1(1)}$ (lower 26)	0.006	0.003	0.08
Location in pool $l_{1(2)}$ (upper 26)	0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0	
Month β_{1}	-0.001	0.015	0.93
Month (quadratic) β_{2}	~ 0	0.0001	0.85
Month (cubic) β_{3}	~ 0	<0.001	0.85

Table 27. Analysis of rockhopper trawl catches for mooneye.

Parameter	Gaussian errors model		
	Estimate	S.E.	P-value
Intercept λ_{0}	0.206	0.306	0.50
Year $y_{1}, 1996$	0.009	0.036	0.80
Year $y_{2}, 1997$	0	0	
Pool p_{1}, Pool 26	0.087	0.035	0.01
Pool p_{2}, Illinois River	0	0	
Location in pool $l_{1(1)}$ (lower 26)	-0.065	0.030	0.03
Location in pool $l_{1(2)}$ (upper 26)	0	0	0
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0	0
Month β_{1}	-0.149	0.141	0.29
Month (quadratic) β_{2}	0.024	0.020	0.22
Month (cubic) β_{3}	-0.001	0.001	0.18

Table 28. Analysis of rockhopper trawl catches for shoveinose sturgeon.

Parameter	Gaussian errors model		
	Estimate	S.E.	P-value
Intercept λ_{0}	-0.415	0.230	0.07
Year $y_{1}, 1996$	-0.005	0.027	0.85
Year $y_{2}, 1997$	0	0	
Pool p_{1}, Pool 26	0.166	0.026	<0.01
Pool p_{2}, Illinois River	0	0	
Location in pool $l_{1(1)}$ (lower 26)	$-0.14+4$	0.022	<0.01
Location in pool $l_{1(2)}$ (upper 26)	0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0	
Month β_{1}	0.197	0.106	0.06
Month (quadratic) β_{2}	-.028	0.015	0.06
Month (cubic) β_{3}	0.001	0.001	0.07

Table 29. Analysis of rockhopper trawl catches for smallmouth buffalo.

Parameter	Poisson model			Poisson autoregressive model		
	Estimate	S.E.	P-value	Estimate	S.E.	P-value
Intercept λ_{0}	4.322	6.220	0.49	3.343	7.716	0.66
Year $y_{1}, 1996$	-0.139	0.253	0.58	-0.110	0.333	0.74
Year $y_{2}, 1997$	0	0		0	0	
Pool p_{1}, Pool 26	-0.372	0.336	0.27	-0.295	0.456	0.52
Pool p_{2}, Illinois River	0	0		0	0	
Location in pool $l_{1(1)}$ (lower 26)	0.800	0.284	<0.01	0.809	0.379	0.03
Location in pool $l_{1(2)}$ (upper 26)	0	0		0	0	
Location in pool $l_{2(3)}$ (all Ill. R.)	0	0		0	0	
Month β_{1}	-5.167	2.597	0.05	-4.794	3.285	0.13
Month (quadratic) β_{2}	0.936	0.350	0.01	0.884	0.427	0.04
Month (cubic) β_{3}	-0.047	0.015	0.01	-0.045	0.018	0.04
Scale ϕ	2.767			2.767		

Table 30. Mean, standard deviation (S.D.) and sample size (N) of lengths and weights of fishes captured by rockhopper trawling.

Species	Pool 26, Mississippi River						Illinois River					
	Length (mm)			Weight (g)			Length (mm)			Weight (g)		
	Mean	S.D.	N									
Bighead carp	77		1									
Bigmouth buffalo	362	64	66	746	561	33	349	35	5	600	45	4
Black buffalo	438	75	7									
Black crappie	248		1									
Blue catfish	198	106	100	233	654	46	167	72	12	53	66	4
Blue sucker	358	144	5	601	613	4						
Channel catfish	217	114	440	172	309	268	202	81	209	94	107	121
Common carp	383	52	124	786	294	61	452	63	60	1480	954	21
Flathead catfish	487	163	17	3128	1908	9	427	135	8	786	1147	21 4
Freshwater drum	207	81	1001	167	268	536	221	91	947	196	231	318
Gizzard shad	151	55	324	64	88	199	134	57	113	35	80	60
Goldeye	258	23	14	164	47	12						
Highfin carpsucker	339	51	9	609	145	5	312	11	2			
Lake sturgeon	707	112	10	2371	1657	7						
Mooneye	155	20	118	42	18	70	142		1			
Quillback	358	76	60	709	405	15						
River carpsucker	399	58	75	1206	568	15	403	20	3			
Sauger	369	62	29	520	224	16	303	120	5	316	273	3
Shorthead redhorse	380	97	17	867	300	12	334	43	2			
Shortnose gar	594	56	2	948		1	666		1	1250		1
Shovelnose sturgeon	520	101	234	620	330	124						
Silver chub	136	30	2	52		1						
Skipjack herring	98	4	4									

Table 30 continued...

Species	Pool 26, Mississippi River						11 linois River					
	Length (mm)			Weight (g)			Length (mm)			Weight (g)		
	Mean	S.D.	N									
Smallmouth buffalo	363	80	467	1010	1146	256	346	46	140	829	754	31
Speckled chub	51	8	4	3	1	3						
White bass	161	42	18	53	49	11	105	14	11	15	5	8

Table 31. Information on dead and wounded fish, for which injuries could be attributed to entrainment through the propellers of the preceding towboat, collected during entrainment sampling behind towboats passing upstream or downstream during 1996. No dead or wounded fish were collected while sampling for entrainment during 1997. See text for criteria for attribution of injuries to entrainment.

Date	River	River mile	Species	Length (mm)
Oct 2	Mississippi	203.2	Gizzard shad	119
Oct 2	Mississippi	203.2	Gizzard shad	124
Nov 6	Mississippi	238.2	Gizzard shad	122

Table 32. Dead and wounded fish collected during ambient sampling with the rockhopper trawl to determine background occurrence of dead and wounded fish during 1996 and 1997 in Pool 26 of the Upper Mississippi River and the lower 20 miles of the Illinois River. Bold entries are fish with fresh injuries consistent with propeller wounding-see text for explanation of diagnostic criteria. NA means fish were not measured.

Date	River	River mile	Species	Length (mm)
1996				
Oct 22	Mississippi	215.7	Shovelnose sturgeon	590
Oct 31	Illinois	9.3	Gizard shad	310
Nov 22	Mississippi	203.2	Gizzard shad	125
Dec 10	Illinois	18.7	Gizzard shad	NA
Dec 10	Illinois	18.7	Gizzard shad	NA
Dec 10	Illinois	18.7	Gizzard shad	NA
Dec 10	Illinois	18.7	Gizzard shad	NA
Dec 10	Illinois	18.7	Gizzard shad	107
Dec 10	Illinois	18.7	Gizzard shad	NA
Dec 10	Illinois	5.5	Smallmouth buffalo	518
Dec 10	Illinois	5.5	Gizzard shad	107
1997				
Mar 24	Mississippi	213.6	Gizzard shad	NA
Mar 24	Mississippi	213.6	Gizzard shad**	NA
Mar 24	Mississippi	213.6	Gizzard shad	NA
Mar 24	Mississippi	213.6	Gizzard shad	NA
Mar 25	Mississippi	207.1	Gizzard shad	NA
Mar 25	Mississippi	207.1	Gizzard shad	NA
Mar 25	Mississippi	207.1	Gizzard shad	NA

Table 32 continued.

Date	River	River mile	Species	Length (mm)
Mar 26	Mississippi	233.5	Gizzard shad	NA
Mar 26	Mississippi	230.5	Gizzard shad	NA
Mar 26	Mississippi	277.2	Shovelnose sturgeon	615
Mar 26	Mississippi	223.0	Gizzard shad	NA
Mar 26	Mississippi	223.0	Gizzard shad	NA
Mar 26	Mississippi	223.0	Gizzard shad	NA
June 19	Mississippi	238.5	Shovelnose sturgeon	505
June 19	Mississippi	238.5	Shovelnose sturgeon	505
June 19	Mississippi	238.5	Shovelnose sturgeon	295
Injury was consistent with a propeller strike, but this fish had been dead for at least several				
hours (gill filaments white or grey, eyes cloudy, and/or rigor mortis).				

Figure 2. Minimal mean densities of fish of all species combined estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Blue catfish

Figure 3. Minimal mean densities of blue catfish estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Figure 4. Minimal mean densities of channel catfish estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Figure 5. Minimal mean densities of common carp estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Freshwater drum

Figure 6. Minimal mean densities of freshwater drum estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Gizzard shad

Figure 7. Minimal mean densities of gizzard shad estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Goldeye

Figure 8. Minimal mean densities of goldeye estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment berween River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Figure 9. Minimal mean densities of mooneye estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Shovelnose sturgeon

Figure 10. Minimal mean densities of shovelnose sturgeon estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Smallmouth buffalo

Figure 11. Minimal mean densities of smallmouth buffalo estimated from rockhopper bottom trawling in the navigation channels of the lower Illinois River and Pool 26 of the Upper Mississippi River. Upper Pool 26 is that segment between River Mile 218 and Lock and Dam 25, and the lower pool is from River Mile 218 to Lock and Dam 26.

Figure 12. Catch per unit effort (CPUE) of blue sucker captured by rockhopper bottom trawling in the navigation channel of Pool 26 of the Upper Mississippi River.

Figure 13. Mean number of species per haul of the rockhopper bottom trawl in the Illinois River and Pool 26 of the Mississippi River, 1996-1997.

Appendix A. List of common and scientific names of fishes encountered during studies of potential effects of navigation in Pool 26 of the Mississippi River and in the lower 26 km of the Illinois River.

Common name	Scientific name
Lake sturgeon	Acipenser fulvescens
Shovelnose sturgeon	Scaphirhynchus platorynchus
Shortnose gar	Lepisosteus platostomus
Goldeye	Hiodon alosoides
Mooneye	Hiodon tergisus
Skipjack herring	Alosa chrysochloris
Gizzard shad	Dorosoma cepedianum
Common carp	Cyprinus carpio
Bighead carp	Hypopthalmichthys nobilis
Speckled chub	Macrhybopsis aestivalis
Silver chub	Macrhybopsis storeriana
River carpsucker	Carpiodes carpio
Quillback	Carpiodes cyprinus
Highfin carpsucker	Carpiodes velifer
Blue sucker	Cycleptus elongatus
Smallmouth buffalo	Ictiobus bubalus
Bigmouth buffalo	Ictiobus cyprinellus
Black buffalo	Ictiobus niger
Shorthead redhorse	Moxostoma macrolepidotum
Blue catfish	Ictalurus furcatus
Channel catfish	Ictalurus punctatus
Flathead catfish	Pylodictis olivaris
White bass	Morone chrysops
Black crappie	Pomoxis nigromaculatus
Sauger	Stizostedion canadense
Freshwater drum	Aplodinotus grunniens

Appendix B. Mean volume (m^{3}) of water filtered at each sampling site for estimation of larval fish densities. $I \mathrm{R}=$ Illinois River and $26=$ Pool 26 of the Mississippi River. $\mathrm{N}=$ number of tows at each site used to calculate the mean volume of water sampled.

Month	Day	Year	Stratum	River	Mile	N	Mean	$\pm 1 \mathrm{SE}$
5	13	96	Main channel	IR	9.3	1	333.94	
5	13	96	Main channel	IR	13.5	2	310.86	57.80
5	13	96	Main channel	IR	18.7	2	257.96	13.60
5	14	96	Main channel	26	223.0	2	312.08	19.96
5	14	96	Main channel	26	225.8	1	311.94	
5	14	96	Main channel	IR	4.5	2	376.47	6.56
5	15	96	Main channel	26	203.2	2	347.07	15.98
5	15	96	Main channel	26	207.1	2	243.30	118.74
5	15	96	Main channel	26	211.2	2	334.64	18.25
5	15	96	Main channel	26	215.7	2	350.84	13.71
5	16	96	Main channel	26	208.5	2	353.21	6.32
5	16	96	Main channel	26	213.5	2	347.37	10.01
5	17	96	Main channel	26	223.0	1	443.17	
5	17	96	Main channel	26	227.5	2	463.01	6.78
5	17	96	Main channel	26	233.5	2	545.58	25.16
5	28	96	Main channel	26	203.2	1	348.16	
5	29	96	Main channel	26	208.5	1	328.58	
5	29	96	Main channel	26	211.2	2	358.52	12.49
5	30	96	Main channel	IR	4.5	2	361.54	14.17
5	30	96	Main channel	IR	9.3	2	392.66	2.42
5	30	96	Main channel	IR	13.5	2	426.73	1.51
5	30	96	Main channel	IR	18.7	2	397.92	9.94
6	3	96	Main channel	26	203.2	2	366.63	21.25
6	3	96	Main channel	26	207.1	2	397.92	2.97
6	3	96	Main channel	26	208.5	2	360.51	0.73
6	3	96	Main channel	26	211.2	2	426.37	4.27
6	3	96	Main channel	26	213.5	2	426.26	11.34
6	4	96	Main channel	26	215.7	2	401.61	11.16
6	4	96	Main channel	IR	4.5	2	398.95	2.40
6	4	96	Main channel	IR	9.3	2	380.91	7.96
6	4	96	Main channel	IR	13.5	2	387.06	7.00
6	4	96	Main channel	IR	18.7	2	391.39	2.35
6	5	96	Main channel	26	225.8	2	385.10	5.08
6	5	96	Main channel	26	227.5	2	435.25	10.37
6	5	96	Main channel	26	230.5	2	422.63	6.63
6	5	96	Main channel	26	233.5	2	435.80	0.47

Appendix B, Page 1

Appendix B continued.

