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ABSTRACT

Meristic and morphometric characters were first used by Bailey and Hubbs
(1949) as a plausible method for separating the two subspecies of largemouth
bass, the northern largemouth bass (NLMB), Micropterus salmoides salmoides, and
the Florida largemouth bass (FLMB), M. s. floridanus. Previously established
meristic counts used in this study as a potential means of subspecific
separation consisted of the number of lateral |ine scales, scales above the
lateral line, scales below the lateral line, caudal peduncle scales, pyloric
cacea, and caecal tips. Characters observed in FLMB broodstock (Lake Dora,
Florida) possessed higher meristic counts than NLMB (Bone Lake, Wisconsin),
confirming previous reports. In addition, using these broodstocks, four
genetically confirmed Fy stocks, NLMB, FLMB, and reciprocal hybrids, NxF and
FxN, were produced in ponds in Champaign, lllinois to evaluate the efficacy of
these meristic characters in subspecies identification. No significant
differences were observed between lllinois Fy NLMB and Wisconsin NLMB
broodstock, whereas |llinois F1 FLMB differed significantly from Florida FLMB
broodstock in several meristic counts, presumably as a result of latitudinal
(temperature) differences. Identification of Fy NLMB and FLMB using a
combination of merlistic characters in either a modifled index or a discriminant
function analysis reveaied these methods were more discriminating for
subspeclies separation than any single character except pyloric caecal tips.
Reciprocal F1 hybrids were not significantly different from each other and were
pooled for analyslis. Meristic values of the pooied Fy hybrid stock were

Intermediate between Fy NLMB and FLMB in three meristic counts and abnormally



high in the remaining three meristic counts, paralleling or surpassing values
of the FLMB. Production of Fp NxF and F» FxN hybrids demonstrated an expansion
of the range of meristic values over that observed for the two pure subspecies.
Individual meristic characters measured In Fp stocks also expressed means
independent of one another, some high, some low, and some intermediate compared
to the parental F{ hybrids. The presence of F1 and F» hybrids In Intergrade
populations contribute meristic counts which overlap both subspecies to the
point that one cannot expect to classify Individuals to elther subspecific or

hybrid categories with any reasonable accuracy on the basis of meristic counts,



INTRODUCT |ON

The currently accepted taxonomic classification of the species within the
genus Micropterus has been summarized by McCrimmon and Robbins (1975). In
largemouth bass, Micropterus salmoides, two subspecies are recognized. Bailey
and Hubbs (1949) used morphometric and meristic techniques to distinguish the
northern subspecies, M. s. salmoldes, from the Florida subspecies, M. s.
floridanus. These authors described the range of the pure northern subspecies
as north and west of the Chocktawahatchee River and Apalachicola River
drainages in Florida, Alabama, and Georgia, and north and east of the Savannah
River drainage in South Carolina. They described the range of the pure Florida
subspecies as peninsular Florida to the south and east of the Suwannee River
drainage, including the St. John's River system. The areas between these two
regions were stated to contain Intergrade populations in which both subspecies
existed and freely interbred. These original range designations have not been
reevaluated for over 30 years, despite the numerous subsequent relocations of
largemouth bass.

Fisheries researchers have relied on this possibly outdated range
description and have routinely used a combination of meristic counts to
separate populations of the two subspecies. Meristic indices have been devised
based upon scale counts (Bailey and Hubbs 1949), numbers of pyloric caeca
(Buchanan 1973), numbers of rib-bearing vertebrae (Bryan 1969), and a
combination of these techniques (Thrasher 1974). These procedures have been
assumed to be valid by fisheries workers in the absence of direct verification

and even in the presence of contradictory data (Smith and Crumpton 1977).
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The use of biochemical genetic characters eliminates the possible
confuslion caused by variable penetrance and expressivity assoclated with
certain anatomical tralts. The genetic structure of populations has often been
studied using electrophoretic techniques (Lewontin 1974, Avise and Smith 1977)
with good methodoiogical (Nel 1972, 1978, Rogers 1972) and statistical support
(Fitch and Margoliash 1967, Farrls 1972, Sneath and Sokal 1973). Genetic
differences among homologous proteins are not always associated with genetic
differences in gross morphology (Turner 1974, King and Wilson 1975, Mickevich
and Johnson 1976, Schnell et al. 1978). Electrophoretic analysis of one or a
few mutational differences among proteins provides a better estimate of the
"time" populations have been separated than do genetic dilfferences in
morphology which may result from the Interactions of several or many genes
(Langley and Fitch 1974, Wilson et al. 1977). Discrepancies between enzymatic
and morphological variance reflects, in part, differences In mutations of
"structural" versus "regulatory" genes (Wilson et al. 1977).

Philipp et al. (1981, 1983) reported the results of an electrophoretic
survey of 28 enzyme loci among 90 popuiations of largemouth bass from areas
throughout the range of this specles. Ailele frequencies at each locus, as
well as the mean number of alleles at each locus, the average number of
polymorphic locl and the mean level of heterozygosity were calculated for each
popuiation. Matrices of genetic identity and distance were used to assess
Interpopulational relationships. These analyses revealed substantial genetic
differences among populations In the United States. The northern subspecies
M. s. salmoides and the Florida subspecies M. s. floridanus were shown to have
fixed allelic differences at two loci, Isocitrate dehydrogenase-B and aspartate

aminotransferase~B. The allele frequencies at these loci can then be used to
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determine contributions of each subspecies to the gene pool of any population.
In this manner, the intergrade zone was redescribed by these authors as
consisting of northern Florida, Mississippl, Alabama, Georgia, South Carolina,
North Carolina, Virginia, and Maryland, as well aé Texas, California, and
perhaps a few other states in which largemouth bass with at least some of the
genes of the Florida subspecies have been purposely Introduced. This newly
described intergrade zone is larger than previously proposed, and casts
considerable question on the validity of the morphological methods previousiy
used.

This study used genetically confirmed pure stocks of M. s. salmoides and
M. s. floridanus to produce four stocks of (argemouth bass, pure northern
targemouth bass (NLMB), pure Florida largemouth bass (FLMB), and both
reciprocal F{ hybrids, northern@ x Floridad" (NxF) and Floridag@ x northerng®
(FxN). These stocks were all produced in similar environments in central
IllTnois and used to assess the accuracy of meristic measurements for the
purpose of Identifying these various stocks. Finally, the amount of meristic
variation among F2 generation offspring resulting both from the reproduction of
NxF and of FxN Fq hybrid largemouth bass was also assessed. |In this way the
relative usefulness of meristic and electrophoretic techniques to determine the

subspecific status of largemouth bass populations was assessed.
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MATERIALS AND METHODS
Production of Genetic Stocks:

Pure northern |argemouth bass (NLMB), M. s. salmoides, were collected
from Bone Lake, Wisconsin during October, 1978. Right pectoral fin clips were

removed from each adult prior to stocking and utilized for electrophoretic
analyses of each individual (Philipp et al. 1979, 1983). All individuals used
contained only the Mdh-B!, 1dh~B!, Sod-AZ and Aat-B! or BZ alieles, and
represented the pure northern subspecies. These Individuals were held outdoors
in 0.08 hectare ponds until the onset of the project in April 1980. Pure
Florida largemouth bass (FLMB), M. s. floridanus, were collected from Lake
Dora, Florida during January, 1980 and again during February, 1981. These fish
were alr shipped to Champaign and held indoors at 8-12°C. Left pectoral fin
clips were removed from each adult prior to stocking outdoors and utilized for
electrophoretic analyses of each Individual. All individuals contained oniy
the Mdh-B2, [dh-B3, Sod-A! or Sod-AZ and Aat-B> or Aat-B4 alleles, and
represented the pure Florida subspecies. In March of 1980 and 1981, the
collected individuals were stocked outdoors in 0.08 hectare ponds.
During the spring of 1981, these brood stocks were used to produce NLMB,

FLMB and both reciprocal F! hybrids, NLMB x FLMB  (NxF) and FLMB  x NLMB
(FxN) by stocking 0.08 hectare ponds as follows:

Pond 1: 5 NLMBQ and 5 NLMBJ

Pond 2: 5 NLMBQ and 6 FLMBO

Pond 3: 6 FLMBY and 5 NLMBS

Pond 4: 8 FLMBQ and 6 FLMBO”

Spawning was successful In all four production ponds. Ponds were drained on

September 21, 22, 25 and 28, 1981, and approximately 1,200 50 mm fingeriings
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were recovered from each pond. Electrophoretic analysis of subsamples of 100
fingerlings from each stock confirmed their genetic purity.

During the spring of 1982 the NxF F{ stock was used to produce Fp
offspring. Similarly, during the spring of 1983 the FxN F1 stock was used to
produce Fz offspring, as well. Specifically, equal numbers of male and female
F1 hybrids were placed in 0.08 hectare ponds and allowed to spawn naturally.
Young-of-the~year F2 hybrid offspring remained in ponds until late September.
These offspring were randomly sampied for electrophoretic evaluation, with some

being used for meristic evaluation as well.

Meristic Characterization. Meristic characters used to distinguish M. s.
salmoides from M. s. floridanus consisted of four scale counts originally
described by Bailey and Hubbs (1949) and two pyloric caecal counts. Characters
noted include: scales along the lateral line (LLS); scales above the lateral
line (SALL); scales below the lateral line (SBLL); scale rows around the caudal
peduncie (CPS); the number of pyloric caeca (PC); and the number of pyloric
caecal tips (CT). All scale counts were made according to methods outlined by
Hubbs and Lagler (1958). Pyloric caeca, first evaluated by Buchanan (1973),
are fingerlike outpocketings at the junction of the stomach and intestine.
Pyloric caeca (basal caecal units) in largemouth bass are fypically branched
near the base in contrast to the simple development usually seen in other
Micropterus (Hubbs and Bailey 1940) and are counted by the number of caecal
tips whenever branching occurs.

Scale and caecal counts of FLMB broodstock populations were provided by
the Florida Game and Freshwater Fish Commission. Scale counts from NLMB
broodstock, as well as the Fy and Fp stocks, were taken from randomly selected

frozen samples following electrophoretic analyses. Before examining the
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pyloric caeca in these fish, a mid-ventral incision was made from the anal
opening to a polnt anterior to the pectoral fins. Inclsions were than made
dorsally to form a flap which could be laid open to expose the stomach and
attached pyloric caeca. Stomach, caeca, and intestine were removed Intact and

soaked for several days in a 10% formalin solution after which the caeca were

cleaned and enumerated.

Data Analysis. Previous methods used In the categorization of largemouth
bass subspecies include a Character Index (Cl) described by Balley and Hubbs
(1949) and Discriminant Function Analysis (DFA) first used by Buchanan (1973).
The Balley and Hubbs character index is the summation of meristic values for
five scale characters: Cl = LLS + SALL + SBLL + CPS + CS (CS = scale rows on
the cheek). Thls Cl separates NLMB from FLMB on the basis of the typically
higher meristic counts Iin M. s. floridanus. Functional ranges used by Balley
and Hubbs for subspecies identification consisted of 113-130 for M. s.
salmoides and 131-145 for M. s. floridanus. In the present study a
modlficaf!qn of this index was necessary since rows of scales on the cheek (CS)
was not a character which was assessed. To modify the index, a value of 11;0,
which Is the high CS value for M. s. salmoides and the iow CS value for M. s.
ilQEldanu&, was subtracted from the index. The outcome was a range of values
of 102-119 for M. s. salmoldes and of 120-134 for M. s. floridanus. This
modifled Index (Ml) was then used to compare the various largemouth bass stocks
by comparing values obtained from the equation: MI = LLS + SALL + SBLL + CPS.
Nelther the Cl nor the M| has values which can identify an individual as a
hybrid or a population as an intergrade.

Each fish was additionally categorized as either M. s. salmoides or M. s.

floridanus using discriminant function analysis (DFA), as described by Fisher
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(1936) and using the equations of Buchanan (1973). In each equation, for each
Individual, calculated coefficients are multiplied by the number of lateral
line scales and caudal peduncie scales. A calculated constant is then
subtracted from the sum of the products.

Discriminant Function 1 (salmoides):

10.91328 (no. lateral line scales) + 12.12798 (no. caudal
peduncle scales) - 518.02170 = Xy

Discriminant Function 2 (floridanus):

11.97298 (no. lateral line scales) + 12.82365 (no. caudal
peduncle scales) - 608,94987 = X2

If the resulting number for function one Is higher (X; > X2), the fish is
categorized as NLMB. If function two results in a higher value (Xo > X{), the
fish is categorized as FLMB. Again, this analysis has no score in which an
Individual could be classified as a hybrid. The meristic characters selected
for DFA were shown by Buchanan (1973) to be most divergent in one-way analysis
of variance tests.

A Tech&ique used In separation of species or subspecies along with hybrids
in Intergrade populations Is Hotelling's T2 statistic, in which selected
characters (LLS and PC) form the basis of two overlapping ellipses (Rao 1965).
In this manner, individuals can be categorized as M. s. salmoides, M. s.
tloridanus, hybrids, or aberrant spécimens (Buchanan 1973). The two ellipses
represent the acceptance regions for the two populations constructed at the
0.01 level of significance. A zone of overlap contains the area of
intermediacy between the two theoretical populations by which the hybrids are
determined. This test was used in an attempt to categorize F2 hybrid

Individuals.



RESULTS

Broodstock Meristic Analysis: Table 1 contalns means, standard
deviations, and ranges of meristic counts from NLMB and FLMB broodstock
populations. Means were compared between subspecies and indicated
significantly higher (x = 0,01) FLMB means in all scale counts. Similarly, a

9.6 CT (caecal tips) significant difference was observed between NLMB (28.3)
and FLMB (37.9) means.

ET_ﬁiggk_MQLLsiig_An31¥§1§: Scale counts of the Fq{ generation of NLMB,

FLMB, and reciprocal hybrid stocks, NxF and FxN, are summarized in Table 2.
Comparing NLMB to FLMB, significantly higher mean FLMB scale counts were
observed In LLS, SBLL, and CPS. Presented in Table 3 are values for two
pyloric caecal counts along with comparative branching schemes among the four
F1 stocks. Mean CT comparisons indicated a significantly higher mean in FLMB,
Based upon the meristic counts, it was possible by individual character
evaluation to separate a portion of the NLMB and the FLMB from each other.
Specifically, for each meristic character we calculated the percentage of NLMB
which had meristic counts falling below the range of FLMB and the percentage of
FLMB which had counts falling above the range of the NLMB. For the different
counts these percentages were as follows: 1. pyloric caecal tips (CT): 100% of
the Fy NLMB were outside the range of the FLMB and 100% of the FLMB were
outside the range of the NLMB: 2. lateral iine scales (LLS): 70% NLMB and 80%
FLMB; 3. scales below the lateral line (SBLL): 50% NLMB and 70% FLMB; 4.
caudal peduncie scales (CPS): 30% NLMB and 90% FLMB; and pyloric caeca (PC): 0%

NLMB and 20% FLMB. SALL proved totally ineffective in subspecies
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identification of F1 stocks since NLMB and FLMB possessed the same range (7-9)
and essentially the same mean, 8.0 and 8.1, respectively.