Month	Day	Year	Stratum	River	Mile	N	Mean	$\pm 1 \mathrm{SE}$
6	17	96	Main channel	26	203.2	2	313.05	25.72
6	17	96	Main channel	26	207.1	2	337.49	3.72
6	20	96	Main channel	26	215.7	1	561.37	
6	20	96	Main channel	IR	4.5	2	663.63	12.88
6	20	96	Main channel	IR	9.3	2	572.48	12.76
6	20	96	Main channel	IR	13.5	2	522.85	88.60
6	20	96	Main channel	IR	18.7	2	737.39	48.56
6	21	96	Main channel	26	223.0	2	541.94	63.22
6	21	96	Main channel	26	225.8	2	625.59	7.31
6	21	96	Main channel	26	230.5	2	636.03	8.22
6	21	96	Main channel	26	233.5	2	533.82	30.97
7	1	96	Main channel	26	207.1	2	533.68	10.77
7	1	96	Main channel	26	211.2	1	578.52	
7	1	96	Main channel	26	213.5	2	541.45	16.05
7	2	96	Main channel	26	203.2	2	548.12	10.25
7	2	96	Main channel	26	208.5	1	577.08	
7	3	96	Main channel	26	223.0	2	492.07	13.80
7	3	96	Main channel	26	225.8	1	504.05	
7	3	96	Main channel	26	233.5	2	474.87	5.28
7	3	96	Main channel	26	240.2	1	570.46	
7	5	96	Main channel	26	215.7	2	536.71	2.95
7	5	96	Main channel	IR	4.5	2	327.39	53.23
7	5	96	Main channel	IR	9.3	2	399.22	7.06
7	5	96	Main channel	IR	13.5	2	395.38	39.21
7	5	96	Main channel	IR	18.7	2	371.45	15.72
4	23	97	Main channel	26	208.5	2	460.26	6.12
4	23	97	Main channel	26	215.7	2	485.77	9.67
4	23	97	Main channel	26	233.0	2	481.08	19.09
4	23	97	Side channel	26	208.5	2	428.82	10.09
4	23	97	Side channel	26	215.7	2	427.22	7.28
4	23	97	Side channel	26	222.6	2	391.10	78.89
4	29	97	Main channel	26	208.5	2	384.72	5.67
4	29	97	Main channel	26	215.7	2	1050.64	396.75
4	29	97	Main channel	26	222.6	2	401.57	12.34
4	29	97	Main channel	26	233.5	2	427.39	14.20
4	29	97	Side channel	26	208.5	2	410.96	7.45
4	29	97	Side channel	26	215.7	2	1039.18	419.97
4	29	97	Side channel	26	222.6	2	456.24	9.40
4	29	97	Side channel	26	233.5	2	392.81	4.97

Appendix B, Page 2

Appendix B continued.

Month	Day	Year	Stratum	River	Mile	N	Mean	$\pm 1 \mathrm{SE}$	
5	1	97	Side channel	IR		13.5	2	312.91	23.56
5	2	97	Backwater	26		222.0	2	81.85	5.52
5	13	97	Main channel	26		208.5	2	350.11	9.97
5	13	97	Main channel	26		223.0	2	331.67	30.45
5	13	97	Main channel	26		233.5	1	338.39	
5	13	97	Side channel	26		208.5	2	341.80	3.87
5	13	97	Side channel	26		222.6	2	872.68	530.68
5	13	97	Side channel	26		233.2	2	380.45	2.00
5	16	97	Backwater	26		222.0	2	188.20	112.80
5	16	97	Backwater	IR		9.3	2	74.78	4.80
5	19	97	Main channel	IR		13.5	2	229.46	14.36
5	19	97	Side channel	IR		13.5	2	243.79	15.11
5	27	97	Main channel	IR		13.5	1	429.71	
5	28	97	Backwater	26		222.0	2	85.80	0.23
5	28	97	Backwater	IR		9.3	2	117.25	2.99
5	29	97	Side channel	IR		13.5	2	457.43	46.16
5	30	97	Main channel	26		215.7	1	332.23	
5	30	97	Main channel	26		223.0	2	393.97	40.39
5	30	97	Main channel	26		233.5	1	443.87	
5	30	97	Side channel	26		215.7	1	395.92	
5	30	97	Side channel	26		222.6	2	336.23	35.72
5	30	97	Side channel	26		233.5	2	427.76	22.73
6	10	97	Main channel	IR		13.5	2	459.93	23.15
6	10	97	Side channel	IR		13.5	2	478.41	5.20
6	11	97	Backwater	26		222.0	2	75.91	0.73
6	11	97	Backwater	IR		9.3	2	120.36	23.52
6	12	97	Main channel	26		208.5	2	447.58	23.42
6	12	97	Main channel	26		215.7	2	433.14	2.56
6	12	97	Main channel	26		223.0	2	434.65	27.97
6	12	97	Main channel	26		233.5	1	403.09	
6	12	97	Side channel	26		208.5	2	425.40	14.42
6	12	97	Side channel	26		222.6	2	436.72	17.53
6	12	97	Side channel	26		233.5	2	432.37	33.48
6	24	97	Backwater	26		222.0	2	81.53	1.49
6	24	97	Backwater	IR		9.3	1	54.61	
6	25	97	Main channel	IR		13.5	2	536.17	11.32
6	25	97	Side channel	IR		13.5	2	411.97	6.24
6	26	97	Main channel	26		208.5	2	423.09	66.58
6	26	97	Main channel	26		215.7	2	408.22	77.06

Appendix B, Page 3

Appendix B continued.

Month	Day	Year	Stratum	River	Mile	N	Mean	\pm l SE	
6	26	97	Main channel	26	223.0	2	345.06	82.44	
6	26	97	Main channel	26	233.5	2	318.62	104.23	
6	26	97	Side channel	26	208.5	2	468.69	50.81	
6	26	97	Side channel	26	215.7	2	417.52	50.29	
6	26	97	Side channel	26	222.6	2	390.35	110.83	
6	26	97	Side channel	26	233.5	2	270.27	147.71	
7	8	97	Main channel	26	208.5	2	441.64	111.25	
7	8	97	Main channel	26	215.7	2	473.63	39.38	
7	8	97	Main channel	26	223.0	1	547.13		
7	8	97	Main channel	26	233.5	2	461.98	41.57	
7	8	97	Side channel	26	208.5	1	421.91		
7	8	97	Side channel	26	215.7	2	482.71	73.51	
7	8	97	Side channel	26	222.6	2	478.30	50.81	
7	8	97	Side channel	26	233.5	2	453.06	47.15	
7	9	97	Backwater	IR	9.3	2	73.46	1.00	
7	10	97	Main channel	IR	13.5	1	491.67		
7	10	97	Side channel	IR	13.5	2	548.11	201.37	
7	22	97	Main channel	26	208.5	2	511.88	28.08	
7	22	97	Main channel	26		215.7	2	510.19	22.76
7	22	97	Main channel	26	223.0	2	493.38	30.59	
7	22	97	Main channel	26	233.5	2	485.55	27.47	
7	22	97	Side channel	26	215.7	2	287.94	92.62	
7	22	97	Side channel	26	222.6	2	490.24	37.94	
7	22	97	Side channel	26	233.5	1	476.44		
7	23	97	Main channel	IR	13.5	2	491.18	24.49	
7	23	97	Side channel	IR	13.5	2	374.85	138.59	
7	25	97	Backwater	IR	9.3	2	78.61	3.06	

Appendix C. Number of larval fish of each taxon collected from all sampled sites during 1996 and 1997. $\mathrm{N}=$ number of tows counted at each site.

Month	Day	Year	Stratum	River	Mile	Taxon	N	Mean	+1SE
5	13	96	Main channel	IR	9.3	Common carp	1	440.00	
5	13	96	Main channel	IR	9.3	Catostomidae	1	4.00	
5	13	96	Main channel	IR	13.5	Common carp	2	384.50	28.50
5	13	96	Main channel	IR	13.5	Catostomidae	2	8.50	4.50
5	13	96	Main channel	IR	18.7	Common carp	2	580.50	294.50
5	13	96	Main channel	IR	18.7	Catostomidae	2	17.00	8.00
5	13	96	Main channel	IR	18.7	Percidae	2	1.50	1.50
5	13	96	Main channel	IR	18.7	Unidentified	2	2.50	2.50
5	14	96	Main channel	26	223.0	Common carp	2	74.50	9.50
5	14	96	Main channel	26	223.0	Catostomidae	2	9.50	4.50
5	14	96	Main channel	26	223.0	Percidae	2	3.50	1.50
5	14	96	Main channel	26	203.2	Catostomidae	2	11.50	9.50
6	3	96	Main channel	26	223.0	Unidentified	2	1.50	1.50
5	14	96	Main channel	26	225.8	Common carp	1	68.00	
5	14	96	Main channel	26	225.8	Catostomidae	1	10.00	
5	14	96	Main channel	26	225.8	Percidae	1	4.00	
5	14	96	Main channel	IR	4.5	Common carp	2	1945.50	282.50
5	14	96	Main channel	IR	4.5	Gambusia	2	0.50	0.50
5	14	96	Main channel	IR	4.5	Catostomidae	2	28.00	6.00
5	15	96	Main channel	26	203.2	Common carp	2	582.00	61.00
5	15	96	Main channel	26	203.2	Catostomidae	2	3.00	3.00
5	15	96	Main channel	26	203.2	Percidae	2	1.00	1.00
5	15	96	Main channel	26	207.1	Common carp	2	555.50	2.50
5	15	96	Main channel	26	207.1	Catostomidae	2	20.00	9.00
5	15	96	Main channel	26	207.1	Percidae	2	3.50	1.50
5	15	96	Main channel	26	211.2	Catostomidae	2	62.00	1.00
5	15	96	Main channel	26	211.2	Percidae	2	4.50	0.50
5	15	96	Main channel	26	211.2	Unidentified	2	1.00	1.00
5	15	96	Main channel	26	215.7	Common carp	2	174.00	57.00
5	15	96	Main channel	26	215.7	Catostomidae	2	14.50	6.50
5	15	96	Main channel	26	215.7	Hiodontidae	2	1.50	1.50
5	15	96	Main channel	26	215.7	Percidae	2	5.00	4.00
5	16	96	Main channel	26	208.5	Common carp	2	459.00	11.00
5	16	96	Main channel	26	208.5	Catostomidae	2	27.00	2.00
5	16	96	Main channel	26	208.5	Percidae	2	1.00	0.00
5	16	96	Main channel	26	213.5	Common carp	2	336.50	44.50
5	16	96	Main channel	26	213.5	Catostomidae	2	16.00	4.00
5	16	96	Main channel	26	213.5	Percidae	2	1.50	1.50

Appendix C, Page 1

Month	Day	Year	Stratum	Rive	M Mile	Taxon		Mean	+1 SE
5	17	96	Main channel	26	223.0	Common carp	1	60.00	
5	17	96	Main channel	26	223.0	Catostomidae	1	11.00	
5	17	96	Main channel	26	227.5	Common carp	2	177.00	13.00
5	17	96	Main channel	26	227.5	Catostomidae	2	29.00	5.00
5	17	96	Main channel	26	227.5	Percidae	2	2.00	2.00
5	17	96	Main channel	26	227.5	Unidentified	2	1.00	1.00
5	17	96	Main channel	26	233.5	Common carp	2	239.00	64.00
5	17	96	Main channel	26	233.5	Catostomidae	2	44.50	9.50
5	17	96	Main channel	26	233.5	Centrarchidae	2	2.00	1.00
5	17	96	Main channel	26	233.5	Percidae	2	3.50	3.50
5	17	96	Main channel	26	233.5	Unidentified	2	5.00	2.00
5	28	96	Main channel	26	203.2	Common carp	1	52.00	
5	28	96	Main channel	26	203.2	Clupeidae	1	18.00	
5	28	96	Main channel	26	203.2	Catostomidae	1	16.00	
5	28	96	Main channel	26	203.2	Centrarchidae	1	2.00	
5	28	96	Main channel	26	203.2	Lepisosteidae	1	3.00	
5	28	96	Main channel	26	203.2	Percidae	1	2.00	
5	28	96	Main channel	26	203.2	Unidentified	1	4.00	
5	29	96	Main channel	26	208.5	Common carp	1	10.00	
5	29	96	Main channel	26	208.5	Freshwater drum	1	1.00	
5	29	96	Main channel	26	208.5	Clupeidae	1	190.00	
5	29	96	Main channel	26	208.5	Centrarchidae	1	7.00	
5	29	96	Main channel	26	208.5	Catostomidae	1	63.00	
5	29	96	Main channel	26	208.5	Moronidae	1	3.00	
5	29	96	Main channel	26	208.5	Percidae	1	1.00	
5	29	96	Main channel	26	211.2	Common carp	2	72.50	28.50
5	29	96	Main channel	26	211.2	Clupeidae	2	14.50	7.50
5	29	96	Main channel	26	211.2	Catostomidae	2	9.50	9.50
5	29	96	Main channel	26	211.2	Lepisosteidae	2	2.00	2.00
5	29	96	Main channel	26	211.2	Moronidae	2	1.00	1.00
5	30	96	Main channel	IR	4.5	Common carp	2	259.00	84.00
5	30	96	Main channel	IR	4.5	Freshwater drum	2	29.50	22.50
5	30	96	Main channel	IR	4.5	Clupeidae	2	33.00	7.00
5	30	96	Main channel	IR	4.5	Catostomidae		0.50	0.50
5	30	96	Main channel	IR	4.5	Centrarchidae	2	9.50	6.50
5	30	96	Main channel	IR	4.5	Moronidae	2	2.00	2.00
5	30	96	Main channel	IR	4.5	Unidentified	2	4.50	4.50
5	30	96	Main channel	IR	9.3	Common carp	2	109.50	12.50
5	30	96	Main channel	IR	9.3	Freshwater drum	2	15.00	6.00

Appendix C, Page 2

Appendix Table C continued.