Individuals from Fq NLMB and Fj FLMB stocks were analyzed by established
methods using multiple meristic characters to determine the percent of
Individuals that could be correctiy categorized. The first method used was the
modified character Index (Ml) based upon values of Balley and Hubbs (1949) and
described in Materials and Methods (Table 6). The Fy NLMB and F{ FLMB stock
values introduced Into the modified Index produced these results: 100% of the
F1 NLMB were correctly categorized as M. s. salmoides, but only 70% of Fy FLMB
were correctly categorized as M. s. floridanus. Low mean index values were
observed for both F1 NLMB and F1 FLMB in comparison to those of Bailley and
Hubbs (1949) as modified by us, and to those of Smith and Crumpton (1974) using
the same modified index. If a modified Index cutoff value of 112 had been
used, 100% of both F1 stocks would have been categorized correctly. Similar
results were obtained from the discriminant function analysis: 100% of the Fji
NLMB were categorized as M. s. salmoides, but only 70% of the F{ FLMB were
categorized as M. s. floridanus.

Means and ranges of meristic characters of NLMB and FLMB presented in this
study were compared to counts reported from previous studies (Table 4),
Comparisons between Fy NLMB and the Bone Lake NLMB broodstock population showed
no significant differences in mean scale counts. However, the mean CT value
(25.0) observed in F{ NLMB was significant|y lower than that (28.3) observed in
the Bone Lake NLMB broodstock. Interestingly, significant differences in the
LLS, SBLL, and CPS were observed for the Fy FLMB and Lake Dora FLMB broodstock

population. LLS (69.9) and CPS (32.7) means in the Lake Dora FLMB were higher
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than those in the Fq FLMB (LLS = 66.7 and CPS =27.9), whereas the SBLL (17.3)
was higher in the Fq FLMB stock than in the Lake Dora broodstock (SBLL =16.4).

NLMB broodstock (58.5) and F{ NLMB (57.7) LLS means were approximately 5-7
scales lower than previously reported means (63.3-64.3) for NLMB. Other than
the Bone Lake CT mean (28.3) the remainder of the NLMB counts fell within
reasonable limits of previous descriptions (Table 4). FLMB population
comparisons (Table 4) indicated that the F{ FLMB LLS mean (66.7) was
significantly lower than the FLMB broodstock (69.9) and lower than previous
accounts (69.8-70.6). Conversely, high CT means in both F;{ (38.2) and
broodstock (37.9) FLMB populations were higher than earlier studles
(35.8-36.8). Although the CPS mean (27.9) observed for the F1 FLMB stock was
lower than previously reported values (29.0-30.0), the Lake Dora broodstock
mean (32.7) was on the high end of previously reported values. The SBLL mean
was the only meristic value for which the Iliinois Fy FLMB stock produced a
significantly higher mean value (17.3) than the Lake Dora broodstock FLMB
values (16.4).

Meristic counts of the two reciprocal F; hybrid stocks, NxF and FxN,
presented in Tables 2 and 3 were significantly different between PC means only.
Due to the Iinability to separate reciprocal hybrid stocks on the basis of
meristic counts, NxF and FxN stock data were pooled into an Fy hybrid
largemouth bass category (Tabie 5). Mean meristic values of the Fq hybrid
stocks expressed conditions Intermediate of broodstock means In all counts.
Mean CT (29.6) and CPS (28.5) counts, while Intermediate, were reasonably close
to the NLMB broodstock means of 28.3 and 27.8, respectively. A simllar
condition exists between the Fy hybrid LLS mean (67.5) and the FLMB broodstock

mean (69.9). Although the Fq hybrid meristic count means exceeded the F{ FLMB
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means for LLS, SALL, and CPS., The remainder of the F{ hybrid mean counts were

Intermediate to the two Fi subspecific stocks. The ranges of values for Fi
hybrid LMB showed, for the most part, a good deal of overiap with F1 NLMB and
Fi1 FLMB values.

E, Meristic Analysis: Observed meristic values for Fp hybrid stocks

summarized in Table 7 Indicated that a low F2 FxN LLS mean (57.8) paraliellied
those of the Fq NLMB (57.7) and NLMB broodstock (58.5), whereas the F2 NxF LLS
(63.9) mean was more intermediate to those of the NLMB and the F{ FLMB (66.7)
or FLMB broodstock (69.9) values. Both hybrid LMB F2 stock LLS averages were
considerably lower than the means observed for F{ hybrids. Conversely, F2
stock CT means increased 8-9 caecal tips from F{ means, Fq NxF (28.6) to Fp NxF
(37.8) and Fq FxN (30.5) to Fo FxN (38.4). Simllarly, both F2 hybrid LMB
stocks possessed greater SALL means than all other stocks studied. The F2 NxF
SBLL mean (17.7) greatly exceeded the FLMB broodstock means (16.4) but
resembled that of the Fy FLMB (17.3). The Fp NxF SBLL mean (17.7) increased In
value from the F{ NxF mean (16.3), whereas the F2 FxN mean (15.9) decreased in
value from the Fq FxN mean.

Hotellings T2 statistic was used to categorize nine Fo NxF and eight F2
FxN Into pure NLMB, FLMB, or hybrid largemouth bass categories (Fig. 1).
Analysis of F2 hybrids revealed these results: one individual (5.9%) was
classified as NLMB; two (11.8%) classified as FLMB; five (29.4%) classifled as
hybrid; and nine (52.9%) were outside the ellipses constructed by Buchanan
(1973) and were thereby considered to be aberrant specimens. Only eight points
are present outside the ellipses in Figure 1 as one FxN specimen, LLS:53 CT:34,

did not correspond to values provided by Buchanan (1973). Two (22.2%) of the
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aberrant specimens were NxF, the remaining seven (77.8%) were FxN.
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D1SCUSSION

Bailey and Hubbs (1949) reported that mean scale count comparisons among
largemouth bass populations were typically higher in the Florida subspecies, M.
s. floridanus, than in the northern subspecies, M. s. salmojides. Subsequent
studies using additional meristic characters (Bryan 1969, Buchanan 1973) and
populations (Addison and Spencer 1972, Thrasher 1974, inman 1974) agreed with
these findings. Unfortunately, none of these studies used genetically
confirmed stocks for their analyses. However, comparatively higher meristic
counts obtained for FLMB relative to NLMB in the present study substantiates
these previous reports by using genetically confirmed broodstock populations.
An eariler attempt by Pelzman (1980) to compare meristic and electrophoretic
analyses must be considered somewhat suspect since the Mdh-B and Sod-A loci
which were used as diagnostic markers for subspecies identification were not
truly diagnostic. The two subspecies are not fixed for alternative alleles at
these loci (Phillipp ef al. 1981, 1983),

The scale count providing the best single character differentiation
between Fq NLMB and FLMB stocks proved to be LLS. The difference in means of
nine scales was the greatest observed among the different scale characters. In
addition, the LLS had the fowest range overlap, 11.0%. Thrasher (1974)
reported LLS as the most useful feature for subspecies separation. However, In
our study, comparing Fi NLMB and F{ FLMB, the CT provided the most
discriminating character overall with a difference in means of 13.9 CT. The
absence of overlapping counts between the ranges of these two Fi stocks enabled
100% separation.

Previous studies, however, have shown high CT range overlap as evidenced

by the 25% overlap observed by Buchanan (1973) and 53% by Thrasher (1974).
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Since the number of individuals used In the present study to determine CT means
was low, additional CT counts may expand the ranges enough to produce some
overiap, but most Ilkely not to the extent observed in previous accounts.
Sources of NLMB used by Thrasher (1974) include many populations which,
although considered pure NLMB at that time, presently fall within a larger,
redescribed intergrade zone (Phliipp et al. 1981, 1983). These populations
would most |lkely contain some of the FLMB genome and, therefore, contribute
higher than normal counts, extending the NLMB range and increasing the
perceived percent overlap between subspecies. In addition, in a comparison of
mean CT values among 40 populations of largemouth bass in Florida, Smith and
Crumpton (1977) demonstrated that the Lake Dora, Florida population had one of
the highest mean CT values. Using this stock as our FLMB broodstock resulted
in fairly high CT values in the F{ FLMB.

Differences between Fy NLMB and FLMB CT means seem to stem from
differences in the degree of PC branching. Johnson (1907) reported largemouth
bass PC were typically bifid, Separafing this species from the rest of the
centrarchids. Ramsey (1975), using largemouth bass data provided by S. J.
Zolczynski from experimental ponds at Auburn University, reported the presence
of bifurcate (single branch) and quadrifurcate (double branched) PC conditions
In M. salmoides. He noted quadrifurcate PC prevailed In individuals with
higher CT counts and bifurcate PC In individuals with lower CT counts. This
author further postulated that the higher CT counts of M. s. floridanus stemmed
from the increased division of individual pyloric caeca. The PC means between
F1 NLMB (11.0) and FLMB (12.0) were determined to be significantly different,
but by only a single count. Since little PC variation exists between NLMB and

FLMB stocks, the difference between CT means seems to be a consequence of
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variation in branching conditions. Observations in the present study showed
pyloric caeca were present at higher frequencies and in more extensively
branched conditions in the Fq FLMB compared to the F1 NLMB. In agreement wlth
Ramsey (1975), we observed that bifurcate and quadifurcate conditions similarly
varlied with CT frequencies.

Latitudinal differences in the spawning sites for the Bone Lake broodstock
obtalned from northern Wisconsln and the Fq NLMB produced at the INHS Aquatic
Research Field Laboratory, Champalgn, |lllnois, had no apparent effect on
merlstic counts. However, significant differences in some meristic counts did
occur between the Lake Dora FLMB broodstock and Fi FLMB. The broodstock FLMB
means were higher than the F1 FLMB means for LLS and CPS, but lower for SBLL.
Since climatic conditions in central |llinois more closely resemble those in
Wisconsin than in Florida, variation in values between FLMB populations may be
a result of latitude. NLMB exist throughout the range of Wisconsin and
I11inois, principally in pure form, whereas pure FLMB are |imited to penlnsular
Florida (Bailey and Hubbs 1949, McCrimmon and Robbins 1975, Philipp et al.
1981, 1983). From this information it is evident that the !llinois spawning
conditions during F{ NLMB and Fq FLMB production may have been less typical of
Florida than of Wisconsin.

The plasticity of meristic characters as a consequence of environmental
Influence has been well documented (Hubbs 1922, Vladykov 1934, Taning 1952,
Lindsey 1954, 1958, 1962a, Orska 1957, 1962, Seymour 1959, Barlow 1961, Bryan
1969, McCrimmon and Kwaln 1969, Wallace 1973, Kwain 1975). The most
overwhelming evidence has been the observance of meristic elements
progressively increasing within a species from south to north (Hubbs 1926,

Viadykov 1934, Taning 1952). Apparently the number of serial elements is
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determined by developmental rate (Hubbs 1926, Gabriel 1944, Garside 1966).
Longer developmental periods usually produce higher counts in meristic
structures as a result of low temperatures. Other agents which retard
development, such as high salinity and low oxygen tension, have effects

paral lel to those of low temperatures (Hubbs 1926, Taning 1952, Seymour 1856).
Studies contradicting this relationship report the reverse is also frue. Some
characters increase as a result of high temperatures during development (Hubbs
1921, 1926, Schuitz 1927, Viadykov 1934, Barlow 1961, Bryan 1969). Other
studies have described the thermal plasticity of meristic values with V-shaped
relationships in which the number of meristic elements is lowest or highest at
some intermediate temperature (Schmid? 1921, Taning 1952, Seymour 1956,
Molander and Molander~Swedmark 1957, All and Lindsey 1974). Wallace (1973)
described an S-shaped relationship in which the meristic counts fluctuated in
no specific manner. These studies reflect the inability to predict the
directional change of a specific meristic character following a latitudinal
change. Work by Taning (1952), Lindsey (1954), and Molander and
“Molander-Swedmark (1957), stressed consistent temporal effects of developmental
temperature change on the counts of meristic elements. On the other hand,
Orska (1962) showed that several phenocritical periods exist during development
in which the average number of vertebrae would respond positively or negatively
to a higher incubation temperature. Not only can the meristic counts of a
particular character be Influenéed at different deveiopmental stages, but
different characters seem to be affected independently during the
developmentally sensitive periods in which they can be influenced (Barlow
1961). All of these factors taken into consideration may well account for the

inconsistency in the deviation of the Fy FLMB mean meristic counts from those
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of the FLMB broodstock: a decrease in LLS and CPS; an increase in SBLL; and no
change in SALL or CT.

Interpopulational deviations may reflect alterations more complex than
simple latitudinal vartations in temperature, dissolved oxygen or light
duration and intensity. Genetic histories have been postulated to combine with
thermal environmental parameters to play a potential role in the control of the
meristic makeup in certain species (Ricker 1972, Lindsey and Harrington 1972,
All and Lindsey 1974, Lindsey 1975, MacGregor and McCrimmon 1977). These
studies and others reviewed by Barlow (1961) have used individuals of the same
parentage or |ineage and comparisons between populations or races to indicate
that variation exists within a particular stock irrespective of environmental
control. Since most morphological characteristics are considered to be
polygenic in nature (Svardson 1945, Fowler 1970), it is difficult to quantify
the degree of genetic control involved.

Although the NxF and FxN F1 reciprocal hybrids compared closely to the
maternal subspecies In a number of physiological aspects of development
(Philipp et al. 1984), they were intermediate to the two subspecies in
morphology. This relationship between development and morphology parallels
work by Heuts (1956) with sticklebacks. Comparison of pooled F1 hybrids (NxF
and FxN) to the NLMB and FLMB broodstocks indicated all of the characters
except SBLL were intermediate of NLMB and FLMB but not necessarily median in
their average. Thls agreed well with previous reports (Baily and Hubbs 1949,
Buchanan 1973, Inman 1974, Thrasher 1974). Since the Fy{ hybrids were produced
under different climatic conditions from both broodstock (lllinois versus
Wisconsin and Florida), comparicsons have also been made with F1 NLMB and FLMB.

Under these similar circumstances of development, the Fy hybrids were



abnormally high in three meristic counts, surpassing the F{ FLMB means in LLS,
SALL and CPS. Abnormaily high counts In meristic characters is a condition
common among Interspecific and intergeneric hybrids (Hubbs and Strawn 1957,
Smitherman and Hester 1962, West and Hester 1964, Simon and Noble 1968, Berry
and Low 1970, Ross and Lavender 1981, Leary et al. 1983). Hybridization among
taxonomic groups below the species level has been assumed to be intermediate.
This in fact may only be the norm, not the rule. The existence of Intergrade
populations that have meristic counts more closely resembling the FLMB than the
NLMB has been reported (Bailey and Hubbs 1949, Thrasher 1974, Pelzman 1980).

I+ is apparent from these overlapping ranges of NLMB, FLMB, and Fq hybrids that
one cannot expect to classify individual fish from mixed populations as to
subspecific or hybrid categories with reasonable accuracy on the basis of these
meristic counts. In fact, it is apparent that it is also not possible to
accurately classify a population as to pure NLMB, pure FLMB or intergrade using
these meristic characters.

Through the use of a combination of meristic characters methods have been
previously described which attempt to increase the probability of correctly
identlifying subspecies using meristic counts. The use of a modification of the
Balley and Hubbs (1949) character index (ClI), which they described as more
discriminant than any single character, was indeed more effective in the
present study than any single meristic character with the exception of CT.

Both the modified index (M!) and discriminant function analysis (DFA) reported
100% accuracy in NLMB identification and 70% accuracy for FLMB. However, both
methods have severe |imitations because nelther method can categorize

individuals as hybrids.

1-18



Fo hybrids were produced from both NxF and FxN Fy stocks in an effort to
simulate further introgression In intergrade populations and to evaluate the
efficacy of meristic analyses for these individuals. Although intermediate,
there were no Fp hybrid mean meristic counts which were median in average
between NLMB and FLMB. Most meristic characters gave fairly high mean counts
similar to those found for the Fy FLMB. In addition, the ranges of some of the
F2 meristic characters were extended beyond the normal ranges of both NLMB and
FLMB. This extension occurred bidirectionally, but in most cases the extension
was beyond the upper range.