Month	Day	Year	Stratum	Riv	r Mile	Taxon		Mean	+1SE
5	30	96	Main channel	IR	9.3	Clupeidae	2	42.50	11.50
5	30	96	Main channel	IR	9.3	Catostomidae	2	2.50	0.50
5	30	96	Main channel	IR	9.3	Centrarchidae	2	10.00	2.00
5	30	96	Main channel	IR	9.3	Unidentified	2	3.50	3.50
5	30	96	Main channel	IR	13.5	Common carp	2	211.50	31.50
5	30	96	Main channel	IR	13.5	Freshwater drum	2	18.00	12.00
5	30	96	Main channel	IR	13.5	Clupeidae	2	115.00	5.00
5	30	96	Main channel	IR	13.5	Catostomidae	2	11.00	11.00
5	30	96	Main channel	IR	13.5	Centrarchidae	2	23.50	14.50
5	30	96	Main channel	IR	13.5	Lepisosteidae	2	1.00	1.00
5	30	96	Main channel	IR	13.5	Moronidae	2	6.503	3.50
5	30	96	Main channel	IR	13.5	Unidentified	2	0.50	0.50
5	30	96	Main channel	IR	18.7	Common carp	2	84.50	11.50
5	30	96	Main channel	IR	18.7	Freshwater drum	2	9.00	2.00
5	30	96	Main channel	IR	18.7	Clupeidae	2	104.50	3.50
5	30	96	Main channel	IR	18.7	Catostomidae	2	9.50	0.50
5	30	96	Main channel	IR	18.7	Centrarchidae	2	14.50	0.50
5	30	96	Main channel	IR	18.7	Lepisosteidae	2	1.00	0.00
5	30	96	Main channel	IR	18.7	Moronidae	2	4.00	3.00
6	3	96	Main channel	26	203.2	Bowfin	2	0.50	0.50
6	3	96	Main channel	26	203.2	Clupeidae	2	189.00	123.00
6	3	96	Main channel	26	203.2	Centrarchidae	2	20.00	13.00
6	3	96	Main channel	26	203.2	Hiodontidae	2	1.50	1.50
6	3	96	Main channel	26	203.2	Moronidae	2	3.50	0.50
6	3	96	Main channel	26	203.2	Percidae	2	0.50	0.50
6	3	96	Main channel	26	203.2	Unidentified	2	1.50	1.50
6	3	96	Main channel	26	207.1	Common carp	2	89.50	63.50
6	3	96	Main channel	26	207.1	Freshwater drum	2	7.00	2.00
6	3	96	Main channel	26	207.1	Clupeidae	2	74.00	40.00
6	3	96	Main channel	26	207.1	Catostomidae	2	6.00	2.00
6	3	96	Main channel	26	207.1	Hiodontidae	2	1.00	0.00
6	3	96	Main channel	26	207.1	Centrarchidae	2	8.00	3.00
6	3	96	Main channel	26	207.1	Moronidae	2	2.00	0.00
6	3	96	Main channel	26	207.1	Unidentified	2	1.00	0.00
6	3	96	Main channel	26	208.5	Common carp	2	65.00	30.00
6	3	96	Main channel	26	208.5	Freshwater drum	2	3.50	2.50
6	3	96	Main channel	26	208.5	Clupeidae	2	64.50	22.50
6	3	96	Main channel	26	208.5	Catostomidae	2	2.50	1.50
6	3	96	Main channel	26	208.5	Hiodontidae	2	0.50	0.50

Appendix C, Page 3

Appendix Table C continued.

Month	Day	Year	Stratum	Rive	r Mile	Taxon		Mean	$+1 \mathrm{SE}$
6	3	96	Main channel	26	207.1	Lepisosteidae	2	1.50	0.50
6	3	96	Main channel	26	208.5	Centrarchidae	2	3.00	3.00
6	3	96	Main channel	26	208.5	Moronidae	2	0.50	0.50
6	3	96	Main channel	26	208.5	Unidentified	2	1.50	1.50
6	3	96	Main channel	26	211.2	Common carp	2	41.00	20.00
6	3	96	Main channel	26	211.2	Freshwater drum	2	1.50	1.50
6	3	96	Main channel	26	211.2	Clupeidae	2	46.50	3.50
6	3	96	Main channel	26	211.2	Catostomidae	2	5.50	3.50
6	3	96	Main channel	26	211.2	Hiodontidae	2	1.00	1.00
6	3	96	Main channel	26	211.2	Centrarchidae	2	2.00	2.00
6	3	96	Main channel	26	213.5	Common carp	2	55.00	37.00
6	3	96	Main channel	26	213.5	Freshwater drum	2	4.50	0.50
6	3	96	Main channel	26	213.5	Clupeidae	2	242.50	8.50
6	3	96	Main channel	26	213.5	Catostomidae	2	7.50	3.50
6	3	96	Main channel	26	213.5	Centrarchidae	2	5.00	5.00
6	3	96	Main channel	26	213.5	Lepisosteidae	2	0.50	0.50
6	3	96	Main channel	26	213.5	Moronidae	2	1.50	1.50
6	3	96	Main channel	26	213.5	Unidentified	2	1.50	1.50
6	4	96	Main channel	26	215.7	Common carp	2	61.50	15.50
6	4	96	Main channel	26	215.7	Freshwater drum	2	1.50	1.50
6	4	96	Main channel	26	215.7	Clupeidae	2	215.00	129.00
6	4	96	Main channel	26	215.7	Catostomidae	2	1.00	1.00
6	4	96	Main channel	26	215.7	Percidae	2	1.00	1.00
6	4	96	Main channel	IR	4.5	Common carp	2	56.00	15.00
6	4	96	Main channel	IR	4.5	Freshwater drum	2	43.00	26.00
6	4	96	Main channel	IR	4.5	Clupeidae	2	1139.50	321.50
6	4	96	Main channel	IR	4.5	Centrarchidae	2	12.00	4.00
6	4	96	Main channel	IR	4.5	Moronidae	2	4.00	0.00
6	4	96	Main channel	IR	4.5	Unidentified	2	2.50	2.50
6	4	96	Main channel	IR	9.3	Common carp	2	30.00	3.00
6	4	96	Main channel	IR	9.3	Freshwater drum	2	15.50	1.50
6	4	96	Main channel	IR	9.3	Clupeidae	2	99.50	6.50
6	4	96	Main channel	IR	9.3	Catostomidae	2	3.50	2.50
6	4	96	Main channel	IR	9.3	Centrarchidae	2	6.00	4.00
6	4	96	Main channel	IR	9.3	Moronidae	2	1.50	1.50
6	4	96	Main channel	IR	9.3	Unidentified	2	1.00	0.00
6	4	96	Main channel	IR	13.5	Common carp	2	12.50	4.50
6	4	96	Main channel	IR	13.5	Freshwater drum	2	3.50	0.50
6	4	96	Main channel	IR	13.5	Clupeidae	2	232.00	12.00

Appendix Table C continued.

Month	Day	Year	Stratum	Rive	er Mile	Taxon		Mean	+1 SE
6	4	96	Main channel	IR	13.5	Catostomidae	2	7.50	0.50
6	4	96	Main channel	IR	13.5	Centrarchidae	2	2.50	1.50
6	4	96	Main channel	IR	13.5	Moronidae	2	2.00	0.00
6	4	96	Main channel	IR	18.7	Common carp	2	31.50	5.50
6	4	96	Main channel	IR	18.7	Freshwater drum	2	17.50	4.50
6	4	96	Main channel	IR	18.7	Clupeidae	2	284.00	171.00
6	4	96	Main channel	IR	18.7	Catostomidae	2	5.005 .00	0
6	4	96	Main channel	IR	18.7	Centrarchidae	2	3.00	1.00
6	5	96	Main channel	26	225.8	Common carp	2	10.00	0.00
6	5	96	Main channel	26	225.8	Freshwater drum	2	0.50	0.50
6	5	96	Main channel	26	225.8	Clupeidae	2	3.00	1.00
6	5	96	Main channel	26	225.8	Lepisosteidae	2	0.50	0.50
6	5	96	Main channel	26	227.5	Common carp	2	6.00	4.00
6	5	96	Main channel	26	227.5	Catostomidae	2	2.00	2.00
6	5	96	Main channel	26	227.5	Hiodontidae	2	1.50	1.50
6	5	96	Main channel	26	227.5	Lepisosteidae	2	0.50	0.50
6	5	96	Main channel	26	227.5	Unidentified	2	0.50	0.50
6	5	96	Main channel	26	230.5	Common carp	2	8.00	1.00
6	5	96	Main channel	26	230.5	Clupeidae	2	0.50	0.50
6	5	96	Main channel	26	230.5	Catostomidae	2	1.50	1.50
6	5	96	Main channel	26	230.5	Hiodontidae	2	0.50	0.50
6	5	96	Main channel	26	233.5	Common carp	2	13.00	1.00
6	5	96	Main channel	26	233.5	Clupeidae	2	0.50	0.50
6	5	96	Main channel	26	233.5	Catostomidae	2	1.00	1.00
6	5	96	Main channel	26	233.5	Lepisosteidae	2	0.50	0.50
6	17	96	Main channel	26	203.2	Common carp	2	6.00	2.00
6	17	96	Main channel	26	203.2	Freshwater drum	2	0.50	0.50
6	17	96	Main channel	26	203.2	Clupeidae	2	13.00	5.00
6	17	96	Main channel	26	203.2	Hiodontidae	2	0.50	0.50
6	17	96	Main channel	26	203.2	Centrarchidae	2	0.50	0.50
6	17	96	Main channel	26	203.2	Unidentified	2	0.50	0.50
6	17	96	Main channel	26	207.1	Common carp	2	15.50	5.50
6	17	96	Main channel	26	207.1	Clupeidae	2	18.50	14.50
6	17	96	Main channel	26	207.1	Catostomidae	2	5.50	2.50
6	17	96	Main channel	26	207.1	Hiodontidae	2	0.50	0.50
6	17	96	Main channel	26	207.1	Unidentified	2	0.50	0.50
6	20	96	Main channel	26	215.7	Common carp	1	229.00	
6	20	96	Main channel	26	215.7	Freshwater drum	,	160.00	
6	20	96	Main channel	26	215.7	Clupeidae	1	693.00	

Appendix Table C continued.

Month	Day	Year	Stratum	River Mile		Taxon	N	Mean	+1 SE
6	20	96	Main channel	26	215.7	Catostomidae	1	76.00	
6	20	96	Main channel	26	215.7	Moronidae	1	7.00	
6	20	96	Main channel	26	215.7	Unidentified	1	14.00	
6	20	96	Main channel	IR	4.5	Common carp	2	728.00	375.00
6	20	96	Main channel	IR	4.5	Freshwater drum	2	35.00	18.00
6	20	96	Main channel	IR	4.5	Clupeidae	2	241.50	138.50
6	20	96	Main channel	IR	4.5	Unidentified	2	0.50	0.50
6	20	96	Main channel	IR	9.3	Common carp	2	568.00	197.00
6	20	96	Main channel	IR	9.3	Freshwater drum	2	67.50	45.50
6	20	96	Main channel	IR	9.3	Clupeidae	2	617.50	194.50
6	20	96	Main channel	IR	9.3	Catostomidae	2	2.50	0.50
6	20	96	Main channel	IR	9.3	Centrarchidae	2	0.50	0.50
6	20	96	Main channel	IR	9.3	Moronidae	2	8.50	6.50
6	20	96	Main channel	IR	9.3	Unidentified	2	87.50	2.50
6	20	96	Main channel	IR	13.5	Common carp	2	456.50	2.50
6	20	96	Main channel	IR	13.5	Freshwater drum	2	4.50	14.50
6	20	96	Main channel	IR	13.5	Clupeidae	2	883.50	157.50
6	20	96	Main channel	IR	13.5	Catostomidae	2	1.00	0.00
6	20	96	Main channel	IR	13.5	Moronidae	2	6.50	5.50
6	20	96	Main channel	IR	13.5	Unidentified	2	6.00	5.00
6	20	96	Main channel	IR	18.7	Common carp	2	541.00	210.00
6	20	96	Main channel	IR	18.7	Freshwater drum	2	45.50	16.50
6	20	96	Main channel	IR	18.7	Clupeidae	2	487.00	124.00
6	20	96	Main channel	IR	18.7	Catostomidae	2	2.00	2.00
6	20	96	Main channel	IR	18.7	Moronidae	2	0.50	0.50
6	20	96	Main channel	IR	18.7	Unidentified	2	1.00	0.00
6	21	96	Main channel	26	223.0	Common carp	2	2.50	0.50
6	21	96	Main channel	26	223.0	Freshwater drum	2	152.00	85.00
6	21	96	Main channel	26	223.0	Clupeidae	2	3.50	0.50
6	21	96	Main channel	26	223.0	Catostomidae	2	1.50	0.50
6	21	96	Main channel	26	223.0	Hiodontidae	2	0.50	0.50
6	21	96	Main channel	26	223.0	Unidentified	2	0.50	0.50
6	21	96	Main channel	26	225.8	Common carp	2	2.00	0.00
6	21	96	Main channel	26	225.8	Freshwater drum	2	225.50	65.50
6	21	96	Main channel	26	225.8	Clupeidae	2	2.50	0.50
6	21	96	Main channel	26	225.8	Catostomidae	2	1.00	0.00
6	21	96	Main channel	26	225.8	Lepisosteidae	2	0.50	0.50
6	21	96	Main channel	26	225.8	Unidentified	2	0.50	0.50
6	21	96	Main channel	26	230.5	Common carp	2	12.00	1.00

Appendix Table C continued.

Month	Day	Year	Stratum	Rive	Mile	Taxon		Mean	+1SE
6	21	96	Main channel	26	230.5	Freshwater drum	2	906.00	628.00
6	21	96	Main channel	26	230.5	Clupeidae	2	3.00	1.00
6	21	96	Main channel	26	230.5	Catostomidae	2	5.50	2.50
6	21	96	Main channel	26	230.5	Hiodontidae	2	1.00	1.00
6	21	96	Main channel	26	230.5	Centrarchidae	2	2.00	2.00
6	21	96	Main channel	26	230.5	Lepisosteidae	2	0.50	0.50
6	21	96	Main channel	26	230.5	Unidentified	2	4.50	4.50
6	21	96	Main channel	26	233.5	Common carp	2	4.00	0.00
6	21	96	Main channel	26	233.5	Freshwater drum	2	478.00	164.00
6	21	96	Main channel	26	233.5	Clupeidae	2	6.00	3.00
6	21	96	Main channel	26	233.5	Catostomidae	2	4.00	2.00
6	21	96	Main channel	26	233.5	Hiodontidae	2	0.50	0.50
6	21	96	Main channel	26	233.5	Moronidae	2	2.50	2.50
6	21	96	Main channel	26	233.5	Unidentified	2	3.00	3.00
7	1	96	Main channel	26	207.1	Common carp	2	2.00	1.00
7	1	96	Main channel	26	207.1	Freshwater drum	2	240.50	72.50
7	1	96	Main channel	26	207.1	Clupeidae	2	27.00	10.00
7	1	96	Main channel	26	207.1	Catostomidae	2	4.00	2.00
7	1	96	Main channel	26	211.2	Freshwater drum	1	310.00	
7	1	96	Main channel	26	211.2	Clupeidae	1	1.00	
7	1	96	Main channel	26	211.2	Catostomidae	1	4.00	
7	1	96	Main channel	26	211.2	Unidentified	1	1.00	
7	1	96	Main channel	26	213.5	Common carp	2	4.00	0.00
7	1	96	Main channel	26	213.5	Freshwater drum	2	383.00	12.00
7	1	96	Main channel	26	213.5	Clupeidae	2	53.50	0.50
7	1	96	Main channel	26	213.5	Catostomidae	2	3.50	1.50
7	1	96	Main channel	26	213.5	Unidentified	2	1.00	1.00
7	2	96	Main channel	26	203.2	Common carp	2	0.50	0.50
7	2	96	Main channel	26	203.2	Freshwater drum	2	309.50	40.50
7	2	96	Main channel	26	203.2	Clupeidae	2	10.00	3.00
7	2	96	Main channel	26	203.2	Catostomidae	2	1.50	0.50
7	2	96	Main channel	26	203.2	Unidentified	2	1.50	1.50
7	2	96	Main channel	26	208.5	Common carp	1	1.00	
7	2	96	Main channel	26	208.5	Freshwater drum	1	558.00	
7	2	96	Main channel	26	208.5	Clupeidae	1	16.00	
7	2	96	Main channel	26	208.5	Catostomidae	1	9.00	
7	2	96	Main channel	26	208.5	Centrarchidae	1	1.00	
7	2	96	Main channel	26	208.5	Moronidae	1	1.00	
7	2	96	Main channel	26	208.5	Unidentified	1	1.00	

Appendix C, Page 7

Appendix Table C continued.

Month	Day	Year	Stratum	Rive	r Mile	Taxon	N	Mean	+ 1 SE
7	3	96	Main channel	26	223.0	Freshwater drum	2	99.50	34.50
7	3	96	Main channel	26	225.8	Freshwater drum	1	196.00	
7	3	96	Main channel	26	233.5	Common carp	2	0.50	0.50
7	3	96	Main channel	26	233.5	Freshwater drum	2	219.50	33.50
7	3	96	Main channel	26	240.2	Common carp	1	1.00	
7	3	96	Main channel	26	240.2	Freshwater drum	1	398.00	
7	3	96	Main channel	26	240.2	Clupeidae	1	1.00	
7	3	96	Main channel	26	240.2	Unidentified	1	1.00	
7	5	96	Main channel	26	215.7	Common carp	2	1.00	1.00
7	5	96	Main channel	26	215.7	Freshwater drum	2	451.00	307.00
7	5	96	Main channel	26	215.7	Clupeidae	2	5.00	2.00
7	5	96	Main channel	26	215.7	Catostomidae	1	4.00	
7	5	96	Main channel	IR	4.5	Common carp	2	2.00	2.00
7	5	96	Main channel	IR	4.5	Freshwater drum	2	26.50	14.50
7	5	96	Main channel	IR	4.5	Clupeidae	2	13.00	7.00
7	5	96	Main channel	IR	4.5	Catostomidae	2	3.00	3.00
7	5	96	Main channel	IR	4.5	Unidentified	2	0.50	0.50
7	5	96	Main channel	IR	9.3	Freshwater drum	2	356.50	70.50
7	5	96	Main channel	IR	9.3	Clupeidae	2	23.50	9.50
7	5	96	Main channel	IR	9.3	Catostomidae	2	24.00	7.00
7	5	96	Main channel	IR	9.3	Moronidae	2	0.50	0.50
7	5	96	Main channel	IR	9.3	Unidentified	2	1.00	1.00
7	5	96	Main channel	IR	13.5	Common carp	2	1.50	1.50
7	5	96	Main channel	IR	13.5	Channel catfish	2	0.50	0.50
7	5	96	Main channel	IR	13.5	Freshwater drum	2	229.00	159.00
7	5	96	Main channel	IR	13.5	Clupeidae	2	38.50	18.50
7	5	96	Main channel	IR	13.5	Catostomidae	2	3.00	1.00
7	5	96	Main channel	IR	13.5	Moronidae	2	4.50	2.50
7	5	96	Main channel	IR	13.5	Unidentified	2	2.50	2.50
7	5	96	Main channel	IR	18.7	Common carp	2	2.00	0.00
7	5	96	Main channel	IR	18.7	Freshwater drum	2	697.00	342.00
7	5	96	Main channel	IR	18.7	Clupeidae	2	27.50	14.50
7	5	96	Main channel	IR	18.7	Catostomidae	2	8.00	3.00
7	5	96	Main channel	IR	18.7	Centrarchidae	2	1.50	1.50
7	5	96	Main channel	IR	18.7	Unidentified	2	5.50	5.50
4	23	97	Main channel	26	208.5	None	2	0.00	0.00
4	23	97	Main channel	26	215.7	Gambusia sp.	2	0.50	0.50
4	23	97	Main channel	26	233.0	Freshwater drum	2	1.50	1.50
4	23	97	Side channel	26	208.5	None	2	0.00	0.00

Appendix Table C continued.

Month	Day	Year	Stratum	River Mile		Taxon	N Mean		+ 1 SE
4	23	97	Side channel	26	215.7	None	2	0.00	0.00
4	23	97	Side channel	26	222.6	None	2	0.00	0.00
4	29	97	Main channel	26	208.5	Percidae	2	0.50	0.50
4	29	97	Main channel	26	215.7	Common carp	2	0.50	0.50
4	29	97	Main channel	26	215.7	Freshwater drum	2	2.00	2.00
4	29	97	Main channel	26	215.7	Catostomidae	2	2.50	2.50
4	29	97	Main channel	26	215.7	Hiodontidae	2	2.00	2.00
4	29	97	Main channel	26	222.6	Percidae	2	0.50	0.50
4	29	97	Main channel	26	233.5	None	2	0.00	0.00
4	29	97	Side channel	26	208.5	None	2	0.00	0.00
4	29	97	Side channel	26	215.7	None	2	0.00	0.00
4	29	97	Side channel	26	222.6	Percidae	2	1.00	1.00
4	29	97	Side channel	26	233.5	None	2	0.00	0.00
5	1	97	Side channel	IR	13.5	Catostomidae	2	0.50	0.50
5	2	97	Backwater	26	222.0	None	2	0.00	0.00
5	13	97	Main channel	26	208.5	Common carp	2	1.00	1.00
5	13	97	Main channel	26	208.5	Catostomidae	2	16.00	5.00
5	13	97	Main channel	26	208.5	Percidae	2	5.50	2.50
5	13	97	Main channel	26	208.5	Unidentified	2	1.00	1.00
5	13	97	Main channel	26	223.0	Common carp	2	0.50	0.50
5	13	97	Main channel	26	223.0	Catostomidae	2	14.00	0.00
5	13	97	Main channel	26	223.0	Percidae	2	6.00	1.00
5	13	97	Main channel	26	233.5	Gambusia sp.	1	1.00	
5	13	97	Main channel	26	233.5	Catostomidae	1	10.00	
5	13	97	Main channel	26	233.5	Hiodontidae	1	1.00	
5	13	97	Main channel	26	233.5	Percidae	1	3.00	
5	13	97	Side channel	26	208.5	Common carp	2	0.50	0.50
5	13	97	Side channel	26	208.5	Catostomidae	2	25.00	6.00
5	13	97	Side channel	26	208.5	Percidae	2	14.00	14.00
5	13	97	Side channel	26	222.6	Common carp	2	0.50	0.50
5	13	97	Side channel	26	222.6	Catostomidae	2	10.50	3.50
5	13	97	Side channel	26	222.6	Percidae	2	1.00	0.00
5	13	97	Side channel	26	233.2	Common carp	2	1.50	0.50
5	13	97	Side channel	26	233.2	Catostomidae	2	13.50	4.50
5	13	97	Side channel	26	233.2	Centrarchidae	2	0.50	0.50
5	13	97	Side channel	26	233.2	Lepisosteidae	2	1.00	1.00
5	13	97	Side channel	26	233.2	Percidae	2	3.50	0.50
5	13	97	Side channel	26	233.2	Unidentified	2	2.00	1.00
5	16	97	Backwater	26	222.0	Clupeidae	2	97.00	36.00

Appendix C, Page 9

Appendix Table C continued.