Hotelling's T2 test statistic previously described by Rao (1965) was used
by Buchanan (1973) in inverted form to classify NLMB, FLMB and hybrid
individuals from mixed populations. This test was used in the present study to
determine the percentage of Fp hybrid individuals which would be identified as
NLMB, FLMB, hybrid LMB or aberrant specimens. From a total of 17 individuals
only five (29.4%) were classified as hybrids and all of these were F
Individuals produced from the NxF Fq stock. The majority of the FxN F2 hybrid
counts were low, falling outside the combination of ellipses thereby
classifying these individuals as aberrant specimens. |t should be noted that
these el lipses were centered about the means obtained from the populations used
by Buchanan (1973). The usefulness of this test, therefore may not have been
adequately assessed. However, low LLS counts in combination with high CT
counts were sufficient to cause the classification of seven out of eight FxN F,
hybrid individuals as aberrant simply because the assumed pattern of

intermediacy among hybrids does not apply.
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Table 1. Meristic counts of NLMB (Bone Lake, Wisconsin) and FLMB (Lake Dora,
Florida) broodstock populations.

Stock Number LLS SALL SBLL CPS CT

NLMB 15 58.5+2.28 8.0+4.2 15.3+0.56  27.8+2.0 28.3+2.4
(54-62)b (7-9) (14-16) (25-31)  (23-31)

FLMB 14 69.942.3 8.4+0.45 16.4+0.31  32.7+2.1 37.945.6
(66-74) (8-9) (16-17) (30-36) (28-50)

8Mean + Std. Dev.
bRange



Table 2.

Scale counts of four Fy young-of-the-year

fargemouth bass stocks.

Stock Number LLS SALL SBLL CPS
NLMB 10 57.71t2.4 8.0%0.50 15.4+0.70 26.610.70
(54-61) (7-9) (14-16) (25-27)
NxF 9 68.8+3.4 8.31+0.71 16.3+0.90 28.440.50
(62-71) (7-9) (15-18) (28-29)
F xN 5 65.412.1 8,4+0.60 16.4140.60 28.9+0.80
(62-67) (8-9) (16-17) (28-30)
FLMB 10 66.7+3.5 8.1+0.60 17.321.3 27.940.30
(60-71) (7-9) (16-20) (27-28)
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Table 5. Meristic counts of the two pooled Fy reciprocal hybric¢ LMB stocks,
NxF and FxN.
Number LLS SALL SBLL CPS PC cT
.611.1 29.642.1
11-14 67.543.1 8.3+0.17 16.3£0.75 28.510.66 11.641
(62-74) (7-9) (15-18) (28-30) (10-13) (26-33)
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Table 6. Subspecies determinations and index comparisons using Modified Index
values of F{ NLMB and FLMB stocks.

F1 NLMB Stock F1 FLMB Stock
M! values Ml values
107 121

109 113

103 122

111 121

111 113

107 125

105 120

110 118

107 121

_ 126

X =107.7 _

range = 103 - 111 X =120.0

range = 113 - 126

Modification of Bailey and Hubbs (1949) Character Index
Cl = CS(11.0) = MI

M. s. salmoides = 102-119

Mo S.- i.LQLLdﬁ.D.l.LS. 120_134

114.0
126.9

"o

X
X

I11inols Fq NLMB categorized as NLMB = 100%

(Ml < 119)

I1linols Fy FLMB categorized as FLMB = 70%

(MI > 120)

Smith and Crumpton (1974): Modifled Index
LLS + SALL + SBLL + CPS = Ml
M. s. salmoides X 16.9

X =1
M. s. floridanus X = 125.6




Meristic counts of F hybrid stocks produced from NxF Fq and FxN Fy

Table 7.
parent stocks.
Parent
Stock  Number LLS SALL SBLL CPS PC CT
NxF 9-10 63.9+42.9 8.710.50 17.7+1.6 27.9+1.1 11.9+1.8 37.848.2
(56-66) (8-9) (15-21) (26-30) (9-15) (29-52)
FxN 8~10 57.8+2.4 8.63x0.50 15,9+0.9 28.0+0.70 12.4+1.9 38.4+5.6

(53-60) (8-9) (15-18) (27-29) (10-15) (31-46)
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ABSTRACT

Genetically confirmed stocks of the northern largemouth bass (Micropterus
salmoides salmoides), Florida largemouth bass (M. s. florjidanus) and both
_reciprocal F1 hybrids were produced in Champaign, Il]linols through natural
spawning In 0.08 hectare earthen ponds. These stocks were used to assess the
age 0, age ! and age 2 overwlinter survival and the second and third year growth
of Individuals In each of these four stocks of largemouth bass. Results
indicated that the northern largemouth bass has a significantly greater
overwintering capability in central (llinois than does the Florida largemouth
bass. The hybflds were somewhat intermediate in their overwintering abilities.
Resuits also Indicated that the northern largemouth bass exhibits much greater
second and third year growth in central lllinois than the Florida largemouth
bass. One hybrid, M. s. floridanus$ x M. s. salmoidesd', exhibited
intermediate growth, while the reciprocal hybrid, M. s. salmoides? x M. s.
floridanusd, exhibited growth comparable to the northern largemouth bass in

many instances.
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INTRODUCT ION

The original range of the largemouth bass, Micropterus salmoides,
consisted of much of the midwestern, eastern and southeastern areas of the
_country, however, this has been expanded considerably through extensive
stocking programs (MacCrimmon and Robbins 1975). Almost any body of water that
could conceivably support a largemouth bass population has been stocked, and in
many cases stocked repeatedly with largemouth bass. Unfortunately, little
consideration has been given to the genetic consequences of these stockings.
Fingerlings have been transported great distances to be stocked into iakes
which have environmenfs quite different from that which was native to those
fingeriings. ‘ln some cases they are being stocked Into lakes containing
largemouth bass populations with a quite different genetic background. Of
particular concern are the management thrusts currently implemented or being
considered by various states which involve the propagation of the Florida
subspecies, M. s. florldanus, for introduction into native populations of the
northern largemouth bass, M. s. salmoides. The effects of such stocking
practices on the genetic structure of the native or introduced populations are
at present unknown, but this has been disregarded by many of the fishery
biologists who determine largemouth bass management programs. We feel that
this attitude should be changed so that sound genetic conservation principles
wiil be incorporated Into current and future state and national largemouth bass
management programs, |

Since the description of the two subspecles of largemouth bass, a few
laboratory studies have been performed to analyze their thermophysiological
differences (Hart 1952, Cichra et al. 1981). Observations are generally

consistent with the assumption that the Florida subspecies is less tolerant to



colder environments than the northern subspecies, but comprehensive,
quantitative analyses do not exist for genetically verified and identically "
tested Individuals of each subspecies. A number of studies have compared
survival and growth of the two subspecies In controiled field situations
“(Clugston 1964, Addison and Spencer 1972, Davies 1973, Graham 1973, Inman et

al. 1976, Zolczynskl and Davies 1976, Latta 1977, Smith and Wiison 1981, Wright

and Wigtil 1981). However, the findings of these studies were often
contradictory due to a consistent flaw In al! of these experiments, that Is,
they lack persuasive data on the genetic structure of the populations studied.
Without verification of the subspeclific status of the largemouth bass utilized,
comparisons between the subspecies are not vallid. Meristic counts have been
routinely used to "separate" the two subspecies. However, the number of scales
along, above and beiow the lateral 1line, the number of scales around the caudal
peduncie and/or the number of pyloric caeca simply cannot provide unambiguous
resolution of the taxonomic status of dlfferent largemouth bass populations and
therefore are not effective In distinguishing pure subspecles or identifying
Intergrade populations (Smith and Crumpton 1977; Van Orman et al. 1984). A
number of other studles designed to assess the Impact of fhe Introduction of
the Florida subspecies Into exlsting populations of the northern subspecies in
California (von Geldern and Mitchell 1975; Bottroff and Lembeck 1978; Moyle and
Holzhauser 1978; Pelzman'1980) and in Texas (lnman et al. 1976) also lack
subspeclific genetic confirmation. WIthout appropriate broodstock analysis, the
genetic integrity of the "Florida" iargemouth bass transplanted to and
subsequently propagated In these states Is unconfirmed and questionable.

The purpose of this study was to produce genetically confirmed stocks of

each subspecies of largemouth bass and both of their reciprocal Fi hybrids.
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These stocks were then evaluated to determine their relative growth performance
and overwinter survival in ponds In central illinois., In this manner, we
assessed the Impacts that the introductions of FLMB or one of the F{ hybrids

would have upon largemouth bass populations In llllnols.
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MATERIALS AND METHODS
Production of Genetic Stocks:

Pure northern largemouth bass (NLMB), M. s. salmoides, were collected
“from Bone Lake, Wisconsin during October, 1978, Right pectoral fin clips were
removed from each adult prior to stocking and utilized for electrophoretic
analyses of each individual (Philipp et al. 1979, 1983). All Individuals
retained contained only the Mdh-B}, Idh-B!, Sod~AZ and Aat-B! or BZ alleles,
indicating they represented the pure northern subspecies. These indlviduals
were held outdoors in 0.08 hectare ponds until the onset of the project in
April 1980. Pure Florida largemouth bass (FLMB), M. s. floridanus, were
collected from Lake Dora, Florida during January, 1980 and again during
February, 1981. These fish were air shipped to Champaign and held indoors at
8-12°C. Left pectoral fin clips were removed from each adult prior to stocking
outdoors and utilized for electrophoretic analyses of each individual. All
individuals contained only the Mdh-BZ, 1dh-B3, Sod-A! or Sod-AZ and Aat-B3 or
Aat-B4 alleles, indicating they represented the pure Florida subspecies. In
March of 1980 and 1981, the collected individuals were stocked outdoors in 0.08
hectare ponds.

During the spring of 1980, adults were stocked In 0.08 hectare ponds as

fol lows:

Pond 1: 6 NLMB$ and 6 NLMBJ
Pond 2: 5 FLMB® and 6 FLMBJ"

and allowed to spawn naturally. Spawning was successful in both production
ponds. Ponds were drained on September 11, 1980, and approximately 2,000 50 cm
fingerling largemouth bass were recovered from each. Electrophoretic analysis

of subsamples of 100 fingerlings from each stock confirmed their genetic

purity.
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During the spring of 1981, these brood stocks were used to produce NLMB,

FLMB and both reciprocal Fy hybrids, NLMBY x FLMBS (NxF) and FLMB® x NLMBS
(FxN) by stocking 0.08 hectare ponds as fol lows:

Pond 1: 5 NLMBY and 5 NLMBS

Pond 2: 5 NLMB® and 6 FLMBJ

Pond 3: 6 FLMB? and 5 NLMBS

Pond 4: 8 FLMB2 and 6 FLMBS
Spawning was successful in all four production ponds. Ponds were drained on
September 21, 22, 25 and 28, 1981, and approximately 1,200 50 cm fingerlings

were recovered from each pond. Electrophoretic analysis of subsamples of 100

fingerlings from each stock confirmed their genetic purity.

1980 Year Class:

Two 0.08 hectare ponds (80A and 80B) were each stocked on September 17,
1980 with 62 individuals of the NLMB (right pectoral clip) and FLMB (left
pectoral clip) stocks. Survival was monitored over the 1980-81 winter, ponds
80A and 80B being drained on April 4 and 8, respectively. These two
competition ponds were each restocked on May 2 with 25 Indivlduals of each of
the two stocks. In addition, a 1.0 hectare pond (80C) was stocked with the
remaining individuals of each of the two stocks. Survival and growth of these
ponds were monitored over the 1981 growing season, ponds 80A and 80B being
drained on October 13 and 15, respectively, and pond 80C being drained on
November 15. The two 0.08 hectare ponds were again each stocked on October 13
and 15, respectively, with 23-25 individuals each of the NLMB and FLMB stocks.
Survival was monitored over the 1981-82 winter, with the ponds being drained

March 23 and 25, 1982, respectively. These two competition ponds were each



restocked with 20 individuals each of the two stocks on March 23 and 25, 1982.
Survival and growfh were monitored in these ponds during the 1982 growing
season, with the ponds being drained on October 28, 1982. Two competition
ponds (80A and 80B) were agaln stocked with 18-20 individuals each of the NLMB
and FLMB stocks on October 28, 1982. Survival was monitored over the 1982-83

winter, with the ponds being drained March 10 and 11, 1983, respectively.
1981 Year Class:

Three 0.08 hectare ponds were each stocked with equal numbers of each of
the ?our stocks, NLMB (right pectoral clip), FLMB (left pectoral clip) and both
of the two reciprocal F1 hybrids, NxF (right pelvic ciip) and FxN (left pelvic
clip). Pond 81A was stocked on October 12 with 15 individuals of each stock.
Ponds 81B and 81C were both stocked on November 4 with 50 individuals of each
stock. 1In addition to these competition ponds, during the period September
21-28, a 0.08 hectare holding pond was esfabllsheq for each of the four stocks
into which 200 individuals (50-80 mm in length) of one specific stock were
introduced. Finally, during this same period, a 0.04 hectare holding pond was
established for each of the four stocks into which 1,000 individuals (50-80 mm
in length) of one specific stock were Introduced. Survival was monitored over
+he 1981~82 winter. Competition ponds 81A, 81B and 81C were drained and
censused on April 21, May 12 and May 5, 1982, respectiveiy. The four 0.2 acre
holding ponds were drained and censused June 21-29, 1982, and the four 0.1 acre
holding ponds were drained and censused April 5-13, 1982, Three 0.08 hectare
ponds, 81A, 81B and 81C, were reestabiished with 20 individuals of each of the
four stocks on May 8, 12 and 6, respectively. Survival and growth in these

ponds were monitored over the 1982 growing season, ponds 81A, 81B and 81C being
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drained and censused on October 26-27, 1982. Three new competition ponds were
each restocked on October 26-27, 1982 with 11-20 individuals of each of the
four stocks. Survival was monitored over the 1982-83 winter, with the ponds
being drained on March 10 and 17. Only two competition ponds were stocked with
20 indlviduals of each of the four stocks on March 15, 1983, Survival and
growth during the 1983 growing season were monitored in these ponds, with both

ponds being drained on October 13, 1983,



RESULTS
Overwinter Survival:

Overwinter survival data for the NLMB and FLMB stocks produced In 1980
were obtained for the winters of 1980-1981 (age 0), 1981-1982 (age 1) and
1982-1983 (age 2). In addition, overwinter survival data for the NLMB, NxF,
FxN and FLMB stocks produced In 1981 were obtained for the winters of 1981-1982
(age 0), 1982-1983 (age 1) and 1983-1984 (age 2).

Results for age 0 largemouth bass stocked In competition ponds are
summérlzed in Table 1. Additional results obtained for age O largemouth bass
stocked not in competition, but In Individual ponds are shown In Table 2. The
NLMB demonstrated substantially greater overwinter survival than did the FLMB.
The two reciprocal Fqy hybrids demonstrated intermediate values, with the NxF
approaching the survival of NLMB In most Instances. Tables 3 and 4 summarize
the results obtained for age 1 and age 2 largemouth bass stocks, respectively.
The NLMB again demonstrated substantially greater overwinter survival than did
the FLMB, with the two Fy hybrids, NxF and FxN, having Intermediate results.
The overwinter survival values for age 1 and age 2 fish, however, were higher
than those for age 0. |In addition, the 1982-82 winter, which was the most
severe (5709 heating degree days), also resulted In the much lower overwinter
survival figures for the age 0 FLMB than did the less severe 1980-81 winter

(5124 heating degree days): 24.4% versus 69.8%.
Growth:

Since each of the different stocks of largemouth bass were produced

through natura! spawning In separate ponds, no valld comparisons of first year
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growth could be made. However, second and third year growth data for the NLMB
and FLMB stocks produced in 1980 were obtained for the 1981 and 1982 growing
seasons, respectively. |In addition, second and third year growth data for the
NLMB, NxF, FxN and FLMB stocks produced In 1981 were obtained for the 1982 and
1983 growing seasons, respectively.