Month	Day	Year	Stratum	Rive	M Mile	Taxon	N	Mean	+1SE
5	16	97	Backwater	26	222.0	Cyprinidae	2	0.50	0.50
5	16	97	Backwater	26	222.0	Centrarchidae	2	10.00	3.00
5	16	97	Backwater	26	222.0	Moronidae	2	2.50	2.50
5	16	97	Backwater	26	222.0	Percidae	2	4.00	1.00
5	16	97	Backwater	IR	9.3	Gambusia sp.	2	0.50	0.50
5	16	97	Backwater	IR	9.3	Clupeidae	2	875.00	112.00
5	16	97	Backwater	IR	9.3	Catostomidae	2	0.50	0.50
5	16	97	Backwater	IR	9.3	Unidentified	2	2.00	2.00
5	19	97	Main channel	IR	13.5	Common carp	2	0.50	0.50
5	19	97	Main channel	IR	13.5	Clupeidae	2	201.00	199.00
5	19	97	Main channel	IR	13.5	Moronidae	2	30.50	26.50
5	19	97	Main channel	IR	13.5	Unidentified	2	3.00	1.00
5	19	97	Side channel	IR	13.5	Freshwater drum	2	24.00	18.00
5	19	97	Side channel	IR	13.5	Clupeidae	2	140.50	97.50
5	19	97	Side channel	IR	13.5	Unidentified	2	1.00	1.00
5	27	97	Main channel	IR	13.5	Common carp	1	1.00	
5	27	97	Main channel	IR	13.5	Freshwater drum	1	101.00	
5	27	97	Main channel	IR	13.5	Clupeidae	1	30.00	
5	27	97	Main channel	IR	13.5	Moronidae	1	12.00	
5	28	97	Backwater	26	222.0	Common carp	2	5.50	1.50
5	28	97	Backwater	26	222.0	Freshwater drum	2	0.50	0.50
5	28	97	Backwater	26	222.0	Clupeidae	2	473.50	74.50
5	28	97	Backwater	26	222.0	Cyprinidae	2	1.50	0.50
5	28	97	Backwater	26	222.0	Centrarchidae	2	80.00	76.00
5	28	97	Backwater	26	222.0	Moronidae	2	0.50	0.50
5	28	97	Backwater	26	222.0	Unidentified	2	3.50	3.50
5	28	97	Backwater	IR	9.3	BKSS	2	0.50	0.50
5	28	97	Backwater	IR	9.3	Gambusia	2	0.50	0.50
5	28	97	Backwater	IR	9.3	Clupeidae	2	253.00	101.00
5	28	97	Backwater	IR	9.3	Catostomidae	2	0.50	0.50
5	28	97	Backwater	IR	9.3	Centrarchidae	2	6.50	5.50
5	28	97	Backwater	IR	9.3	Unidentified	2	0.50	0.50
5	29	97	Side channel	IR	13.5	Common carp	2	0.50	0.50
5	29	97	Side channel	IR	13.5	Freshwater drum	2	420.00	122.00
5	29	97	Side channel	IR	13.5	Clupeidae	2	9.00	4.00
5	29	97	Side channel	IR	13.5	Catostomidae	2	0.50	0.50
5	29	97	Side channel	IR	13.5	Cyprinidae	2	2.50	2.50
5	29	97	Side channel	IR	13.5	Moronidae	2	9.50	9.50
5	29	97	Side channel	IR	13.5	Unidentified	2	4.50	4.50

Appendix Table C continued.

Month	Day	Year	Stratum	River Mile		Taxon	N	Mean	+1SE
5	30	97	Main channel	26	215.7	Clupeidae	2	0.50	0.50
5	30	97	Main channel	26	215.7	Hiodontidae	2	0.50	0.50
5	30	97	Main channel	26	223.0	Catostomidae	2	10.00	5.00
5	30	97	Main channel	26	223.0	Hiodontidae	2	7.50	2.50
5	30	97	Main channel	26	223.0	Centrarchidae	2	1.00	1.00
5	30	97	Main channel	26	223.0	Moronidae	2	0.50	0.50
5	30	97	Main channel	26	233.5	Catostomidae	1	7.00	
5	30	97	Main channel	26	233.5	Cyprinidae	1	2.00	
5	30	97	Main channel	26	233.5	Hiodontidae	1	19.00	
5	30	97	Main channel	26	233.5	Percidae	1	2.00	
5	30	97	Side channel	26	215.7	Common carp	1	2.00	
5	30	97	Side channel	26	215.7	Clupeidae	1	8.00	
5	30	97	Side channel	26	215.7	Catostomidae	1	15.00	
5	30	97	Side channel	26	215.7	Hiodontidae	1	6.00	
5	30	97	Side channel	26	215.7	Centrarchidae	1	4.00	
5	30	97	Side channel	26	215.7	Moronidae	1	1.00	
5	30	97	Side channel	26	215.7	Percidae	1	3.00	
5	30	97	Side channel	26	222.6	Common carp	2	2.00	0.00
5	30	97	Side channel	26	222.6	Freshwater drum	2	1.00	1.00
5	30	97	Side channel	26	222.6	Clupeidae	2	2.00	1.00
5	30	97	Side channel	26	222.6	Catostomidae	2	16.50	12.50
5	30	97	Side channel	26	222.6	Hiodontidae	2	11.00	3.00
5	30	97	Side channel	26	222.6	Centrarchidae	2	6.50	4.50
5	30	97	Side channel	26	222.6	Moronidae	2	0.50	0.50
5	30	97	Side channel	26	222.6	Unidentified	2	1.50	1.50
5	30	97	Side channel	26	233.5	Catostomidae	2	2.00	2.00
5	30	97	Side channel	26	233.5	Cyprinidae	2	1.00	1.00
5	30	97	Side channel	26	233.5	Hiodontidae	2	4.50	1.50
6	10	97	Main channel	IR	13.5	Common carp	2	148.00	21.00
6	10	97	Main channel	IR	13.5	Freshwater drum	2	1326.00	274.00
6	10	97	Main channel	IR	13.5	Gambusia	2	0.50	0.50
6	10	97	Main channel	IR	13.5	Clupeidae	2	18.50	18.50
6	10	97	Main channel	IR	13.5	Catostomidae	2	6.00	6.00
6	10	97	Main channel	IR	13.5	Cyprinidae	2	1.00	1.00
6	10	97	Main channel	IR	13.5	Unidentified	2	2.50	2.50
6	10	97	Side channel	IR	13.5	Common carp	2	26.50	7.50
6	10	97	Side channel	IR	13.5	Freshwater drum	2	906.50	239.50
6	10	97	Side channel	IR	13.5	Clupeidae	2	4.00	0.00
6	10	97	Side channel	IR	13.5	Catostomidae	2	2.00	2.00

Appendix Table C continued.

Month	Day	Year	Stratum	River Mile		Taxon		Mean	+1 SE
6	10	97	Side channel	IR	13.5	Cyprinidae	2	1.00	0.00
6	10	97	Side channel	IR	13.5	Unidentified	2	17.00	1.00
6	11	97	Backwater	26	222.0	Clupeidae	2	2144.00	169.00
6	11	97	Backwater	26	222.0	Cyprinidae	2	3.00	3.00
6	11	97	Backwater	26	222.0	Centrarchidae	2	28.00	28.00
6	11	97	Backwater	IR	9.3	Silversides	2	1.00	1.00
6	11	97	Backwater	IR	9.3	Common carp	2	0.50	0.50
6	11	97	Backwater	IR	9.3	Clupeidae	2	86.00	33.00
6	11	97	Backwater	IR	9.3	Centrarchidae	2	17.00	- 9.00
6	12	97	Main channel	26	208.5	Common carp	2	4.00	0.00
6	12	97	Main channel	26	208.5	Freshwater drum	2	515.50	92.50
6	12	97	Main channel	26	208.5	Clupeidae	2	92.50	75.50
6	12	97	Main channel	26	208.5	Catostomidae	2	16.00	4.00
6	12	97	Main channel	26	208.5	Hiodontidae	2	0.50	0.50
6	12	97	Main channel	26	215.7	Common carp	2	0.50	0.50
6	12	97	Main channel	26	215.7	Freshwater drum	2	169.00	101.00
6	12	97	Main channel	26	215.7	Clupeidae	2	6.50	4.50
6	12	97	Main channel	26	215.7	Catostomidae	2	5.00	5.00
6	12	97	Main channel	26	215.7	Hiodontidae	2	1.50	0.50
6	12	97	Main channel	26	223.0	Common carp	2	0.50	0.50
6	12	97	Main channel	26	223.0	Catostomidae	2	2.50	0.50
6	12	97	Main channel	26	223.0	Unidentified	2	0.50	0.50
6	12	97	Main channel	26	233.5	Common carp	1	1.00	
6	12	97	Main channel	26	233.5	Catostomidae	1	3.00	
6	12	97	Side channel	26	208.5	Common carp	2	16.00	2.00
6	12	97	Side channel	26	208.5	Freshwater drum	2	1164.50	23.50
6	12	97	Side channel	26	208.5	Clupeidae	2	14.50	9.50
6	12	97	Side channel	26	208.5	Catostomidae	2	6.00	0.00
6	12	97	Side channel	26	208.5	Hiodontidae	2	2.50	0.50
6	12	97	Side channel	26	208.5	Moronidae	2	4.00	4.00
6	12	97	Side channel	26	208.5	Percidae	2	0.50	0.50
6	12	97	Side channel	26	222.6	Freshwater drum	2	2.00	2.00
6	12	97	Side channel	26	222.6	Catostomidae	2	5.00	3.00
6	12	97	Side channel	26	222.6	Hiodontidae	2	0.50	0.50
6	12	97	Side channel	26	222.6	Unidentified	2	3.50	3.50
6	12	97	Side channel	26	233.5	Common carp	2	0.50	0.50
6	12	97	Side channel	26	233.5	Freshwater drum	2	0.50	0.50
6	12	97	Side channel	26	233.5	Moronidae	2	1.00	1.00
6	24	97	Backwater	26	222.0	Bighead carp	2	0.50	0.50

Appendix C, Page 12

Month	Day	Year	Stratum	Rive	r Mile	Taxon		Mean	+1SE
6	24	97	Backwater	26	222.0	Silversides	2	1.00	0.00
6	24	97	Backwater	26	222.0	Gambusia	2	119.00	31.00
6	24	97	Backwater	26	222.0	Clupeidae	2	81.00	12.00
6	24	97	Backwater	26	222.0	Cyprinidae	2	8.00	1.00
6	24	97	Backwater	26	222.0	Centrarchidae	2	1933.00	11.00
6	24	97	Backwater	IR	9.3	Silversides	1	23.00	
6	24	97	Backwater	IR	9.3	Clupeidae	1	9.00	
6	24	97	Backwater	IR	9.3	Centrarchidae	1	105.00	
6	24	97	Backwater	IR	9.3	Unidentified	1	1.00	
6	25	97	Main channel	IR	13.5	Common carp	2	32.50	3.50
6	25	97	Main channel	IR	13.5	Freshwater drum	2	2073.00	307.00
6	25	97	Main channel	IR	13.5	Clupeidae	2	46.50	8.50
6	25	97	Main channel	IR	13.5	Catostomidae	2	514.00	105.00
6	25	97	Main channel	IR	13.5	Centrarchidae	2	0.50	0.50
6	25	97	Main channel	IR	13.5	Moronidae	2	4.00	3.00
6	25	97	Main channel	IR	13.5	Unidentified	2	9.00	8.00
6	25	97	Side channel	IR	13.5	Common carp	2	42.50	4.50
6	25	97	Side channel	IR	13.5	Freshwater drum	2	5007.00	396.00
6	25	97	Side channel	IR	13.5	Clupeidae	2	24.00	1.00
6	25	97	Side channel	IR	13.5	Catostomidae	2	195.50	7.50
6	25	97	Side channel	IR	13.5	Cyprinidae	2	9.00	8.00
6	25	97	Side channel	IR	13.5	Centrarchidae	2	1.00	1.00
6	25	97	Side channel	IR	13.5	Moronidae	2	3.50	1.50
6	25	97	Side channel	IR	13.5	Unidentified	2	15.50	9.50
6	26	97	Main channel	26	208.5	Freshwater drum	2	37.50	27.50
6	26	97	Main channel	26	208.5	Clupeidae	2	30.00	24.00
6	26	97	Main channel	26	208.5	Catostomidae	2	89.00	40.00
6	26	97	Main channel	26	215.7	Common carp	2	1.50	0.50
6	26	97	Main channel	26	215.7	Freshwater drum	2	107.50	68.50
6	26	97	Main channel	26	215.7	Clupeidae	2	46.00	9.00
6	26	97	Main channel	26	215.7	Catostomidae	2	49.50	5.50
6	26	97	Main channel	26	215.7	Hiodontidae	2	1.50	1.50
6	26	97	Main channel	26	223.0	Common carp	2	1.00	0.00
6	26	97	Main channel	26	223.0	Freshwater drum	2	111.00	109.00
6	26	97	Main channel	26	223.0	Clupeidae	2	10.50	10.50
6	26	97	Main channel	26	223.0	Catostomidae	2	30.50	24.50
6	26	97	Main channel	26	223.0	Cyprinidae	2	7.00	7.00
6	26	97	Main channel	26	233.5	Common carp	2	2.00	1.00
6	26	97	Main channel	26	233.5	Freshwater drum	2	320.50	108.50

Appendix Table C continued.

Month	Day	Year	Stratum	Riv	Mile	Taxon	N	Mean	$+1 \mathrm{SE}$
6	26	97	Main channel	26	233.5	Clupeidae	2	5.00	5.00
6	26	97	Main channel	26	233.5	Catostomidae	2	26.00	11.00
6	26	97	Main channel	26	233.5	Cyprinidae	2	6.50	1.50
6	26	97	Main channel	26	233.5	Moronidae	2	1.50	0.50
6	26	97	Main channel	26	233.5	Percidae	2	2.50	2.50
6	26	97	Side channel	26	208.5	Common carp	2	5.50	0.50
6	26	97	Side channe!	26	208.5	Freshwater drum	2	509.00	166.00
6	26	97	Side channel	26	208.5	Clupeidae	2	91.00	51.00
6	26	97	Side channel	26	208.5	Catostomidae	2	21.50	4.50
6	26	97	Side channel	26	208.5	Centrarchidae	2	0.50	0.50
6	26	97	Side channel	26	208.5	Moronidae	2	3.50	3.50
6	26	97	Side channel	26	215.7	Common carp	2	5.50	3.50
6	26	97	Side channel	26	215.7	Freshwater drum	2	33.00	24.00
6	26	97	Side channel	26	215.7	Clupeidae	2	922.50	909.50
6	26	97	Side channel	26	215.7	Catostomidae	2	39.50	3.50
6	26	97	Side channel	26	215.7	Cyprinidae	2	22.00	22.00
6	26	97	Side channel	26	215.7	Centrarchidae	2	5.50	5.50
6	26	97	Side channel	26	215.7	Unidentified	2	2.50	2.50
6	26	97	Side channel	26	222.6	Common carp	2	3.00	1.00
6	26	97	Side channel	26	222.6	Freshwater drum	2	107.50	60.50
6	26	97	Side channel	26	222.6	Clupeidae	2	12.50	0.50
6	26	97	Side channel	26	222.6	Catostomidae	2	74.50	37.50
6	26	97	Side channel	26	222.6	Cyprinidae	2	0.50	0.50
6	26	97	Side channel	26	222.6	Moronidae	2	1.00	1.00
6	26	97	Side channel	26	222.6	Unidentified	2	9.00	9.00
6	26	97	Side channel	26	233.5	Common carp	2	2.50	1.50
6	26	97	Side channel	26	233.5	Freshwater drum	2	71.00	11.00
6	26	97	Side channel	26	233.5	Clupeidae	2	9.00	7.00
6	26	97	Side channel	26	233.5	Catostomidae	2	9.00	1.00
6	26	97	Side channel	26	233.5	Cyprinidae	2	1.50	1.50
6	26	97	Side channel	26	233.5	Centrarchidae	2	0.50	0.50
6	26	97	Side channel	26	233.5	Moronidae	2	0.50	0.50
6	26	97	Side channel	26	233.5	Unidentified	2	1.50	1.50
7	8	97	Main channel	26	208.5	Common carp	2	0.50	0.50
7	8	97	Main channel	26	208.5	Clupeidae	2	2.00	0.00
7	8	97	Main channel	26	208.5	Catostomidae	2	2.00	2.00
7	8	97	Main channel	26	208.5	Cyprinidae	2	10.50	3.50
7	8	97	Main channel	26	215.7	Freshwater drum	2	1.00	0.00
7	8	97	Main channel	26	215.7	Clupeidae	2	1.00	0.00

Appendix C, Page 14

Appendix Table C continued.

Month	Day	Year	Stratum		er Mile	Taxon		N Mean	+ 1 SE
7	8	97	Main channel	26	215.7	Catostomidae	2	25.50	2.50
7	8	97	Main channel	26	215.7	Cyprinidae	2	$2 \quad 25.50$	6.50
7	8	97	Main channel	26	223.0	Clupeidae	1	111.00	
7	8	97	Main channel	26	223.0	Catostomidae	1	15.00	
7	8	97	Main channel	26	223.0	Cyprinidae	1	132.00	
7	8	97	Main channel	26	223.0	Lepisosteidae	1	11.00	
7	8	97	Main channel	26	233.5	Freshwater drum	2	24.50	1.50
7	8	97	Main channel	26	233.5	Gambusia	2	1.00	0.00
7	8	97	Main channel	26	233.5	Clupeidae	2	3.50	1.50
7	8	97	Main channel	26	233.5	Catostomidae	2	2.50	0.50
7	8	97	Main channel	26	233.5	Cyprinidae	2	30.50	7.50
7	8	97	Main channel	26	233.5	Centrarchidae	2	0.50	0.50
7	8	97	Side channel	26	208.5	Freshwater drum	1	4.00	
7	8	97	Side channel	26	208.5	Clupeidae	1	20.00	
7	8	97	Side channel	26	208.5	Catostomidae	1	13.00	
7	8	97	Side channel	26	208.5	Cyprinidae	1	20.00	
7	8	97	Side channel	26	208.5	Hiodontidae	1	1.00	
7	8	97	Side channel	26	215.7	Cyprinidae	2	26.00	26.00
7	8	97	Side channel	26	222.6	Freshwater drum	2	4.00	3.00
7	8	97	Side channel	26	222.6	Clupeidae	2	7.00	2.00
7	8	97	Side channel	26	222.6	Catostomidae	2	10.50	10.50
7	8	97	Side channel	26	222.6	Cyprinidae	2	19.00	6.00
7	8	97	Side channel	26	233.5	Clupeidae	2	4.00	1.00
7	8	97	Side channel	26	233.5	Catostomidae	2	1.00	1.00
7	8	97	Side channel	26	233.5	Cyprinidae	2	44.50	5.50
7	9	97	Backwater	IR	9.3	Silversides	2	48.50	42.50
7	9	97	Backwater	IR	9.3	Clupeidae	2	5.00	0.00
7	9	97	Backwater	IR	9.3	Centrarchidae 2		495.50	161.50
7	10	97	Main channel	IR	13.5	Clupeidae	1	24.00	
7	10	97	Main channel	IR	13.5	Catostomidae	1	48.00	
7	10	97	Side channel	IR	13.5	Freshwater drum	2	2.00	1.00
7	10	97	Side channel	IR	13.5	Clupeidae	2	8.00	4.00
7	10	97	Side channel	IR	13.5	Cyprinidae	2	2.00	0.00
7	22	97	Main channel	26	208.5	Common carp	2	0.50	0.50
7	22	97	Main channel	26	208.5	Clupeidae	2	1.00	1.00
7	22	97	Main channel	26	208.5	Catostomidae	2	4.50	0.50
7	22	97	Main channel	26	208.5	Cyprinidae	2	26.00	3.00
7	22	97	Main channel	26	208.5	Centrarchidae	2	0.50	0.50
7	22	97	Main channel	26	215.7	Freshwater drum	2	1.00	1.00

Appendix Table C continued.

Month	Day	Year	Stratum	River Mile		Taxon	N	Mean	+ 1 SE
7	22	97	Main channel	26	215.7	Gambusia	2	0.50	0.50
7	22	97	Main channel	26	215.7	Catostomidae	2	0.50	0.50
7	22	97	Main channel	26	215.7	Cyprinidae	2	8.50	4.50
7	22	97	Main channel	26	223.0	Freshwater drum	2	1.00	0.00
7	22	97	Main channel	26	223.0	Clupeidae	2	0.50	0.50
7	22	97	Main channel	26	223.0	Catostomidae	2	3.50	1.50
7	22	97	Main channel	26	223.0	Cyprinidae	2	44.00	3.00
7	22	97	Main channel	26	233.5	Freshwater drum	2	1.00	1.00
7	22	97	Main channel	26	233.5	Gambusia	2	0.50	0.50
7	22	97	Main channel	26	233.5	Catostomidae	2	5.00	3.00
7	22	97	Main channel	26	233.5	Cyprinidae	2	48.00	1.00
7	22	97	Main channel	26	233.5	Hiodontidae	2	0.50	0.50
7	22	97	Side channel	26	215.7	Freshwater drum	2	1.50	0.50
7	22	97	Side channel	26	215.7	Clupeidae	2	0.50	0.50
7	22	97	Side channel	26	215.7	Cyprinidae	2	75.00	10.00
7	22	97	Side channel	26	215.7	Unidentified	2	2.00	1.00
7	22	97	Side channel	26	222.6	Freshwater drum	2	3.50	3.50
7	22	97	Side channel	26	222.6	Catostomidae	2	14.00	1.00
7	22	97	Side channel	26	222.6	Cyprinidae	2	72.00	9.00
7	22	97	Side channel	26	222.6	Hiodontidae	2	0.50	0.50
7	22	97	Side channel	26	222.6	Centrarchidae	2	0.50	0.50
7	22	97	Side channel	26	222.6	Unidentified	2	0.50	0.50
7	22	97	Side channel	26	233.5	Freshwater drum	1	5.00	
7	22	97	Side channel	26	233.5	Catostomidae	1	5.00	
7	22	97	Side channel	26	233.5	Cyprinidae	1	140.00	
7	22	97	Side channel	26	233.5	Unidentified	1	1.00	
7	23	97	Main channel	IR	13.5	Clupeidae	2	17.00	6.00
7	23	97	Main channel	IR	13.5	Cyprinidae	2	4.50	4.50
7	23	97	Main channel	IR	13.5	Centrarchidae	2	1.00	1.00
7	23	97	Side channel	IR	13.5	Clupeidae	2	12.00	1.00
7	23	97	Side channel	IR	13.5	Cyprinidae	2	0.50	0.50
7	25	97	Backwater	IR	9.3	Silversides	2	40.00	29.00
7	25	97	Backwater	IR	9.3	Gambusia	2	2.50	0.50
7	25	97	Backwater	IR	9.3	Clupeidae	2	5.50	5.50
7	25	97	Backwater	IR	9.3	Centrarchidae	2	197.50	24.50

Appendix D. Catch per unit effort (CPUE; number/h) for each species of small fish collected using a bottom beam trawl in the lower Illinois River and in Pool 26 of the Mississippi River during July and September 1997. DNT=did not trawl.

[^0]Appendix Table D continued.

River mile	Species	CPUE (number/h)	
		August	September
Mississippi River			
203.2	Channel catfish	54.0	0.0
	Freshwater drum	18.0	0.0
	Gizzard shad	0.0	4.2
	Goldeye	6.0	0.0
	Mooneye	30.0	0.0
	Skipjack herring	0.0	0.0
	Unidentified sunfish	0.0	4.2
	White bass	0.0	0.0
207.1	Channel catfish	0.0	9.0
	Freshwater drum	0.0	3.0
	Gizzard shad	0.0	0.0
	Goldeye	0.0	0.0
	Mooneye	0.0	0.0
	Skipjack herring	0.0	0.0
	Unidentified sunfish	0.0	0.0
	White bass	0.0	0.0
211.2	Channel catfish	DNT	0.0
	Freshwater drum	DNT	0.0
	Gizzard shad	DNT	0.0
	Goldeye	DNT	4.2
	Mooneye	DNT	4.2
	Skipjack herring	DNT	0.0
	Unidentified sunfish	DNT	0.0

River mile	Species	CPUE (number/h)	
		August	September
223.0	White bass	0.0	0.0
227.1	Channel catfish	72.0	0.0
	Freshwater drum	12.0	0.0
	Gizzard shad	0.0	0.0
	Goldeye	6.0	3.0
	Mooneye	6.0	3.0
	Skipjack herring	0.0	0.0
	Unidentified sunfish	0.0	0.0
	White bass	0.0	0.0
233.5	Channel catfish	108.0	0.0
	Freshwater drum	6.0	0.0
	Gizzard shad	0.0	0.0
	Goldeye	0.0	0.0
	Mooneye	6.0	0.0
	Skipjack herring -	0.0	0.0
	Unidentified sunfish	0.0	0.0
	White bass	0.0	0.0
238.2	Channel catfish	96.0	0.0
	Freshwater drum	0.0	0.0
	Gizzard shad	0.0	0.0
	Goldeye	0.0	0.0
	Mooneye	12.0	0.0
	Skipjack herring	0.0	0.0
	Unidentified sunfish	0.0	0.0

River mile	Species	CPUE (number/h)	
		August	September
238.2	White bass	0.0	0.0

Appendix E. Catch per unit effort (CPUE; number/h) for each adult fishes collected using the rockhopper bottom trawl in the lower Illinois River and in Pool 26 of the Mississippi River, 1996-1997.

Appendix Table E-1. Total catch per unit effort, CPUE (1 SE) expressed as catch per hour of rockhopper trawling of all species captured in the lower Illinois River during August-December, 1996. DNT=did not trawl. One trawl sample was conducted at River Mile 16.5 in August, yielding a CPUE of 4.0 fish per hour.