Results for second year growth of the largemouth bass stocks are
summar ized In Table 5. [In both 1981 and 1982, the NLMB showed substantially
greater growth In both length and welght than did the FLMB. Although the two
reciprocal Fq hybrids, NxF and FxN, showed intermediate growth characteristics
durlﬁg thelr second year, the NxF hybrid very closely approached the NLMB both
in length and weight gain. Results for third year growth of the largemouth
bass stocks are summarized In Table 6. These results were similar to those for
the second year growth with two possible alterations. First, the NLMB appeared
to outperform the FLMB even to a greater extent than in year 2. Second, the
NxF F1 hybrid actually nosed out the NLMB in gains in length (101% versus 100%)

and in weight (101% versus 100%).
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DISCUSSION

Comparing the four stocks of largemouth bass for potentlal use In natural
environments In lllinois, the NLMB Is clearly superior than the FLMB or either
reciprocal Fy hybrid. The NLMB had the gréafesf overwinter survival at all
ages tested. In addition, although the NxF F{ hybrid showed similar growth
In Its third year using falrly small flsh, increased growth of NLMB during the
second year would result In the largest fish in a pond after three years belng
NLMB. No other stock demonstrated any advantage over the NLMB for llllnois
waters.

Most of the previous studies comparing survival and growth of NLMB and
FLMB have been performed in much more southern climates (Clugston 1964; Addlson
and Spencer 1972; Davles 1973; inman et al. 1976; Zolczynski and Davies 1976).
Some studies have been performed In more northerly climates (Latta 1977; Smith
and Wilson 1981; Wright and Wigtil 1981), However, all of these studies have
one major flaw In that the stocks used were not genetically conflrmed as being
pure NLMB or pure FLMB. In additlion, for many of these studies, the source
locatlon for one or both stocks used makes the purity of thelr subspecific
status highly questionable. As a result, we feel that comparison of our
results with those of these other studles may not be meaningful.

Much of the recent interest in propagating FLMB for introduction into
waters outside of peninsular Florida stems from "trophy" catches of largemouth
bass In California and Texas following the Introduction of FLMB Into waters of
these states (von Geldern and Mitchell 1975; Inman et al. 1976; Bottroff and
Lembeck 1978; Moyle and Holzhauser 1978; Pelzman 1980). !t must be stressed
that the largemouth bass populations In Callifornia prior to the infroduction of

Florida largemouth bass were themselves only the result of previous



introductions, not immigration and natural selection. The fish used in these
Initial Introductions were obtalned from illinols and, therefore, represented
the pure northern subspecies. These fish had been genetically tailored through
natural selection for {llinois environments, not those of southern California.
Comparing the climates of 1l1Inois and Florida to that of southern California,
It Is nofrsurprlslng that the newly Introduced Florida largemouth bass and the
Fq1 hybrids created from the crossing of the two subspeclies thrived. However,
the long term effects of mixing the two gene pools can at this time only be
surmlsed.

In a speciflic environment, the relative performance of one stock of
largemouth bass compared to another depends upon the relative fitness of that
stock for that specific environment. |In addition, the fitness of each
Individual Is determined by its genetic composition, and that of a stock by the
combination of genotypes present among the individuals comprising the stock.
Through natural seiection, stocks of largemouth bass which existed In the
native range of this species prior to man's intervention, were, most Ilkely,
genetically quite finely tailored to the environments they inhabited. As such,
at both structural and regulatory locl, specific allele combinations and
frequencies which proved advantageous, and thereby which maximized fltness,
were generated in these populations. The Introduction of a stock of largemouth
bass obtalned from one environment Into a popuiation of largemouth bass
existing In a different environment could very well disrupt the advantageous
allele combinations and frequencies present In the reciplent population. This
would, most llkely, result in a reduction in the fitness of the
pre-introduction popuiation. Aithough this scenario wouid hoid for most

populations of largemouth bass In and to the east of the Mississippi River
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drainage, It may not hold for recipient populations of largemouth bass not
native to the lakes which they inhabit, as was the case for the Callfornia
populations. Utmost care needs to be taken to protect the integrity of the
various genetic stocks ofnlargemoufh bass existing today and current and future
fisheries management programs need to protect, not exploit, the genetic
resources of the largemouth bass, as well as all other managed species of fish.

Fishermen of today certainly deserve the best fishing possible. Fisheries
managers, administrators and researchers should strive to provide optimal
fisheries for them. However, we must be exceptionally careful that the
conséquences of our actions do not compromise the natural resources which we
are supposed to be protecting and upon which future generation wil! depend for
future enjoyment. Some management programs involve taking steps that are
essentially irreversible, e.g., introducing genes from one population into
another. There should be no time |imit set upon the research required to
determine the future effects of these types of programs. These programs should
be postponed until al! questions are answered, or they should be abandoned.

Premature actlions on this scale would only be gambling.



ACKNOWLEDGMENTS

The authors wish to thank the Florida Game and Freshwater Fish Commission
for thelr support and assistance in this study from its inception. We
especially wish to thank F. Gerry Banks, Dénnls "Smokie" Holcomb, Forrest J.
Ware, and Edward Zagar for permitting field collections of Florida largemouth
bass and providing laboratory space at the Eustis Fisheries Research
Laboratory, and Charles Starling and Harrell Revels for assistance at the
Richloam hatchery. We also wish to thank a number of staff members of the
FGFWFC who helped collect fish, assisted with experiments, lent equipment and
offered valuable advice: Joseph Crumpton, William Coleman, Willlam Johnson, A.
Michael Wicker, Charies Mesing, Richard Krause, Levi J. Jenkins 11|, James
Bitter, Robert Wattendorf and PauI'Shafland. We also wish to thank the
Wisconsin Department of Natural Resources for permitting fleld collections of
northern largemouth bass. We particulariy want to thank Rick Cornelius and
Jerry Perkins for their assistance in these collections. Finally, we wish to
thank Dr. William F. Childers for advice and Dr. Paul R. Beaty, Dr. Bruce
Taubert, Dr. Henry R. Parker, Nancy Frye, Lynn Dettman, Charles Stone, Shella
Magee, Shirley Lowe, lJeffrey Van Orman, Jeffrey Koppelman, and Todd Powless for
field and laboratory assistance and Suzanne Peratt for technically preparing
the manuscript. This project was supporfed.by funds from the lliinois Natural
History Survey and by Federal Ald for Fish Restoration funds from the lilinois

Department of Conservation, Project F-35-R,

2-13



REFERENCES

Addison, J. H. and S. L. Spencer. 1972. Preliminary evaluation of three
strains of largemouth bass, Micropterus salmoldes (Lacepede), stocked In
ponds in south Alabama. Proceedings of the Annual Conference
Southeastern Assoclation of Game and.Fish Commissions 25:366-374.

Bottroff, L. J. and M, E. Lembeck. 1978, Flishery trends in reservolrs of San
Diego County, Callfornla, following the Introduction of Florida

largemouth bass, Micropterus salmodies floridanus. Callfornia Flsh and
Game 64:4-23,

Cichra, C. E., W. E. Nelll and R. L. Noble. 1981. Differential resistance of
northern and Florida largemouth bass to cold shock. Proceedings of the
Annual Conference Southeastern Assoclatlon of Fish and Wildlife Agencies
34:19-24,

Clugston, J. P. 1964, Growth of the Florida largemouth bass, Micropterus
salmoides floridanus (Le Sueur), and the northern largemouth bass, M. s.
salmoides (Lacepede), in subtropical Florida. Transactions of the
American Fisheries Soclety 93:146-154.

Davies, W. D. 1973, Florida largemouth bass in Alabama waters as a management
tool. Annual Report of the Fisheries and Allied Aquacultures Department,
Auburn University Agricultural Experiment Station, vol. 14.

Graham, L. K. 1973, The Introduction of Florida largemouth bass In Missourl
ponds. Dingeli-Johnson Project F-1-R-22, Study I-14, Job No. 2.
Missouri Department of Conservation.

Hart, J. S. 1952, Geographic variations of some physiological and
morphological characters In certain freshwater fish. University of
Toronto Blological Series Publication 60, Ontario Fish Research
Laboratory 72:1~79, Toronto, Canada.

Inman, C. R., R. C. Dewey and P. P. Durocher. -1976. Growth comparisons and
catchability of three largemouth bass strains. Proceedings of the 30th
Annual Conference of the Southeastern Association of Game and Fish
Commissions 30:1-17. '

Latta, W. C. 1977. Survival and growth of Florida largemouth bass In ponds
and lakes In Michigan. Michigan Department of Natural Resources,
Dingel |-Johnson Project F-35-R-3, Study XXVIl:101-114.

MacCrimmon, H. R. and W. H. Robbins. 1975, Distribution of the black basses
In North America. Pages 56-66 In R. H. Stroud and H. Clepper, editors.

Black Bass Blology and Management. Sport Fishing Institute, Washington,
DbC.



Moyle, P. B. and N. J. Holzhauser. 1978. Effects of the introduction of
Mississippl silverside (Menidia audens) and Florida largemouth bass
(Micropterus salmoides floridanus) on the feeding habits of young-of-
the-year largemouth bass In Clear Lake, California. Transactions of the
American Fisheries Soclety 107:574-582.

Pelzman, R. J. 1980. Impact of Florida largemouth bass, Micropterus
salmoides floridanus, Introductions at selected northern California
waters with a discussion of the use of meristics for detecting
Introgression and for classifying individual fish of Intergraded
populations. California Fish and Game 66:133-162.

Philipp, D. P., W. F. Chiiders and G. S. Whitt. 1979, Evolution of
differential patterns of gene expression: A comparison of the temporal
and spatial patterns of Iisozyme locus expression In two closely related
fish species (northern largemouth bass, Micropterus saimoldes salmoides,

and smal Imouth bass, Micropterus dolomieui). Journal of Experimental
Zoology 210:473-488.

Phillipp, D. P., W. F. Childers and G, S. Whitt. 1983, A biochemical genetic
evaluation of the northern and Florida subspecies of largemouth bass.
Transactions of the American Fisheries Society 112:1-20.

Smith, S. L. and J. E. Crumpton. 1977, Evaluation of largemouth bass meristic
characters. Dingell-Johnson Project F-22-11, Study V, Job 6. Florida
Game and Freshwater Fish Commission Annual Report.

Smith, R. P. and J. L. Wilson. 1981. A growth comparison of two subspecies of
largemouth bass in Tennessee ponds. Proceedings of the 34th Annual
Conference of the Southeastern Association of Game and Fish Commissions
34:25-30.

Van Orman, J. L., G. S. Whitt and D. P. Philipp. 1984. An evaluation of
meristic characters to identify populations of northern, Florida, and F
hybrid largemouth bass. Pages 1-31 |p D. P. Philipp and G. S. Whitt
(eds.) The production and evaluation of different genetic stocks of

largemouth bass, Micropterus salmoides, for different thermal

environments. Final Report to lliinois Department of Conservation,
Federai Aid Project F=35-R by the IlIinois Natural History Survey,
Champaign, lllinols, USA.

von Geldern, C. E., Jr. and D. F. Mitchell. 1975. Largemouth bass and
threadfin shad in California. Pages 426-449 Jn R. H. Stroud and H.
Clepper, editors. Black bass blology and management. Sport Fishing
Institute, Washington, District of Columbia, USA.

Wright, G. L. and G. W. Wigtil. 1981. Comparison of growth, survival, and
catchabllity of Florida, northern, and hybrid largemouth bass in a new
Oklahoma reservolr. Proceedings of the 34th Annual Conference of the
Southeastern Assocliation of Game and Fish Commissions 34:31-38.

2-15



vy =X

0°2Z Ll 9°0+6° 1 Z2°L¥8°84 0§ a3/18/aW1d

0°8¢ 61 o.ow_.w v L¥1°09 1] a/18/an14

g'¢l 14 pei+9°¢Z 0°12¥¢zl Gl Y/18/8W14

9°8L = X

0°v8 VA 9°0+¢° | 0°9+6° IS 0s 3/18/NX4

0°ve Zv w.oMm._ g LFLCIG 0§ 8/18/Nx4d

L°L9 0l 8°9+0° 4Gl 6*82+00! Gl Y/ 18/NX4

N _’9‘

v'Z6 = X . ‘” s

0°96 8y m.omw._ L y+L° LS 04 3/18/3%N »

0°88 144 6°0+8°1 |°G+€°8¢S 0s a/18/4xN

£°¢6 14! AR EX 44 1*12+021 Gl v/18/4%N

L°96 = X

0°86 6v VANV LY A4 8 ¢+v° 49 0s 3/18/8WIN

0°26 9y veo+6°Z i*¢¥2°q9 0§ a/18/aWN

00l Gl Z°11¥9°81 B*91+GI| Gl v/18/8WIN 60LS Z861-1861

8°69 = X

8 IL Ly L*v¥2° vl L6911 Z9 g/08/aw14

L°L9 VA 9°¢+6°¢l 8°6+vll 29 vV/08/9W14

0°¢6 = X

¥°86 19 1°v+6°21 L y¥011 29 8/08/9WIN

G°GB 119 G°¢+9°Z1 Z°v+801 29 v/08/9WIN vZis 1861-0861
Auanrooay ¢ Joqunp (6) 1ybiey (ww) y4bue Jaquny puoq/Jeap/yoo4s  sAeq aeubeqg uoseas
——Suyureag buTIds BUTYSoIs 1124 6uj4eey

-spuod uoj4j4edwod uj syo04s sseq ysnowebie| g abe Jo |eAjAUNS Joju|MIBAQ-"| @|qe)



Table 2. Overwinter (1981-82: 5709 Heating Degree Days) survival of age 0
largemouth bass stocks In individual ponds.

Stock/Year /Pond Initial Number Final Number 4 Survival

A. 0.08 hectare ponds

NLMB/81/1 200 159 79.5
NxF/81/2 200 135 67.5
FxN/81/3 200 118 59.0

FLMB/81/4 200 " 5.5

B. 0.04 hectare ponds

NLMB/81/5 1000 421 42.1
NxF/81/6 1000 157 15.7
FxN/81/7 1000 68 6.8
FLMB/81/8 1000 5 0.5
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ABSTRACT

Genetically confirmed stocks of the northern largemouth bass, Micropterus
salmoldes salmoides (NLMB), Florida largemouth bass, M. s. floridanus (FLMB),
_and both reciprocal Fy hybrids (NxF and FxN) were produced In Champaign,
I1tinois through natural spawning in 0.08 hectare earthen ponds. These stocks
were assessed as to the relative amounts of NLMB, FLMB and Fq hybrid
reproduction in a pond stocked with equal numbers of adult NLMB and FLMB.
Results Indicated that although the greatest percentage of resulting offspring
were pure FLMB, the NLMB were by far the largest offspring produced. The Fj
hybrid offspring were intermediate in size. The stocks were also used to
assess the relative amounts of NLMB, FLMB, F1 hybrid, and non-F1 hybrid
production in a pond stocked with equa! numbers of NLMB, NxF, FxN, and FLMB
adult largemouth bass. Results indicated that the greatest number of offspring
produced were again pure FLMB and again, these offspring were the smallest,
NLMB offspring being significantly larger throughout the growing season. The
hybrids were Intermediate in size with Fy hybrids being somewhat greater in

size than the non-Fy hybrids.



INTRODUCTION

The largemouth bass, Mig:gpigruﬁ salmoides, Is one of the most sought
after and highly managed sport fish in the United States. Fishery blologists
_have long suspected morphological and physiological differences between the two
subspecies of largemouth bass and thelr hybrids. However, management practices
have sometimes disregarded the possible deleterious effects of stocking
individuals which are genetically inappropriate for a given environment or
genetically Incompatible with the existing population. Recently, various
state fishery programs have implemented or are currently considering,
management programs which involve the propagation of the Florida subspecies, M.
s. floridanus, for Introduction into native populations of largemouth bass. We
feel this practice should be halted, at least until the appropriate research
has been completed to determine the effects that such a program would have on
the native populations. In.this way, sound genetic conservation principles
will be incorporated into current and future state and national largemouth bass
management programs.

A number of studies have compared survival and growth of the two
subspeclies in controlled field situations (Clugston 1964, Addison and Spencer
1972, Davies 1973, Graham 1973, Inman et al. 1976, Zolczynski and Davies 1976,
Latta 1977, Smith and Witson 1981, Wright and Wigtil 1981). However, the
findings of these studies were often different, which may be explained by the
one consistent flaw in all of these experiments, the absence'of persuasive data
on the genetic structure of the study populations. Thls absence prevents the
verification of the subspecific status of the largemouth bass utilized.
Routinely employed meristic counts (most cften a combination of the number of

scales along, above and below the lateral line, the number of scales around the
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caudal peduncle and/or the number of pyloric caeca) cannot provide unambiguous
resolution of the taxonomic status of different largemouth bass populations and
thus, are not effective in distinguishing the pure subspecies, as well as
Identifying intergrade populations (Smith and Crumpton 1977, Van Orman et al.
"1984). A number of other studies designed to assess the impact of the
intfroduction of the Florida subspecies Into existing populations of the
northern subspecies in California (von Geldern and Mitchell 1975, Bottroff and
Lembeck 1978, Moyle and Holzhauser 1978, Pelzman 1980) and in Texas (lnman et
al. 1976) also lack a firm genetic basis. Without the appropriate genetic data
the integrity of the Florida largemouth bass originally planted and
subsequently propagated in these states is unconfirmed and questionable.

The purpose of this study was to compare the relative reproductive
success of northern, Florida and their reciprocal Fy hybrid largemouth bass in
central lilinois. The numerical percentage composition of year class
production was determined and also the relative growth of each of these types
of offspring. In thls manner, the quality of the relative recruitment produced

by each of the two subspecies, as well as the degree of resulting hybridization

was assessed.
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MATERIALS AND METHODS
Production of Genetic Stocks:

Pure northern {argemouth bass (NLMB), M. s. salmoides, were collected
from Bone Lake, Wisconsin during October, 1978. RIght pectoral fin clips were
removed from each adult prior to stocking and utillized for electrophoretic
analyses of each indlvidual (Philipp et al. 1979, 1983). All individuals
retained contained only the Mdh-B!, 1dh-B!, Sod-AZ and Aat-B' or BZ alleles,
Indicating they represented the pure northern subspecies. These Individuals
were held outdoors in 0.08 hectare ponds until the onset of the project in
Aprii 1980, Pure Florida largemouth bass (FLMB), M. s. floridanus, were
collected from Lake Dora, Florida during January, 1980 and again during
February, 1981. These fish were air shipped to Champaign and held indoors at
8-12°C. Left pectoral fin clips were removed from each aduit prior fto stocking
outdoors and utilized for electrophoretic analyses of each individual. All
individuals contained only the Mdh-BZ, Idh-B3, Sod-A! or Sod-AZ and Aat-B> or
Aat-B4 alleles, indlcating they represented the pure Florida subspecies. In
March of 1980 and 1981, the collected individuals were stocked outdoors in 0.08
hectare ponds.

During the spring of 1980, adults were stocked in 0.08 hectare ponds as

fol lows:

Pond 1: 6 NLMB® and 6 NLMBS
Pond 2: 5 FLMBY and 6 FLMBJ

and allowed fo spawn naturally. Spawning was successful in both production
ponds. Ponds were drained on September 11, 1980, and approximately 2,000 50 cm
fingerling largemouth bass were recovered from each. Electrophoretic analysis
of subsamples of 100 fingerlings from each stock conflrmed their genetic
purity.
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During the spring of 1981, these brood stocks were used to produce NLMB,

FLMB and both reclprocal Fy hybrids, NLMBY x FLMBJ" (NxF) and FLMB ¥ x NLMBJ
(FxN) by stocking 0.08 hectare ponds as fol lows:

Pond 1: 5 NLMB% and 5 NLMBJ

Pond 2: 5 NLMB® and 6 FLMBY

Pond 3: 6 FLMBQ and 5 NLMBJ”

Pond 4: 8 FLMBY and 6 FLMBJ
Spawning was successful In all four production ponds. Ponds were dralined on
September 21, 22, 25 and 28, 1981, and approximately 1,200 50 cm fingerlings

were recovered from each pond. Electrophoretic analysis of subsamples of 100

fingerlings from each stock confirmed their genetic purity.
Experimental Reproduction Ponds:
Pond 1: Comparison of the two subspecies (NLMB and FLMB):

From March 15—25, 1982, a 1.0 hectare pond devold of fish was stocked
with: 15 of the adult breeder NLMB collected from Bone Lake, WI (8 and 7 , 1-2
kg each); 15 of the adult breeder FLMB collected from Lake Dora, FL (8 and 7 ,
1-2 kg each); 43 of the 1980 year class of NLMB produced In Champaign, IL (20
with TL = 236 + 4.0 mm and Wt = 181 + 11.7 g; 23 with TL = 204 + 4.9 mm and Wt
= 101 + 8.2 g); and 43 of the 1980 year class of FLMB produced in Champalign, IiL
(20 with TL = 232 + 6.5 mm and Wt = 153 + 17.1 g; 23 with TL = 199 + 5.9 mm and
Wt = 97.5 £ 9.3 g). Adult lake chubsuckers, fathead minnows and redear sunfish
were stocked simuitaneously to provide forage.

These flsh were allowed to spawn and the 1982 year class of largemouth
bass was sampled by a combination of seining and electrofishing techniques on
August 11, 1982, October 2, 1982, May 28, 1983, and October 7, 1983. Due tfo
the extremely mild winter of 1982-83, mortalities of NLMB and FLMB were both

negliglble in our research ponds. As a result, approximately equal numbers of



NLMB and FLMB breeders were again present during the spring of 1983. These
fish were allowed to spawn, and the 1983 year class of largemouth bass was ~
sampled by a combination of seining and electrofishing techniques on August 14,

1983 and September 22-October 7, 1983,
Pond 2: Comparison of all four stocks (NLMB, NxF, FxN, FLMB):

On March 15 and 16, 1983, a 1.8 hectare pond devoid of fish was stocked
wlth 10 larger Individuals each of the following stocks of the 1981 year class:
NLMB (TL = 205 + 7.3 mm, Wt = 113 + 15.5 g); NxF (TL = 204+ 5.6 mm, Wt = 8.4
g); FxN (TL = 196 + 4.8 mm, Wt = 104 + 7.3 g); FLMB (TL = 187 + 3.6 mm, Wt = 81
+ 5.5 g) and with 50 smaller Individuals each of the following stocks of the
1981 year class: NLMB (TL = 158 + 6.5 mm, Wt = 50.7 + 7.9 g); NxF (TL = 153 *
6.6 mm, Wt = 47.6 + 7.2 g); FxN (TL = 147 + 7.5 mm, Wt = 40.3 + 8.1 g); FLMB
(TL = 150 + 18 mm, Wt = 42.9 + 14 g). Adult lake chubsuckers, fathead minnows
and bluegllls were simultaneously stocked to provide forage.

These flsh were allowed to spawn and the 1983 year class of largemouth
bass was sampled by a combination of seining and electrofishing techniques on

August 10, 1983 and October 22, 1983.

Analysis of Offspring Production:

When sampled, individual largemouth bass offspring collected were welghed
and measured, wrapped and numbered Individually In aluminum foll and frozen at
-20°C untll further analyslis. To determine the parentzge of each offspring,
samples of muscle and |iver were subjected to vertical starch gel
electrophoretic analysis to determine the genotype of each individual at the

Mdh-B, ldh-B, Aat-B and Sod-A locus as described In Philipp et al. (1979,
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1983). This genotypic determination was used to classify each individual as a
NLMB, FLMB, Fy hybrid or a non-Fy hybrid (either an Fy or a backcrossed

hybrid).



RESULTS
Comparison of the two subspecies (NIMB and FIMB):

Reproduction in this pond was successful in both 1982 and 1983. The

" percentage production of each of the three distinguishabie types of offspring
(pure NLMB, pure FLMB, Fq hybrids) and thelr relative abundance during the 1982
and 1983 growing seasons are shown in Tables 1 and 2. In addition, the
relative sizes of each of these types In the samples collected during the 1982
and 1983 growing seasons are also shown In Tables 1 and 2. Both in 1982 and,
especlally in 1983, the bulk of the offspring produced in this pond were pure
FLMB (63% and 88%, respectively). However, even though the numbers of pure
NLMB were low (20% and 4%) in these two years, the NLMB were clearly the
longest in length and weight at all sampling dates. Relative to the NLMB, the
growth in length and weight, respectively, of the 1982 year class of FLMB and
F1 hybrid (a combination of both possible reciprocals, NxF and FxN) after the
first growing season were: FLMB = 80.2% and 43.7%; Fy = 82.5% and 48.1%, and
after the second growing season were: FLMB = 82.8% and 40.0%; F; = 83.7% and
46.5%. This same relationship was seen in the 1983 year class, as well.
However, much of this class was el iminated by the dominant class of one year

olds produced in 1982,
Comparison of the four stocks (NLMB, NxF, FxN, FLMB):

Reproduction in this pond was successful In 1983, The percentage
production of each of the four distinguishable types of offspring (pure NLMB,
pure FLMB, Fq hybrids, non-F1 hybrids [backcrosses and Fp generations]) and

their relative abundance during the 1983 growing season are shown In Table 3.
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In addition, the relative sizes of each of these types in the samples col lected
during the 1983 growing season are also shown in Table 3. In this pond in
1983, there was a great deal more F{ production compared to Pond 1. This may
have been due to the presence of the F1 hybrids modifying the behavior of the
“two parental subspecies. There was also a significant production of non-Fj
hybrids indicating that, indeed, the NxF and FxN readily partake In spawning.
Again, however, there was a fairly low degree of pure NLMB offspring
production. However, in this pond the sizes of the NLMB at both sampling dates
were overwhelmingly larger than FLMB, Fy, and non Fq{ hybrids. In fact, the
substantial increase in percentage of NLMB in the pond from August 10, 1983 tfo
October 22, 1983, may refiect some cannibal ism of the smaller largemouth bass

by these NLMB.



DISCUSSION

It has been shown previously that the NLMB has greater growth properties
and demonstrates greater overwinter survival in central Illinolis than FLMB,
NxF, or FxN stocks (Philipp et al. 1984a). The results presented here
demonstrate the potentially dangerous impact that the introduction of FLMB can
have on native NLMB populations: the production of groups of offspring, making
up large portions of a year class, which are apparentiy much less fit for the
northern environments than are the native NLMB stocks already present.

The climatic conditions In central |ilinois during the spring spawning
seasons of 1982 and 1983 were similar and perhaps a bit atypical. In both
years Thére was a very slow and gradual warming with a relatively late arrival
of sustained warm weather. As a result, largemouth bass spawning throughout
central lllinois was relatively late. These types of spring conditions have
been postulated fo favor the production of the earlier spawning FLMB (Philipp
et al. 1984b). This differential in spawning times is currently being
evaluated.

It is interesting to note that the presence of Fy hybrids with NLMB and
FLMB (as in Pond 2) contributes greatly to the production of non-NLMB
offspring. The following scenario appears |ikely fto unfold when FLMB or Fy
hybrid largemouth bass are stocked Into NLMB populations. A substantial
portion of the year classes produced would be made up of non-NLMB., These would
be slower growing fish, but eventually, these fish would enfér the breeding
pool. Thus, In succeeding generations the number of pure NLMB spawnings that
would occur would become less and less. Eventually, it would appear that a
totally hybrid or intergrade population would result. These fish would be

slower growing than the original, resident NLMB stock, which was present prior
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to its "augmentation"™ with FLMB. In all fairness, the conclusions reached with
these data may only be valid for reglons with climatic conditions similar to
those of central lllinois. However, the advantages of NLMB over non-NLMB In
our study certalnly introduce vallid questions for any FLMB stocking program
outslide of peninsular Florida. Research evaluating the impact of FLMB on
native populations needs to be per*ormed before programs for FLMB stocking are
instituted. The genetic integrity of native stocks of {argemouth bass from all

regions of the country needs to be protected.
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Table 1.

Percentage of sample and average size (total

length and weight) of
NLMB, Fy hybrid and FLMB offspring produced In Pond 1 In 1982.

Sample Dates

8/11/82 10/2/82 5/28/83 10/7/83
(n = 100) (n = 100) (n = 100) (n = 100)
NLMB 4 of total 20 31 15 25
Ave TL (mm) 102 126 139 227
(SD) (26.9) (25.5) (20.9) (46.6)
Ave wt (g) 17.6 29.5 39.3 197
(SD) ( 7.6) (24.3) (16.6) (141)
F1 hybrid % of total 17 19 28 37
Ave TL (mm) 80 104 118 190
(SD) (13.1) (11.3) (12.6) (21.1)
Ave wt (g) 7.5 14.2 23.1 91.6
(SD) (4.1) ( 4.4) ( 7.9) (34.9)
FLMB 4 of total 63 50 57 38
Ave TL (mm) 82 101 110 188
(SD) (14.6) (17.4) (17.9) (14.9)
Ave wt (g) 7. 12.9 18.8 78.8
(SD) ( 4.1) ( 7.2) (10.3) (24.1)

(O3]
|
—
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Table 2.

Percentage of sample and average size (total

length

and weight) of NLMB, F{ hybrid and FLMB offspring
produced in Pond 1 In 1983,

8/14/83 10/7/83
(n = 100) (n=17)
NLMB % of total 4 6
Ave TL (mm) 73.5 163
(SD) ( 9.4) -
Ave wt (g) 4.9 51.7
(SD) ( 2.0) -
F1 hybrid ¢ of total 8 12
Ave TL (mm) 65.5 142
(SD) (16.2) (46.0)
Ave wt (g) 3.76 35.1
(SD) ( 3.3) (32.0)
FLMB ¢ of total 88 82
Ave TL (mm) 52.6 144
(SD) . ( 9.0) (32.0)
Ave wt (g) 1.62 37.0
(SD) ( .8 (17.1)
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Table 3. Percentage of sample and average size (total length
and welght) of NLMB, Fy hybrid, non-F; hybrid and

FLMB offspring produced In Pond 2 In 1982,

8/10/83 10/22/83
(n = 100) (n = 100)
NLMB 4 of total 9 21
Ave TL (mm) 120 184
(SD) ( 8.7) (7.9
Ave wt (g) 24.9 84.6
(sD) (5.9 (14.5)
F1 hybrid 4 of total 35 16
Ave TL (mm) 56 125
(SD) (13.5) (43.0)
Ave wt (g) 2.7 34.6
(SD) ( 3.6) (26.4)
non-F1 hybrid ¥ of total 24 27
Ave TL (mm) 52 89
(SD) (15.5) (22.1)
Ave wt (g) 2,3 9.8
(SD) ( 2.7) (12.4)
FLMB ¢ of total 32 36
Ave TL (mm) 40 70
(SD) ( 8.9) (15.7)
Ave wt (g) .95 4.2
(SD) ( .36) ( 2.4)
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ABSTRACT

The two subspecies of largemouth bass, Micropterus salmoides salmoides and
M. s. floridanus, naturally occur in different geographic and climatic regions
of the United States, with hybrids occurrlﬁg In a zone of Intergradation
between these reglons. Genetic differences between these stocks are reflected
by differing physiological responses to the thermal environment. To determline
the extent to which these differences contribute to natural geographic
separation of the subspecles we produced the embryos of the four genetlic stocks
of Iérgemou?h bass (M. s. salmoides, M. s. floridanus, M. s. salmoides $ x M.
s. floridanus &, and M. s. floridanus § x M. s. salmoidesdin vitro using
artificial fertilization techniques. The developmental success of the embryos
and the schedule of embryogenesis for each stock were compared at each of a
series of different temperatures. The developmental success of each stock at
each incubation temperature was determined by total hatching percentage. In
addition, the thermal requirements for embryonic development of each of these
four stocks were compared by determining the ot~threshold temperatures of
development, as well as the number of thermal developmental units required to
reach each of 22 key embryonic stages. Signiflcant differences in the thermal
requirements for embryogenes]s exist among these different stocks of largemouth
bass. The implications of these findings on current and future largemouth bass

management programs are dlscussed.