	Mean CPUE (1 SE)			
River mile	August	October	November	December
5.5	DNT	$370.93(118.07)$	941.25	15.00
9.3	DNT	$222.00(90.00)$	414.00	27.69
13.5	6.0	$436.50(211.50)$	927.00	24.00
18.7	3.0	$196.25(70.75)$	96.00	0.00

Appendix E, Page 2

Appendix Table E-2. Catch per unit effort, CPUE (1 SE) expressed as catch per hour of rockhopper trawling for individual species at each sampling location during August-December, 1996. DNT=did not trawl. One trawl sample was conducted at River Mile 16.5 in August, yielding a CPUE of 4.0 freshwater drum per hour.

Species	River mile	Mean CPUE (1 SE)			
		Aug	Oct	Nov	Dec
Bigmouth buffalo	5.5	DNT	0	0	0
	9.3	DNT	4.5(4.5)	0	0
	13.5	0	0	3.0	0
	18.7	0	1.5(1.5)	0	0
Blue catfish	5.5	DNT	2.1(2.1)	3.8	0
	9.3	DNT	0	0	0
	13.5	0	0	6.0	0
	18.7	0	3.0(3.0)	0	0
Channel catfish	5.5	DNT	66.0(36.0)	45.0	6.0
	9.3	DNT	10.5(1.5)	60.0	4.6
	13.5	0	19.5(4.5)	189.0	12.0
	18.7	0	25.5(1.5)	24.0	0
Common carp	5.5	DNT	6.0(6.0)	18.8	0
	9.3	DNT	12.0(6.0)	6.0	0
	13.5	0	6.0(0.0)	6.0	0
	18.7	3.0	6.8(2.3)	6.0	0

Appendix Table E-2, continued

Flathead catfish	5.5	DNT	0	0	0
9.3	DNT	0	0	9.2	
	13.5	0	0	0	0
	18.7	0	$1.5(1.5)$	0	0

Freshwater Drum	5.5	DNT	$284.4(78.6)$	847.5	3.0
	9.3	DNT	$133.5(103.5)$	309.0	4.6
	13.5	3.0	$403.5(205.5)$	678.0	3.0
	18.7	0	$143.8(54.3)$	51.0	0

Gizzard shad	5.5	DNT	$3.0(3.0)$	0	3.0
	9.3	DNT	$21.0(15.0)$	3.0	0
	13.5	3.0	$3.0(3.0)$	27.0	6.0
	18.7	0	$6.0(6.0)$	3.0	0

Highfin carpsucker	5.5	DNT	0	0	0
	9.3	DNT	0	0	0
Sauger	13.5	0	0	0	0
	18.7	0	0	6.0	0
					7.5
	5.5	DNT	0	0	0
	9.3	DNT	0	0	0
	13.5	0	$1.5(1.5)$	0.0	
	18.7	0	$1.5(1.5)$	0	0

Appendix Table E-2, continued

Shorthead redhorse	5.5	DNT	0	3.8	0
9.3	DNT	0	0	0	
	13.5	0	0	0	0
	18.7	0	0	3.0	0

Shortnose gar	5.5	DNT	$1.5(1.5)$	0	0
9.3	DNT	0	0	0	
	13.5	0	0	0	0
	18.7	0	0	0	0

Smallmouth buffalo	5.5	DNT	$3.6(0.6)$	15.0	3.0
	9.3	DNT	$40.5(25.5)$	36.0	4.6
	13.5	0	$1.5(1.5)$	18.0	0
	18.7	0	$3.0(3.0)$	0	0

White bass	5.5	DNT	$4.3(4.3)$	0	0
	9.3	DNT	0	0	4.6
	13.5	0	$1.5(1.5)$	0	0
	18.7	0	$6.8(2.3)$	0	0

Appendix Table E-3. Total catch per unit effort, CPUE (1 SE) expressed as catch per hour of rockhopper trawling for all species captured in lower Illinois River during June-November, 1997. DNT=did not trawl

		Mean CPUE (1 SE)		
River mile	June	July	September	November
5.5	90.0	$255.0(65.0)$	$253.5(106.5)$	1432.0
9.3	34.3	69.0	$157.5(28.5)$	576.0
13.5	DNT	210.0	$138.0(69.0)$	DNT
18.7	DNT	387.0	90.0	DNT

Appendix Table E-4. Total catch per unit effort, CPUE (1 SE) expressed as catch per hour of rockhopper trawling for each species captured in the lower Illinois River during June-November, 1997. DNT=did not trawl

Species	River mile	Mean CPUE ($\pm 1 \mathrm{SE}$)			
		June	July	September	November
Blue catfish	5.5	0	0	1.5(1.5)	0
	9.3	0	0	6.0(3.0)	0
	13.5	DNT	0	0	DNT
	18.7	DNT	0	0	DNT
Channel catfish	5.5	69.0	6.5(1.5)	12.0(0.0)	0
	9.3	34.3	0	9.0(3.0)	36.0
	13.5	DNT	6.0	6.0(3.0)	DNT
	18.7	DNT	24.0	3.0	DNT
Common carp	5.5	0	8.0(8.0)	25.5(16.5)	0
	9.3	0	3.0	12.0(0.0)	0
	13.5	DNT	3.0	1.5(1.5)	DNT
	18.7	DNT	0	0	DNT
Flathead	5.5	0	2.0(2.0)	1.5(1.5)	0
catfish	9.3	0	3.0	0	0
	13.5	DNT	0	3.0(3.0)	DNT
	18.7	DNT	0	0	DNT
Freshwater drum	5.5	12.0	194.0(74.0)	153.0(45.0)	12.0
	9.3	0	51.0	88.5(16.5)	516.0
	13.5	DNT	153.0	123.0(66.0)	DNT
	18.7	DNT	351.0	81.0	DNT

Appendix Table E-4, continued					
Gizzard shad	5.5	0	0	25.5(19.5)	1412.0
	9.3	0	0	1.5(1.5)	24.0
	13.5	DNT	3.0	1.5(1.5)	DNT
	18.7	DNT	0	6.0	DNT
Mooneye	5.5	0	0	0	4.0
	9.3	0	0	0	0
	13.5	DNT	0	0	DNT
	18.7	DNT	0	0	DNT
River carpsucker	5.5	0	2.0(2.0)	1.5(1.5)	0
	9.3	0	0	0	0
	13.5	DNT	0	1.5(1.5)	DNT
	18.7	DNT	0	0	DNT
Smallmouth	5.5	9.0	42.5(22.5)	33.0(21.0)	0
buffaio	9.3	0	12.0	40.5(40.5)	0
	13.5	DNT	45.0	1.5(1.5)	DNT
	18.7	DNT	12.0	0	DNT
White bass	5.5	0	0	0	4.0
	9.3	0	0	0	0
	13.5	DNT	0	0	DNT
	18.7	DNT	0	0	DNT

Appendix Table E-5. Total catch per unit effort, CPUE (1 SE) expressed as catch per hour of rockhopper trawling for all species captured in Pool 26 of the Mississippi River during AugustDecember, 1996. DNT=did not trawl

	Mean CPUE (1 SE)			
River mile $^{\text {a }}$	August	October	November	December
203.2	DNT	$109.4(20.7)$	45.0	3.0
207.1	69.00	$425.5(62.6)$	$44.5(36.5)$	3.0
213.6	$63.8(27.8)$	$162.3(55.2)$	$12.0(6.0)$	18.0
215.7	$24.0(3.0)$	$165.0(78.0)$	$15.0(6.0)$	6.0
223.0	9.0	$30.7(17.3)$	$16.5(4.5)$	6.32
227.2	$135.0(45.0)$	$720.6(115.8)$	$68.7(3.3)$	12.0
230.5	39.0	1492.0	$64.0(1.0)$	27.0
233.5	DNT	$821.0(601.0)$	30.0	54.0
238.2	DNT	$432.5(284.5)$	$66.0(33.0)$	6.0

${ }^{2}$ Data from one trawl sample taken at river mile 211.2 is included in the mean for river mile 213.6 and data from one trawl sample taken at river mile 225.8 is included in the mean for river mile 227.2.

Appendix Table E-6. Mean catch per unit effort, CPUE (1 SE) expressed as catch per hour of rockhopper trawling for each species captured collected by rockhopper trawling in the navigation channel of Pool 26 of the Mississippi River during August-December 1996. DNT=did not trawl.

Mean CPUE (1 SE)

	River mile 2	Aug	Oct	Nov	Dec
Sigmouth	203.2	DNT	$3.6(1.8)$	0	0
buffalo	207.1	0	$23.2(12.8)$	0	0
	213.6	0	$1.9(1.9)$	0	0
	215.7	0	0	0	0
	223.0	0	0	0	0
	227.2	0	$5.0(2.6)$	0	0
	230.5	0	0	0	0
	233.5	DNT	$36.0(36.0)$	0	0
	238.2	DNT	$3.5(0.5)$	0	0

Black crappie	203.2	DNT	0	0	0
	207.1	0	0	0	0
213.6	0	0	0	0	
215.7	0	0	0	0	
223.0	0	0	0	0	
	227.2	0	$1.0(1.0)$	0	0
	230.5	0	0	0	0
	233.5	DNT	0	0	0

Appendix Table E-6, continued

Black buffalo	203.2	DNT	0.8(0.8)	0	0
	207.1	0	0	0	0
	213.6	0	0	0	0
	215.7	6.0(6.0)	0	0	0
	223.0	0	0	0	0
	227.2	0	0	0	0
	230.5	0	0	0	0
	233.5	DNT	0	0	0
	238.2	DNT	0	0	0
Blue catfish	203.2	DNT	7.5(4.5)	6.0	0
	207.1	0	29.9(9.2)	5.4(5.4)	0
	213.6	4.6(1.4)	1.9(1.9)	0	0
	215.7	0	1.5(1.5)	0	0
	223.0	0	0	0	0
	227.2	0	5.0(3.6)	0	0
	230.5	0	0	0	0
	233.5	DNT	0	0	0
	238.2	DNT	0	0	0
Blue sucker	203.2	DNT	0	0	0
	207.1	0	0	0	0
	213.6	0	0	0	0
	215.7	0	0	0	0
	223.0	0	2.3(1.2)	0	0

Appendix Table E-6, continued

227.2	0	0	0	0
230.5	0	0	0	3.0

233.5 DNT $0 \quad 0$
$\begin{array}{lllll}238.2 & \text { DNT } & 0 & 0 & 0\end{array}$

Channel	203.2	DNT	$14.8(5.9)$	30.0	3.0
catfish	207.1	69.0	$83.5(27.3)$	$11.5(11.5)$	3.0
	213.6	$15.4(0.4)$	$7.0(3.1)$	$3.0(3.0)$	3.0
	215.7	$3.0(3.0)$	$4.5(4.5)$	$3.0(3.0)$	0
	223.0	0	0	$4.5(1.5)$	0
	227.2	$11.6(0.4)$	$26.8(10.7)$	$19.9(1.1)$	0
	230.5	0	0	$17.0(8.0)$	0
	233.5	DNT	$3.0(3.0)$	6.0	0
	238.2	DNT	$1.5(1.5)$	$9.0(9.0)$	0

Common carp	203.2	DNT	$0.8(0.8)$	0	0
	207.1	0	$4.4(1.5)$	0	0
213.6	0	$15.0(11.1)$	0	0	
215.7	0	$6.0(3.0)$	$1.5(1.5)$	0	
223.0	3.0	$2.3(1.2)$	0	0	
	227.2	$8.3(0.8)$	$82.6(14.8)$	$4.0(4.0)$	0
230.5	0	4.0	0	0	
	233.5	DNT	0	0	0
	238.2	DNT	$11.0(7.0)$	0	0

Appendix Table E-6, continued

Flathead	203.2	DNT	$1.5(1.5)$	0	0
catfish	207.1	0	$1.5(0.9)$	0	0
	213.6	0	$0.7(0.7)$	0	0
215.7	0	$1.5(1.5)$	0	0	
	223.0	0	$1.0(1.0)$	0	0
227.2	$1.9(1.9)$	0	$1.5(1.5)$	0	
	230.5	0	0	0	0
	233.5	DNT	0	0	0
	238.2	DNT	0	0	0

Freshwater	203.2	DNT	$61.4(22.7)$	3.0	0
drum	207.1	0	$186.3(60.3)$	$22.6(19.3)$	0
	213.6	$42.2(27.2)$	$87.0(40.8)$	$3.0(3.0)$	0
	215.7	$12.0(3.0)$	$117.0(63.0)$	$6.0(6.0)$	0
	223.0	3.0	0	$1.5(1.5)$	0
	227.2	$80.6(24.4)$	$212.2(67.6)$	$20.4(8.4)$	0
	230.5	24.0	8.0	0	0
	233.5	DNT	0	0	0
	238.2	DNT	$5.0(1.0)$	0	0