INTRODUCT ION

Two subspecies of largemouth bass, the northern (Micropterus salmoides
salmoldes) and the Florida (M. s. floridanus), were originally described by
Bailey and Hubbs (1949), Since that time a number of studies designed to
assess the differences between the subspecies have been conducted (Hart 1952,
Clugston 1964, Addison and Spencer 1972, Zolczynskl and Davies 1976, Inman et
al. 1977, Cichra et al. 1981, Smith and Wilson 1981 and Wright and Wigfif
1981). These studies have shown that a variety of biological differences exist
between these two subspecies.

Our recent electrophoretic survey of the genetic structure of largemouth
bass populations in the United States (Phiiipp et al. 1981, 1982, 1983) has
quantified the degree of genetic divergence between these two subspecies. We
have described a fast and rellable means of identifying pure northern, pure
Florida or intergrade populations of largemouth bass, that of the electro-
phoretic determination of the allele frequencies at the Idh-B and Aat-B locl.
Meristic and morphometric counts routinely used in the past by fisheries
biologists to distinguish these types of populations (Bryan 1969, Addison and
Spencer 1972, Buchanan 1973, Inman et al. 1977, Moyle and Holzhauser 1978 and
Bottroff and Lembeck 1978) are ambiguous and, Hence, unreliable. In at least
one study (Pelzman 1980) electrophoretic techniques also proved unreliable
since analyses were Inappropriate and data misinterpreted.

Our biochemical genetic analyses of largemouth bass populations (Philipp
et al. 1981, 1982, 1983) also demonstrate that the intergrade zone between the
ranges of the two pure subspecies, as it exists foday (northern Florica,
Mississippi, Alabama, Georgia, South Carolina, North Carolina, Virginia and

Maryland), is much more extensive than that criginally described (Balley and
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Hubbs 1949). As a result, the previously assigned genetic status of the
stocks of largemouth bass used as representatives of the two pure subspecles
in many previous studies appears questionable. In the absence of genetic
confirmation of the stocks used, the data generated by these earlier studies
and thelr resuiting concluslions must be considered very cautiously.

In 1959, Florida largemouth bass, or at least largemouth bass containing
some por*lon.of the genome of M. s. floridanus, were introduced into certain
waters In Californla (Sasakl 1961). The subsequent establ Ishment of
larggmou*h bass populations with a substantial proportion of the gene pool
contributed by the Florida subspecles has been well! documented (Smith 1971,
von Geldern and Mitchell 1975, Bottroff and Lembeck 1978, Moyle and Holzhauser
1978). The populations of largemouth bass which existed in Callfornia prior
to 1959 were the result of introductions of northern largemouth bass imported
from Illinols In 1891 (Shebley 1917) and were not the result of immigration
and natural selection since the state of California is well outside the native
range of largemouth bass (MacCrimmon and Robbins 1975). It Is not surprising
that the introductions of largemouth bass from Florida were successful in
southern California considering the climatic conditions which more closely
resemble those of Florida than of lilinols.

The apparent success of—fhe recent Introductions of M. s. florldanus In
southern California waters and the demand from fishermen for more and larger
largemouth bass has apparently been the Impetus for a number of states to
initiate Florida largemouth bass programs. These programs range from
controlled research with |imited Introductions to large scale propagation and
widespread stockings. Unlike Callfornia, many of these states already
contalned populations of naturally established largemouth bass. Due to the

lack of refiable, quantitative data concerning the genetic differences of the
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native and introduced stocks and the relative fitnesses of these stocks in
different environmenfs, the long term effects of these Introductions upon the
existing largemouth bass fisheries cannot be accurately predicted at this time.
However, the Impact of these stocking programs on the genetic integrity of the
native largemouth bass populations in these states could potentially be
catastrophic. We have postulated (Philipp et al. 1981, 1982, 1983) that when
alleles presénf In the Florida subspecies are Introduced into a population of
the northern subspecies the unique genic combinations initially present may
become irreversibly altered. |In addition, some of these new Florida alleles
are likely to be less fit for these new environments. Although the resulting
populations may be genetically sufficient in terms of short term survival, the
long term effect of this genetic mixture would be a lowering of fitness in the
reciplent population. For these reasons, we have recommended that programs
designed to Introduce the Florida subspecies into states outside of peninsular
Florida but within the native range of the largemouth bass be halted, until
appropriate research has determined the effects on the recipient populations.
Factors which affect year-class strength among largemouth bass populations
are complex. It has been suggested that spawns hatched eariy in a given year
may suffer substantially less mortality than those hatched later in the season
(Aggus and Elliot 1975). Thérefore, In mixed populations, differential
thermal effects upon the reproductive behavior and the rate and success of
development between northern and Florida largemouth bass embryos may play a
crucial role in determining the relative contribution of each stock to the
total year-class production. The current study was designed to assess thermal
effects upon the rate and success of development of embryos of genetically
deflned stocks of both pure subspecies, M. 5. salmoides and M. s. floridanus,

and of both reciprocal F{ hybrids.
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MATERIALS AND METHODS

Parental Stocks. Northern largemouth bass were collected from Clinton Lake,
I1linols. Electrophoretic analyses of Individuals from this population showed
the frequency of the northern [dh-B allele (1dh=-B1) and of the sum of the
northern Aat-B alleles (Aat-B! and Aat-BZ) both to be 1.000, confirming that
this population consisted of pure M. s. salmoides (Phllipp et al. 1981, 1982,
1983). Florida largemouth bass were collected from Lake Dora, Fiorlda.
Eiectrophoretic analyses of Individuals from this population showed the
frequency of the Florida Idh-B allele (1dh-B>) and of the sum of the Florida
Aat-B alieles (Aat-B3 and Aat-B4) both to be 1.000, confirming that this
popuiation consisted of pure M. s. floridanus (Phllipp et al. 1981, 1982,
1983). Adult maies and females from only these two genetically confirmed

popuiations were used as brood stock throughout thls study.

Production of Embryos. Florida largemouth bass (FLMB) and Florida @ x

northernd Fq hybrld largemouth bass (F x N) embryos were produced at the
Florida Game and Freshwater Fish Commisslon, Eustis Fisheries Research
Laboratory, as follows. Northern largemouth bass (NLMB) males were collected
In December, 1980 from Clinton Lake, illinois and held indoors at 10°C at the
IlTinols Natural History Sur;ey. On February 2, 1981, these flsh were marked
with a right pectoral clip, transported to Florida, and allowed to reach
reproductive readlness In outdoor earthen ponds at the Richioam State Fish
Hatchery. During February, 1981 ripe maie NLMB, retrieved from the hatchery
and ripe male FLMB, collected from Lake Dora by electrofishing, were brought
to the Eustis laboratory where they were held In Indoor flow-through raceways.
On February 21 and 26, 1981, mature, ripe female FLMB were collected from Lake

Dora, Florida by electrofishing and brought to the Eustis laboratory. The
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eggs from individual FLMB females were manually stripped into a bowl, mixed,
and split Into wa equivalent aliquots In separate petri dishes. One aliquot
was fertilized with sperm from a single FLMB male and the other with sperm
from a single NLMB male using methods described in Childers (1967) and Philipp
et al. (1979).

Northern largemouth bass (NLMB) and northern $ x Florida F1 hybrid
largemouth béss (N x F) embryos were produced in essentially the same manner
with the following exceptions. FLMB males, collected from Lake Dora in
Febryary, 1981, were marked with a left pectoral cliip and air shipped to the
I11inols Natural History Survey to be held indoors at 10°C until they were
stocked outdoors in INHS earthen ponds on March 10, 1982 and alliowed to reach
reproductive readiness. During May, 1981, FLMB maies retrieved from INHS
ponds and NLMB males collected from Clinton Lake by electrofishing were brought
to the INHS laboratory and held indoors. On May 13, 22, and 28, mature, ripe
NLMB females were collected from Clinton Lake by electrofishing and brought to
the INHS Jaboratory. NLMB and N x F embryos were produced in the laboratory
using the procedures described previously for producing FLMB and F x N

embryos.

Rearing the Embryos. Procedures and equipment used for rearing the FLMB and

F x N embryos were identical to those used for rearing the NLMB and N x F
embryos and are as follows. The very dense egg;sperm mixtures produced as
described above were allowed to stand In minimal water for 5 minutes to allow
for completion of the fertilization process. These newly fertilized embryos
were transferred to plastic containers holding about 2-3 cm of water. The
eggs were thinly spread within these containers and incubated for one hour at

24°C until initial cleavage. For each cross, samples of 100 normally cleaving
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eggs (2-4 cell stage) were then removed, transferred to each of a number of
glass finger bowlé containing 24°C water, and alfowed to adhere to the glass.
The embryos in each finger bowl were acclimated over a one hour period to a
specified test temperature, covered with nylon netting to allow water
circulation but prevent loss of embryos, and immersed in an aerated, fliltered
75 |1ter constant temperature bath at the test temperature. The temperature
of each lncuﬁafion bath was monitored continuously using dual water
temperature probes and a calibrated 12 channel recorder (Chino Works, Ltd.,
Tokyp, Japan, Model EW 1200).

Morphoiogical development of each set of embryos reared at each
temperature was visually monitored using a dissecting microscope. Prior to
retinal pigmentation, each set of embryos was monitored every 2-4 hours.
After retinal pigmentation had progressed, the frequency of visual observation
was reduced to every 6-8 hours. The times required fo reach each of 22 key
morphological stages was recorded for the embryos at each test temperature.
Dead eggs or embryos were counted, removed, and recorded at each visual
Inspectlon. A photographic record of the morphological development of these
embryos was made using an Olympus JM dissecting microscope with an Olympus

photographic attachment and an Olympus OM-2 camera.

Data Apalysis. The success of development was determined by calculating for
each set of embryos the percentage of eggs which hatched, and of these the
proportion which appeared normal.

The e<threshold temperature of development, a theoretical thermal value
below which embryonic development ceases (Childers 1967) was determined as
foliows. For each set of embryos raised at each temperature, the time tfo

reach each of 11 readily Identifiable morphological stages was determined and
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the cumulative average temperature of development was calculated from the
thermal record for each of these stages. For each of the four genetic stocks
(NLMB, N x F, F x N and FLMB) at each developmental stage, average cumulative
temperature was plotted versus the Inverse of developmental time in hours.
The regression equation describing the linear relationship for each of the
four stocks was determined from these values (10-12 data points per stage for
the FLMB and‘F x N embryos and 16-18 data points per stage for the NLMB and

N x F embryos). The x-Intercept determined from each equation Is the
®-threshold temperature determined for that stock using the values for that
developmental stage. The final e&threshold temperature for each genetic stock
was determined as the average of the values for these eleven stages.

The number of thermai developmental units (TDU) required for an embryo to
reach a given stage of development is defined as the number of degree-hours
above the «~threshold temperature which needs to be accumulated. TDU values
were calculated using the final value for the o~threshold temperature together
with the times of development and average cumulative temperatures for each set
of embryos of each genetic stock at each of 22 morphological stages of

development.
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RESULTS

Patterns of Development. Nd qual itative differences in morphogenetic events
could be detected among the four genetic stocks of largemouth bass studied
(NLMB, N x F, F x N and FLMB). Therefore, the following morphological
features and their developmental sequence hold for the embryogenesis of all
four stocks.

The cortical reaction occurs immediately upon fertilization with the
cortical layer becoming raised by one minute post-fertilization. There
foliows a confluence of cytoplasm around the zygote nucleus and the resultant
formation of the germinal disc. Cleavage is telolecithal, with the initial
formation of the two cell stage occurring within one hour at 24°C. Rates of
development during the rest of this study depended upon temperature and will
be discussed In detalil later. Figures 1A through 1P illustrate the periods of
morphogenesis of one set of embryos, FLMB embryos raised at 24.2° + 0.4°C.
These serve to 1llustrate the patterns of development for each of the four
stocks of largemouth bass embryos studied (NLMB, N x F, F x N and FLMB). The
developmental progression paralleled that described for other centrarchid
species (Morgan 1951, Balon 1959, Champion and Whitt 1976, Taubert 1977).

Early cleavage (Fig. 1A) continues, eventually resulting in blastula
formation (Fig. 1B). Eplboly commences (Fig. 1C) and progresses through the
yolk plug stage (Fig. 1D) prior to formation of a body axis (Fig. 1E).
Embryonic deveiopment continues with the formation of increasing numbers of
somite palEs (Fig. 1F). The optic cup and pericardial cavity continue to
develop. The embryonic heart begins beating and true circulation with
colorless blood starts shortly afterward (Fig. 1G). The tall increases in

length and body contractions Increase in number and severity. Red blood cells



containing hemoglobin appear just prior to hatching (Fig. 1H). Hatching
occurs fairly synchronously for most eggs at normal temperatures (90% of egg§
hatched in a 3-4 hour pericd at 24°C). The newly hatched embryo is still
quite underdeveloped (Fig. 11}, having only iimited and unguided movement.
After hatching, the heartbeat becomes more vigorous and the first pigment
granules become visibie in the retina (Fig. 1J). Pectoral and pelvic fins
form as the retina becomes quite darkly pigmented (Fig. 1K). The tapetum
fucida develops to give the eye first a silvery then a golden appearance (Fig.
1L). During this period the rudiments of many of the internal organs, such as
the liver, urinary bladder, intestine and swim bladder, are developing.
Foliowing this stage the jaw begins to form (Fig. 1M) and eventually starts to
open and close regularly (Fig. 1N), as body pigmentation commences. At this
point, the embryos begin to swim off the substrate with increasing regularity
(Fig. 10), eventually reaching a free swimming stage and active feeding as
yolk sac absorption Is completed (Fig. 1P). Our monitoring of the development
of largemouth bass ceased at this point and did not include an Investigation

of the subsequent fry and fingerling stages.

Effect of Temperature on Developmental Success. The percentage of hatched
embryos (both normal and abnormal) was calculated for each set of embryos
reared. These results are given in Table 1. The results for the NLMB and
FLMB embryos are also compared graphically in Figure 2. Comparing the two
pure subspecles, the FLMB embryos exhibited optimal hatching rates at
Temperafurés (21-24°C) substantially higher than those exhibited by the NLMB
embryos (17-22°C) (Table 1, Fig. 2). These temperature ranges are somewhat
lower than the values reported by McCormick and Wegner (1981). In addition,

the lower thermal |imits for successful hatching occurred at temperatures
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higher for FLMB embryos than for NLMB embryos. Conversely, the upper thermal
|Imits for successful hatching occurred at temperatures lower for NLMB embryos
than for FLMB embryos. The percentage of hatched embryos which appeared
morphologically abnormal was less than 15% at each test temperature except for
+he NLMB and N x F at 30.5°C (100% abnormal in each case); the NLMB and N x F
at 30.3° (68.6% and 75.0% abnormal, respectively); and the FLMB and F x N at
18.5° (16.3% and 18.5% abnormal, respectively).

The tendency for both hybrids to exhibit developmental patterns more
similar to the maternal than to the paternal subspecies was notablie (Table 1).
Although the relationship between temperature and hatching percentage for the
N x F embryos paralleled that for the NLMB embryos, the absolute hatching
percentage for the N x F embryos was less than that for the corresponding NLMB
embryos at most temperatures. The relationship between temperature and
hatching percentage for the F x N embryos paralleled that for the FLMB embryos
as well. However, the absolute hatching percentage for the F x N embryos was

greater than that for the corresponding FLMB embryos at most temperatures.

Thermal Limits of Embrvogenesis. The o~threshold temperatures of development

were calculated for each of the four stocks of largemouth bass (NLMB, N x F,

F x N and FLMB) using data from each of 11 distinct developmental stages (body
axis, 10, 15, 20 and 25 somites, heartbeat, 50% hatching, onset of I|ight and
even retinal pigmentation, and jaw movement). We chose to monitor these
eleven stages because they were easily identifiable visually. Because the
rates of dévelopmenf for the NLMB and N x F embryos were similar at all of the
temperatures studied, the data for these two stocks were combined for
o&threshold temperature calculations. Data for the FLMB and F x N embryos

were similarly combined (Table 2).
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The overall o~threshold value for each stock was calculated as the
average of the values calculated individually from the data for each of the )
eleven indlvidual developmental stages used (Table 2). The overall
o(-threshold temperature determined for the NLMB and N x F embryos, 12.62 +
0.27, was signiflicantly higher (P<0.01, Wlicoxon's signed-ranks test, Sokal
and Rohif 1973) than that determined for the FLMB and F x N embryos, 11.52 *
0.77. In addition, the stage-speclific o~threshold temperatures calculated for
the NLMB and N x F embryos were higher than those calculated for the FLMB and
F x N embryos at each of the developmental stages used (Table 2).

The upper thermal [imits of development can be estimated by extrapolating
from the decrease In hatching percentage for a few of the trials at elevated
temperatures, >30°C (Table 1). NLMB and N x F embryos did not hatch at
temperatures above 30.5°C and even at temperatures between 30° and 30.5°C there
was an extremely high percentage of morphological deformities. These results
agree closely with those reported by McCormick and Wegner (1981) for northern
largemouth bass embryos. FLMB and F x N embryos, however, had successful
hatching at 30.8°C, although at 31.7°C no successful hatching was observed. It
appears, therefore, that the upper thermal |imit for successful embryonic
development of FLMB and F x N embryos is 0.5°-1.0°C higher than that for the

NLMB and N x F embryos.

Ihermal Requirements of Embryogenesis. Using the overall o&threshoid
temperatures calculated for the NLMB and N x F embryos, as well as for the
FLMB and F-x N embryos, 12.62 *+ 0.27 and 11.51 * 0.77, respectively, the
numbers of thermal developmental units (TDU) required to reach each of 22
development stages were calculated and are shown in Table 3. For the first
twelve stages (mid-blastula through end of hatching), embryos from all stocks

required comparable thermal input (TDU). However, for the remalnder of
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development, the FLMB and F x N embryos required substantially greater thermal
input (TDU) than the NLMB and N x F embryos, ranging from 11.3% more for the
onset of retinal plgmentation to 30.1% more for the final yolk absorption

stage.
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DISCUSSION

The environmental +hermal regimes which exlist among the aquatic
communities throughout the United States are extremely varied. As such,
temperature potentially plays a major role in the processes of natural
selection serving to genetically tallor stocks of largemouth bass to specific
environments (Childers 1975). Genetic differences between the two subspecies
of largemouth bass, M. s. salmoides and M. s. floridanus, have been assessed
and documented (Philipp et al. 1981, 1982, 1983)., lIndeed, a variety of
physiological and behavioral differences most likely result from these genetic
differences, eéch stock reacting somewhat differently to variable thermal
conditions. Because these physioiogical/genetic differences among the two
subspecles and their hybrids determine relative fitness in a given environment,
a quantitative assessment of thermal response differences among these stocks is
critically needed for effectively formulating present and future management
programs for largemouth bass.

Although Swingle (1956) reported that major largemouth bass spawning
periods occur between 68-75°F (20-24°C), Chew (1975) documented spawning of
FLMB in Lake Weir, Florida at 538°F (15°C). Fluctuations in water temperature
during the spring spawning season are usually not as severe In lakes In
peninsular Florida as In lakes In more northerly regions of the country.
Largemouth bass spawns in Florida lakes during the very Initial periods of the
seasonal spawning perlod may be less |ikely to resuit in The‘exposure of eggs
or embryos.To very cold temperatures (<12°C) than would correspondingly early
spawns In northern regions. [t has been suggested that, in mixed populations
the Florida subspecies tends to spawn earl|ier in the season, at lower

temperatures, than the northern subspeclies of largemouth bass (Hunsacker and
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Crawford 1964, Bottroff and Lembeck 1978, Moyle and Holzhauser 1978).
Observations of spawning In ponds at the Illlnois Natural History Survey
during 1981 agree with this suggestion (unpublished results); further
experimentation Is currently underway to verify this.

Interestingly, the o&threshold temperature of development of the FLMB
(11.52 + 0.77) is significantly lower than that of the NLMB (12.62 + 0.27).
This relationship suggests a survival strategy of delayed spawning in the
northern subspecies which presumably reflects a more variable, as well as a
lower mean water temperature during spawning periods in the north. In
addition, the northern subspecies apparently can use environmental incubation
temperatures more efficlently. This Is evidenced by the significantly lower
number of thermal developmental units required by the NLMB embryos to reach
the free swimming/actively feeding stage (2,031 + 229) than that required by
the FLMB (2,620 + 203). Only at temperatures below about 16.2°C would FLMB
eggs require less incubation time than NLMB eggs to reach the free
swimming/actively feeding stage. At "normal" incubation temperatures NLMB
embryos reach this stage sooner than FLMB embryos. For example, at 20°C NLMB
embryos would reach the free swimming/actively feeding stage at 272 hrs,
whereas the FLMB would require 309 hrs to reach this stage. This more rapid
development gives NLMB embryos a clear advantage over FLMB embryos at
temperatures normally encountered during the incubation periods in the wild
(17°=25°C).

Interestingly, comparing embryological deveiopment of the two subspecies,
major differences In numbers of thermal developmental units required, occurs
at retinal pigmentation and later. These periods of embryonic development are
associated with organogenesis and are perlods during embryogenesis in which

many of the genes encoding metabolic enzymes become activated (Philipp et al.
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1979). This observation is consistent with the hypothesis that many of the
metabolic processes up to the retinal pigmentation period may be under the
control of maternal enzymes or m-RNA molecules synthesized during ocogenesis.
This observation also suggests that the two subspecies may have diverged in
certain of their gene regulatory processes and now respond differently to
temperature. The differences In the initial timing and levels of enzyme
expression in developing embryos of these four stocks (NLMB, N x F, F x N and
FLMB) strongly support this suggestion (Philipp et al. 1983, Parker, Philipp
and Whitt, unpublished results).

The two subspecies also differ in hatching success at various incubation
temperatures. The peak of successful hatching for the NLMB occurs at lower
temperatures (17-22°C) than for the FLMB (21-24°C). |In addition, the FLMB
embryos apparently survive higher incubation temperatures than the NLMB (Fig.
2). These relationships most probably provide the NLMB and FLMB embryos an
advantage In their respective environments.

It Is Interesting that the N x F embryos have consistently lower hatching
percentages than their thermal counterpart NLMB embryos, but that the opposite
holds true for the F x N and FLMB embryos (Table 1). This set of reiationships
Is an example of the inherent differences between reciprocal hybrids. We have
postulated that these non-additive asymmetrical responses by reciprocal hybrids
result from the differences in the Interaction of the paferhal genes wlth the
maternal gene effector molecules (Whitt et al. 1977, Philipp et al. 1983).

Our analyses reveal that the developing embryos of NLMB and FLMB react
differently to differing thermal conditions. We feel that these differences
have resulted from these two subspecific genomes evolving independently in
response to different thermal selective pressures. We postulate that to

better survive colder climates, NLMB have evolved a reproductive strategy of



delayed spawning until higher threshold temperatures are encountered. This
helps prevent premature spawns which could be destroyed by severe cold fronts.
In addition, NLMB have evolved schedules of embryonic gene expression, and
thus mechanisms of controlling embryonic metabolism and morphogenesis, that
operate more efficiently and rapidly at lower temperatures. These patterns of
gene expression also allow NLMB embryos to reach maximal hatching rates at
lower temperatures than FLMB embryos. However, during the protracted spawning
seasons which occur in peninsular Florida, early spawns produce indlviduals as
much as 3 months earlier than late spawns. FLMB appear to have evolved a
reproductive strategy which allows them to spawn at lower temperatures than
NLMB. These early spawned fish have distinct competitive advantages over ones
spawned later. FLMB embryos have also evolved an increased tolerance to
higher incubation temperatures than NLMB embryos. Thus, FLMB embryos are
better able to tolerate the warmer water temperatures found In peninsular
Florica during perlods of the largemouth bass spawning season.

Divergence of developmental response to temperature in the two subspecies
of largemouth bass has significant implications for the management programs
which concern this species. The extent of differential fitness probably
varles greatly depending upon the geographic location of the population, the
physical characteristics of the body of water belng considered, and the
speclflc weather conditions during a glven spawning season. However, It is
not unreasonable to assume that in the long run, stocks of largemouth bass
which are introduced Into inappropriate thermal environments will not perform
as well as stocks which are inftroduced Into thermal environments for which
they have been genetically tallored. We feel that our findings support a
recommendation that management programs which result in mixing the two

subspecies be discontinued. Precautions must be taken to protect the genetic
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integrity of the two subspecies. Speciflcally, we recommend that no
largemouth bass containing any portion of the genome of the Florida subspecies
be propagated for introduction into waters north of the intergrade zone as
described by Philipp et al. (1981, 1982, 1983). We also recommend, of course,
that the Introduction of largemouth bass containing any portion of the genome
of the northern subspecies into waters of peninsular Florida similarly be
prohiblted.

For maximum effectiveness, it Is Imperative that sound genetic principles
be incorporated Into current and future fisheries management programs (Smlth
1981, Philipp et al. 1981, 1982, 1983). Individual genetic stocks which
comprise a species must be identified, characterized, and recognized as
distinct units justly requiring their individual consideration in management
efforts. The genetic integrity of discrete stocks must be preserved, because
as Ryman (1981) so aptly stated, "Genetic variation in natural populations
constitutes a biological resource that must be properiy managed so as not to

reduce future opportunities for use of the resource."
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Table 1.
temperatures.
NLMB

Temp % Haich

34.0 0 34.0 0
30.9 0 30.9 0
30.5 31 30.5 30
30.3 35 30.3 24
28.8 35 28.8 28
28.4 45 28.4 37
28.0. 56 28.0 53
27.5 59 27.5 57
27.4 49 27.4 55
26.6 58 26.6 53
26.1 54 26.1 49
25.3 62 25.3 55
24.5 68 24.5 61
22.6 70 22.6 66
22.5 67 22.5 64
17.8 72 17.8 60
17.2 65 17.2 61
17.0 67 17.0 62

Hatching percentages of largemouth bass eggs incubated at various

36.0 0 .0 0
31.7 0 31.7 0
30.8 47 30. 4
28.4 52 28.4 54
27.7 63 27.7 52
27.6 54 27.6 46
24.5 66 24.5 61
24.2 65 24,2 56
23.0 61 23.0 57
22.8 71 22.8 62
19.8 54 19.8 55
18.5 54 19.8 55
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Table 3. Developmental unit requirements of the four stocks.

Embryos of NLMB Embryos of FLMB

Developmental Stages and NxF Fy hybrid (SD) and FxN F1 hybrid (SD)
Mid-blastula 69 (14) 53 (11)
1/2 Epiboly 123 (29 122 (24)
Yolk plug 166 (23) 158 (23)
Initial body axis 197 (23) 193 (22)
10 somites 249 (36) 240 (19)
15 somites - 278 (33) 275 (20)
20 somites 312 (37) 310 (19)
25 somites 345 (30) 340 (18)
Heartbeat 379 (41) 385 (18)
Begin hatch 503 (48) 508 (i7)
50% hatch 556 (48) 576 (17)
End hatch 619 (53) 660 (13)
Onset of retinal pigmentation 670 (44) 746 (53)
Light retinal pigmentation 769 (44) 851 (58)
Even retinal pigmentation 865 (54) 993 (75)
Inltial jaw movement 1,199 (77) 1,452 (122)
Onset of body plgmentation 1,318 (89) 1,574 (136)
Red spleen formation 1,372 (110) 1,674 (135)
Begin swlim=-up 1,501 (132) 1,833 (111)
Begin free swimming 1,715 (185) 2,136 (159)
Active free swimming 1,873 (208) 2,417 (177)
Yolk absorbed 2,031 (229) 2,620 (203)
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Figure 2. The effect of temperature on hatching success of northern largemouth
bass ( —®— ) and Florida largemouth bass ( —O— ).
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ABSTRACT

Differences In pa++erné of gene expression among embryos derived from
crossing two subspecies of largemouth bass, northern [argemouth bass, NLMB,
(Micropterus salmoldes 5almgld§s), and Florida largemouth bass, FLMB (M. s.
floridanus) were used to investigate the extent of divergence of developmental
gene regulation. These different subspecles have diverged at a number of
thelr structural genes as indicated by their genetic distance (D = 0.133, Nel,
1978). The relative morphological and molecular developmental success was
determined for embryos formed by crosses within each subspecies (FLMB x FLMB,
NLMB x NLMB) aﬁd between each subspecies (FLMB x NLMB, NLMB x FLMB). The
morphological facets of development; fertilization percentages, hatching
percentages, and schedules of anatomical development were very similar among
the progeny of the four crosses. In contrast, the developmental patterns of
expression of each of 16 enzyme loci often showed substantial differences
among the four types of embryos.

Stight differences In the schedules of morphogenesis coupled with the
conslderable differences In the schedules and levels of enzyme |ocus
expression indicate that the two subspecies have diverged at genes controlling
developmental processes. However,. the extent of gene divergence between these
two subspecles has not progressed far enough to cause serious regulatory
incompatibllities in their Fq hybrids. Although some gene rggulafory
divergence has occurred, additional mutations influencing developmental
regulation will have to be Incorporated into the genomes of these subspecies
before sufficlent post-mating Incompatibilities bring about reproductive

Isotation.