Gizzard shad	203.2	DNT	$10.4(5.8)$	3.0	0
	207.1	0	$22.7(9.9)$	$0.8(0.8)$	0
	213.6	0	$5.2(3.7)$	0	3.0
	215.7	0	$3.0(3.0)$	$4.5(1.5)$	0
	223.0	0	$3.0(3.0)$	$10.5(7.5)$	0

Appendix Table E-6, continued

227.2	0	$311.6(173.7)$	$1.5(1.5)$	0
230.5	0	1456.0	0	0
233.5	DNT	$675.0(519.0)$	3.0	3.0
238.2	DNT	$195.0(123.0)$	$6.0(0.0)$	0

Goldeye	203.2	DNT	0	0	0
207.1	0	$2.1(1.3)$	0	0	
213.6	0	0	0	0	
215.7	0	0	0	0	
223.0	0	0	0	0	
227.2	0	0	0	0	
230.5	0	0	0	$3.5(2.5)$	0
233.5	DNT	0	0	0	

Highfin	203.2	DNT	0	0	0
carpsucker	207.1	0	$0.8(0.8)$	0	0
	213.6	0	0	0	0
	215.7	0	0	0	0
	223.0	0	0	0	0
	227.2	0	0	0	0
	230.5	0	0	0	0
	233.5	DNT	0	0	6.0
	238.2	DNT	0	0	

Appendix Table E-6, continued

Lake sturgeon	203.2	DNT	0	0	0
	207.1	0	$0.8(0.8)$	0	0
213.6	0	0	0	0	
215.7	0	0	0	0	
223.0	0	0	0	0	
227.2	$3.4(0.4)$	$1.0(1.0)$	$1.5(1.5)$	3.0	
	230.5	0	0	0	0
233.5	DNT	0	0	0	
	238.2	DNT	$3.0(3.0)$	0	0

Mooneye

203.2	DNT	0	0	0
207.1	0	$2.0(2.0)$	0	0
213.6	0	0	0	3.0
215.7	0	0	0	0
223.0	0	$3.0(3.0)$	0	3.2
227.2	0	$12.8(8.6)$	$3.0(3.0)$	3.0
230.5	0	0	0	0
233.5	DNT	$42.0(6.0)$	0	27.0
238.2	DNT	$155.5(123.5)$	0	0

Quillback	203.2	DNT	$1.4(1.4)$	0	0
	207.1	0	$2.9(1.2)$	0	0
213.6	0	$1.3(0.8)$	0	0	
	215.7	0	$1.5(1.5)$	0	0
	223.0	0	$2.7(2.7)$	0	0

Appendix Table E-6, continued

	227.2	0	1.0(1.0)	0	0
	230.5	0	4.0	0	0
	233.5	DNT	0	0	0
	238.2	DNT	3.0(3.0)	0	0
River	203.2	DNT	0	0	0
carpsucker	207.1	0	0.8(0.8)	2.3(0.8)	0
	213.6	0	0	0	0
	215.7	0	0	0	0
	223.0	0	0	0	0
	227.2	1.5(1.5)	2.0(2.0)	0	0
	230.5	0	0	0	0
	233.5	DNT	0	0	0
	238.2	DNT	0	0	0
Sauger	203.2	DNT	0	0	0
	207.1	0	5.9(2.8)	0.8(0.8)	0
	213.6	0	0	1.5(1.5)	0
	215.7.	0	0	0	0
	223.0	0	1.3(1.3)	0	0
	227.2	0.8(0.8)	1.0(1.0)	3.5(0.5)	0
	230.5	0	0	0	0
	233.5	DNT	0	3.0	0
	238.5	DNT	1.5(1.5)	1.5(1.5)	0

Appendix Table E-6, continued					
Shorthead	203.2	DNT	0	3.0	0
redhorse	207.1	0	0	0	0
	213.6	0	0	0	6.0
	215.7	0	0	0	0
	223.0	0	0	0	0
	227.2	0	1.0(1.0)	4.5(4.5)	0
	230.5	0	0	$5.0(5.0)$	3.0
	233.5	DNT	0	0	6.0
	238.2	DNT	0	1.5(1.5)	0
Shortnose gar	203.2	DNT	0	0	0
	207.1	0	0	0	0
	213.6	0	0	0	0
	215.7	0	1.5(1.5)	0	0
	223.0	0	0	0	0
	227.2	0	0	0	0
	230.5	0	0	0	0
	233.5	DNT	0	0	0
	238.2	DNT	0	0	0
Shovelnose	203.2	DNT	0	0	0
sturgeon	207.1	0	0	0	0
	213.6	0	1.3(1.3)	1.5(1.5)	3.0
	215.7	1.5(1.5)	$6.0(3.0)$	0	6.0
	223.0	0	0	0	3.2

Appendix Table E-6, continued

227.2	$16.5(9.0)$	$2.8(1.6)$	$16.0(4.0)$	6.0
230.5	12.0	0	$38.0(13.0)$	21.0
233.5	DNT	$7.0(1.0)$	18.0	6.0
238.2	DNT	$12.0(0.0)$	$42.0(24.0)$	6.0

Silver chub
203.2 DNT 0

207.1	0	0	0	0
213.6	0	0	0	0
215.7	0	0	0	0
223.0	0	0	0	0

227.2	0	0	0	0

$\begin{array}{lllll}230.5 & 0 & 0 & 0 & 0\end{array}$
233.5 DNT $0 \quad 0$
$\begin{array}{lllll}238.2 & \text { DNT } & 0 & 3.0(0.0) & 0\end{array}$

Smallmouth	203.2	DNT	$7.3(0.9)$	0	0
buffalo	207.1	0	$58.0(19.0)$	$1.1(1.1)$	0
	213.6	$1.6(1.6)$	$41.1(10.8)$	$3.0(3.0)$	0
2215.7	$1.5(1.5)$	$22.5(4.5)$	0	0	
	223.0	3.0	$12.7(9.0)$	0	0
	227.2	$10.5(10.5)$	$52.0(5.3)$	$2.0(2.0)$	0
	230.5	3.0	20.0	0	0
	233.5	DNT	$51.0(39.0)$	0	3.0
	238.2	DNT	$29.0(13.0)$	$3.0(0.0)$	0

Appendix Table E-6, continued

White bass	203.2	DNT	0	0	0
207.1	0	$0.7(0.7)$	0	0	
213.6	0	0	0	0	
215.7	0	0	0	0	
223.0	0	$2.3(1.2)$	0	0	
227.2	0	$2.8(1.6)$	0	0	
230.5	0	0	0	0	
233.5	DNT	$7.0(1.0)$	0	0	
238.2	DNT	$11.0(7.0)$	0	0	

${ }^{\text {a }}$ Data from one trawl sample taken at river mile 211.2 are included in the mean for river mile 213.6 and data from one trawl sample taken at river mile 225.8 are included in the mean for river mile 227.2.
Appendix Table E-7. Mean total catch per unit effort, CPUE (1 SE), expressed as catch per hour of rockhopper trawling, of all species captured in Navigation Pool 26 of the Mississippi River during March-November, 1997. DNT=did not trawl

River	Mean CPUE (1 SE)						
mile $^{\mathbf{a}}$	March	April	June	July	Sept	Oct	Nov
203.2	$54.0(21.0)$	75.0	6.3	18.0	$241.5(76.5)$	DNT	66.0
207.1	6.0	9.0	15.0	100.0	$288.7(133.3)$	144.0	DNT
213.6	6.0	DNT	18.0	$175.5(127.5)$	$307.5(16.5)$	81.0	DNT
215.7	DNT	DNT	3.0	18.0	DNT	DNT	DNT
223.0	3.0	DNT	30.0	6.0	$22.5(1.5)$	DNT	DNT
227.2	15.0	DNT	60.0	9.0	27.0	30.0	DNT
233.5	9.0	3.0	33.0	3.0	DNT	21.0	24.0
238.5	15.0	DNT	69.0	66.0		DNT	

${ }^{2}$ Data from river mile 211.2 is included with the mean from river mile 213.6 , data from river mile 225.8 is included with the mean from river mile 227.2, and data from river mile 240.2 is included with the mean from river mile 238.5.
Appendix Table E-8. Mean total catch per unit effort, CPUE (1 SE), expressed as catch per hour of rockhopper trawling, for each
species captured in the navigation channel of Pool 26 of the Mississippi River during March-November, 1997. DNT=did not trawl

Species	River mile ${ }^{\text {a }}$	Mean CPUE (± 1 SE)						
		March	April	June	July	Sept	Oct	Nov
Bighead	203.2	0	0	0	0	0	DNT	0
carp	207.1	0	0	0	4.0	0	0	DNT
	213.6	0	DNT	0	0	0	0	DNT
	215.7	DNT	DNT	0	0	DNT	DNT	DNT
	223.0	0	DNT	0	0	0	DNT	DNT
	227.2	0	DNT	0	0	0	0	DNT
	233.5	0	0	0	0	DNT	0	DNT
	238.5	0	DNT	0	0	0	0	DNT
Bigmouth	203.2	0	0	0	3.0	7.5(7.5)	DNT	3.0
buffalo	207.1	0	0	0	0	3.0(1.7)	6.0	DNT
	213.6	0	DNT	0	0	0	0	DNT
	215.7	DNT	DNT	0	0	DNT	DNT	DNT
	223.0	0	DNT	0	0	0	DNT	DNT
	227.2	0	DNT	0	0	0	0	DNT
	233.5	0	0	0	0	DNT	0	DNT

Appendix E, Page 21

$$
\begin{aligned}
& 0 \text { ○ }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Blue } \\
\text { sucker }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 000000000000000
\end{aligned}
$$

○
 $85.5(19.5)$
$192.8(70.4)$
$181.5(22.5)$
DNT
$1.5(1.5)$
0
DNT
0
$45.0(33.0)$
$12.6(10.8)$
0
DNT
$1.5(1.5)$
9.0
DNT
0

○ ○

$$
\begin{aligned}
& \text { ○旁 } 000000000000
\end{aligned}
$$

$$
\begin{aligned}
& \text { - 気気気気気気気気気気気気気高 }
\end{aligned}
$$

$$
\begin{aligned}
& 0000000000 \stackrel{n}{n} 00000 \\
& \text { - 000000 00000000 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Appendix Table E-8, continued } \\
& 000 \frac{\underset{\Delta}{\boldsymbol{z}}}{\boldsymbol{L}} 0000 \\
& 000 \frac{\sum_{\Delta}^{\prime}}{0} 000
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mooneye }
\end{aligned}
$$

$$
0000000 \quad 0 \quad 0
$$

$$
0 \text { ○ }
$$

$$
\begin{aligned}
& \text { Appendix Table E-8, continued } \\
& \text { Quillback } 203.20
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
& \text { …......... } \\
& 000000000 \text {. } 0 \text { 인 }
\end{aligned}
$$
\]

…咅离号音。…音。咅。

$$
\begin{array}{lcl}
\text { Appendix Table E-8, continued } \\
\text { Skipjack } & 203.2 & 0 \\
\text { herring } & 207.1 & 0 \\
& 213.6 & 0 \\
& 215.7 & \text { DWT } \\
& 223.0 & 0 \\
& 227.2 & 0 \\
& 233.5 & 0 \\
& 238.5 & 0 \\
\text { Speckled } & 203.2 & 0 \\
\text { chub } & 207.1 & 0 \\
& 213.6 & 0 \\
& 215.7 & \text { ONT } \\
& 223.0 & 0 \\
& 227.2 & 0 \\
& 233.5 & 0 \\
& 238.5 & 0
\end{array}
$$

Smallmouth	203.2	1.5(1.5)	0	3.2	0	$37.5(4.5)$	DNT	6.0
buffalo	207.1	6.0	0	0	4.0	$72.2(25.8)$	12.0	DNT
	213.6	0	DNT	0	$29.0(25.0)$	$24.0(6.0)$	21.0	DNT
	215.7	DNT	DNT	0	0	DNT	DNT	DNT
	223.0	0	DNT	3.0	6.0	$6.0(3.0)$	DNT	DNT
	227.2	0	DNT	6.0	0	0	3.0	DNT
	233.5	0	DNT	0	0	DNT	0	DNT
	238.5	0	0	3.0	3.0	0	6.0	DNT
White bass	203.2	0	0	0	0	0	DNT	0
	207.1	0	0	0	0	0.8(0.8)	0	DNT
	213.6	0	DNT	0	0	$3.0(3.0)$	0	DNT
	215.7	DNT	DNT	0	0	DNT	DNT	DNT
	223.0	0	DNT	0	0	0	DNT	DNT
	227.2	0	DNT	0	0	0	0	DN'T
	233.5	0	0	0	0	DNT	0	DNT
	238.5	0	DNT	0	0	0	0	DNT

${ }^{\text {a }}$ Data from river mile 211.2 is included with the mean from river mile 213.6 , data from river mile 225.8 is included with the mean from river mile 227.2, and data from river mile 240.2 is included with the mean from river mile 238.5 .
Appendix E, Page 32

[^0]: Appendix D, Page 1

[^1]: River