INTRODUCTION

Two subspecles of Iargémoufh bass, the northern largemouth bass,
Micropterus salmoides salmoides, and the Florida largemouth bass, M. s.
floridanus, are currenfly‘recognlzed (MacCr immon and Robbins, 1975). These
subspecies were originally described by Bailey and Hubbs (1949) on the basls
of morphometric and meristic characteristics. Although today largemouth bass
popuiations exist in a continuum from the southern tip of Florida to southern
Ontario, populations in peninsular Florida and those further north have gone
through periods of allopatry during the Pieistocene (Remmington, 1968). An
analysis of aliele frequencies at 28 enzyme ifocl in largemouth bass
popuiations throughout the United States defined the genetic dlfferences among
these populations (Philipp et ai., 1981, 1983b). |In addition, this study
described the range of each subspecies, defined the extent of intergradation
between them and quantified the genetic differences between the subspecies (D
= 0.133, Nei, 1978). Populations at the extremes of the range of each
subspecies have fixed allelic differences at three enzyme locl, with each of
these locl exhibiting latitudinal ciines In alliele frequencies. Kinetic
analyses of the clinally distributed MDH-B, allelic isozymes revealed Kp
differences at certain temperatures (Hines et al., 1984). These associatlions
of specific aileles with specific environments, as well as the detection of
thermal kinetic differences for allellc Isozymes are consistent with the
hypothesis that each subspecies is best adapted to quite different thermal
environments.

The degree of developmental success of Fy hybrid embryos provides a means
of assessing the compatibility of the gene regulatory mechanisms of two

different genomes. The extent that developmental processes are disrupted in
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t+hese hybrid embryos has been used to estimate the amount of gene regulatory
divergence both within species and between species. A direct relationship
between increasing taxonomic distance between parental specles and decreasing
developmental success plus Increasingly abnormal patterns of gene expression
in developing hybrid embryos has been found In many taxa (Whitt et al., 1973,
1977; Wilson et al., 1974; Prager and Wilson, 1975; Woodruff, 1979; Oliver,
1979; Whitt, 1981; Frost, 1982; Philipp et al., 1984).

The present report assesses the amount of gene regulatory divergence
between the two subspecies of largemouth bass by analyzing embryogenesis in
the progeny of - intrasubspecific and of reciprocal intersubspecific Fq hybrid
crosses. We present evidence for significant developmental regulatory

divergence which may be a key factor in the ongoing process of speciation among

these fishes.



MATERIALS AND METHODS

Production and Rearing of Eﬁbgyos

In February, 1981, mate northern largemouth bass (Micropterus salmoides
salmoides) (NLMB) collected previously from Clinton Lake, |llinois were
transported In aerated water to the Florida Game and Freshwater Fish
Commission Fisheries Research Laboratory at Eustis, Florida. Ripe male and
female Florida largemouth bass (M. s. floridanus) (FLMB) were collected by
electrofishing techniques during the natural spawning season from Lake Dora,
Florida. The eggs of the FLMB were manually stripped, divided into two equal
al lquots, and each aliquot separately fertilized In vitro by sperm from FLMB
and NLMB males, respectively, thus producing the FLMB x FLMB and FLMB x NLMB
cross progeny.

The other two crosses (NLMB x NLMB, NLMB x FLMB), were produced at the
I11Inols Natural History Survey (INHS) iaboratory In Champaign, |llinois in
May, 1981. |In preparation for these crosses, FLMB males collected from Lake
Dora, Florida were transported In aerated water to Champaign, Illinois. Ripe
male and female NLMB were col lected from Clinton Lake, lIlInois by electro-
fishing techniques during the natural spawning season. The eggs of the NLMB
were manually stripped, divided ln+o two equal allquots and each aliquot
separately fertilized in yltro by sperm from NLMB and FLMB males,
respectively.

Once fertilized, eggs were maintained at 22°C in 200-mm x 10-mm plastic
petri dishes contalning a minimal amount of natural pond water for
approximately 20 minutes to allow for water hardening. The fertilized eggs

were then washed and transferred to glass baking dishes containing 22°C pond
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water. Fresh aerated water was replenished periodically to insure that the
embryos had sufficient oxygen and that toxic levels of waste products did not
accumulate. Dead embryos were removed at regular intervals. Once hatching
began, newly hatched embryos were placed into a separate dish of freshly

aerated water.

Symbols

The following symbols will be used to indicate the different types of
crosses:
Female x Male

+he FLMB x FLMB Q cross 07‘

-n
—
=
s}
[}

F x N = the FLMB x NLMB @ crossd’
N x F = the NLMB x FLMB & cross{’

NLMB = the NLMB x NLMB @ crossd

Fertilization success was assessed 30-60 minutes post fertillization by
determining the percentage of embryos with fertilization membranes. The
fertilization percentages of the reciprocal hybrids were normalized to those
of the embryos of the subspecies of the maternal parent used for the hybrid
cross., Hatching success was calculated in a similar manner by determining the
percentage of fully hatched individuals (normal and abnormal) In each Cross.
The hatching percentages of the reciprocal hybrids were normalized fto those of

embryos of the subspecies of the maternal parent used for the hybrid cross.
Sampling of Embryos
Morphological development of the embryos of each cross was monitored with

a dissecting microscope. The thermal requirements for development are
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expressed in thermal developmental units, TDU (Chiliders, 1967) which are
defined as the effective degree-~hours above the alpha-threshold Temperafure;
The alpha-threshold temperatures used for these calculations were 12.62°C for
the NLMB and 11.52°C for the FLMB as determined by Philipp et al. (1984). In
addition, for each cross, two duplicate series of separately pooled samples of
50 embryos each were removed at each of the following 17 developmental
periods; 8-16 cells; blastula; 50% epiboly; yolk plug; body axis; somite
formation; heartbeat; pre-hatch; hatching; post-hatch; appearance of
hemoglobin; retinal pigmentation; jaw formation; jaw movement; body

pigmentation; swim-up; and free-swimming. The embryos were placed into 0.25

ml of 0.1 M Tris-HCl, pH 7.0 and frozen at -20°C for later analysis.

Spectrophofometric Analysis

In preparation for analyses of enzyme ontogeny, the samples of embryos
were thawed and homogenized at 4°C In a motorized Potter-Elvehjem homogenizer.
These homogenates were centrifuged at 4°C for 20 minutes at 23,500xg and
following decantation, the supernatants were recentrifuged under the same
conditions.

The supernatants of the first developmental series were analyzed
spectrophotometrically at 25°C forlfhe following enzymes: (1) creatine
kinase, CK (EC 2.7.3.2), (2) adenylate kinase, AK (EC 2.7.4.3), (3) phospho-
glucomutase, PGM (EC 2.7.5.1), and (4) glucosephosphate Isomerase, GPl (EC
5.3.1.9). The reaction mixtures used for each assay were, with slight
changes, based on Shakiee et al. (1977) with the exception of that used for

PGM, which was based on Dawson and Mitchell (1969).
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(1) AK = 20 mM Tris-HCl pH 7.5, 4.0 mM MgCl, 3.3 mM glucose, 0.5 mM
ADP, 0.15 mM NADP, 1.0 unit/ml hexokinase, 1.0 unit/mi
glucose~6-phosphate dehydrogenase.

(2) CK = identical to the AK reaction mixture except that 10.0 mM
bhosphocreaflne was added.

(3) PGM - 4 mM Imidazoie-HC! pH 7.5, 3.0 mM MgCip, 1.5 mM EDTA, 0.17 mM
NADP, 1.7 mM glucose-1-phosphate, 3.3 mM glucose-t,
6-diphosphate, 1.0 unit/m! glucose-6-phosphate dehydrogenase
(Dawson and Mitchell, 1969).

(4) GP! = 20 mM Tris-HCI pH 7.5, 3 mM MgCip, 0.13 mM NADP, 2.0 mM
fructose-6-phosphate, 1.0 unit/ml glucose-6-phosphate
dehydrogenase.

The supernatants of the second developmental series were analyzed spectro-
photometrically at 25°C for the following enzymes: (5) malate dehydrogenase,
MDH (EC 1.1.1.37), (6) lactate dehydrogenase, LDH (EC 1.1.1.27), (7)
isocitrate dehydrogenase (NADP), IDH (EC 1.1.1.41), (8) 6-phosphogluconate
dehydrogenase, 6-PGDH (EC 1.1.1.44), and (9) aspartate aminotransferase, AAT
(EC 2.6.1.1). The reaction mixtures used, with slight modifications, were
based on those of Shakiee et al. (1977).

(5) LDH - 0.1 M phosphate buffer pH 7.0, 1.0 mM pyruvate, 0.14 mM NADH.

(6) MDH - 0.1 M phosphate buffer pH 7.0, 0.33 mM oxaloacetate, 0.14 mM
NADH

(7) IDH - 50 mM Tris-HCl pH 7.5, 2.0 mM MgCi2, 0.15 mM NADP, 1.0 mM
isocitrate.

(8) 6-PGDH - 50 mM Tris-HC| pH 7.5, 2.0 mM MgCip, 0.15 mM NADP, 2.0 mM

6-phosphogl uconate.
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(9) AAT - 50 mM Tris-HCl pH 7.5, 0.7 mM ketoglutarate, 10.0 mM aspartate,
0.08 mM pyridoxal-5-phosphate, 0.1 mM NADH, 1.0 unit/ml malate
dehydrogenase.

Enzyme activities were determined by monitoring the changes in absorbance
at 340 nm usling a Beckman Kintrac VI| spectrophotometer and are expressed as
International Units. The final volume of the reaction mixture was 1.0 mi.
Reactions were initiated with the addition of enzyme extract (1-50 ul of the
appropriate supernatant, depending upon the enzyme being assayed). Protein
concentrations of each supernatant were determined using the procedure of

Lowry et al. (1951) as modified by Mason et al. (1973).
Electrophoresis

Vertical starch gel electrophoresis and histochemical staining analyses
of parental tlssue and embryonic extracts were performed essentially as
described in Phiilpp et al. (1979). To determine the relative contribution of
each Isozyme to the total enzyme activity,two-fold serial dilutions were also
made of each embryo extract and then electrophoresed on starch gels according

to the method of Klebe (1975).

Statistical Analysis

Principal component analysis of the ontogeny of enzyme specific
activities for each of the crosses was performed. One principal component
analysis was carried out for the developmental timing of gene expression of 16
loci, T.e., normalized times of first expression of enzyme activity or the
first stable developmental Increase In activity for each of the loci belng
analyzed. The second factor analysis was of the enzyme specific activity
levels at selected stages throughout the entire developmental period. In the

latter analysis, we determined enzyme specific activities at each of six
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di fferent cevelopmental pericds: onset of hatching, onset of retinal
plgmentation, mid-retinal pigmentation, jaw movement, body pigmentation, and
swim-up. The analyses determined the two major factors that contributed to

the variation observed among the four crosses.
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RESULTS
Morphological Development

All four sets of embryos exhibited fertilization percentages in excess of
95%, and hatching percentages In excess of 80%. The fertilization and
hatching percentages of the hybrids were essentially indistinguishable from
those of the pure crosses serving as controls.

There were slight differences In the thermal requirements for morpho-
genesls between the two subspecies (Table 1). Because of these differences
and slight differences In the Incubation temperatures used for varlous
Individual crosses, the developmental schedule of each cross was normalized to
the jaw movement stage. This stage occurred at 1632 TDU post-fertilization in
the crosses in which the maternal parent was the Florida largemouth bass and
at 1183 TDU post-fertilization In the crosses In which the northern largemouth
bass was the maternal parent. In addition, hybrid embryos exhibited the same
morphogenetic schedules as the embryos from the Intrasubspecific cross of the
maternal parent. There Is a greater number of developmental units required by
the FLMB and F x N embryos compared to the NLMB and N x F embryos to reach a
specific morphological stage as embryogenesis proceeded (Table 1). These
results are In agreement with Thosé obtalned In a more detalled determination

of the thermal requirements for embryonic development of NLMB, FLMB and thelr

reciprocal hybrids (Philipp et al., 1984).

Molecular Ontogeny

Soiuble Protein

The soluble protein levels in all of the four dlfferent stocks of

embryos steadily decreased from fertilization to the time of swim-up. The
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embryos produced from FLMB females had slightly higher concentrations of
soluble proteins than did the embryos produced from female NLMB. This higher
concentration of soluble protein may be a reflection of the larger egg size
produced by the FLMB females used. This larger egg size resulted from the

larger sizes of FLMB collected relative to NLMB.
Enzyme Ontogeny

Electrophoretic analyses of the ontogeny of enzyme locus expression in
developing embryos of NLMB have been reported previously (Philipp et al.,
1979, 1983a). The isozyme patterns obtained during the present study were
quite similar, as expected. As a result, instead of presenting these figures
In detall, the times of first detected expression during development, for each
locus, for each cross, has been summarized in Table 2.

Spectrophotometric analyses of total enzyme specific activity coupled to
the serial dilution electrophoretic analyses (Klebe, 1975) permitted the
quantitative determination of the activity contributed by each isozyme at each
developmental stage. These data were used to construct the developmental
profiles of enzyme specific activity (Figs. 1-7) as well as the relative

contributions of each isozyme locus at each developmental stage (Table 3).

Creatine Kinase Activity

In largemouth bass, CK activity is encoded in four loci. The Ck-A locus
is expressed predominantly in white skeletal muscle, the Ck-B locus In eye and
brain and the Ck-C locus in many tissues, but predominantiy in stomach. The
Ck-D Tocus Is expressed In mature ripe testes only, and so was not observed

during embryogenesis. The developmental patterns of total CK specific
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activity was not greatly dissimilar in all four sets of embryos (Fig. 1). The
total CK activity Increased by the onset of retinal pigmentation in the FLMB
and F x N embryos but not until mid-retinal pigmentation and jaw movement In
t+he N x F and NLMB embryos. These increases in total CK activity were due to
Increases In the expression of all three isozymic toci (Fig. 2-4). However,
each set of embryos showed a specific but different pattern of relative
contribution for each of the CK isozymes (Table 3). These differences are
presumably reflections of differences in patterns of gene regulation between

the subspecies.
Glucosephosphate Isomerase Activity

Two locl, located on different chromosomes, encode GP! activity (Whitt et
al., 1976) in the largemouth bass. The Gpi-A locus Is expressed In many
tissues but predominantiy in the |iver, whereas the Gpi-B locus is primarily
expressed in white skeletal muscle. Over the entire developmental period, the
FLMB and F x N embryos possessed relatively higher GPl activities than those
of the NLMB and N x F embryos (Fig. 5). GPI-A activity was present throughout
deveiopment in all embryos (Fig. 6), with varying times in initial increases
observed among the embryo types (Fig. 6). Initial expression of the Gpi-B

locus was also varlable among the embryo stocks, occurring from post-hatch

through retinal pigmentation (Fig. 7).

Lactate Dehydrogenase Activity

Isozymes of LDH are encoded in three different loci in centrarchid fishes
(Whitt et al., 1971), Ldh-A Is expressed to some degree In all adult tissues
but it predominates in the white skeletal muscle. Ldh-B is expressed in all

tissues examined and predominates in the heart. Ldh-C is predominantly
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expressed In the eye and braln. The developmental profiles of total LDH
actlvity were very simllar In all four types of embryos up to retinal
plgmentation at which point the activity patterns diverged. The LDH-A4
Isozyme was expressed throughout development in all four types of embryos. |In
the FLMB and F x N embryos, the first increase in LDH-A actlvity was slightly
earller in development than in the NLMB and N x F embryos (Table 2). The
Ldh-B locus was expressed at quite variable times among the embryos of the
four stocks (Table 2). Ldh=-C expression was detected only late in development

in all embryos (Table 2).
Malate Dehydrogenase Actlivity

Three MDH locl are expressed In largemouth bass. The MDH-M> isozyme is
restricted to the mitochondria and is found in all tissues. MDH-Mp activity
is present in unfertillized eggs and throughout embryogenesis at very low
levels. The cytosollc malate dehydrogenase Isozymes are encoded in two locl,
Mdh-A and Mdh-B, which are located on separate chromosomes {Wheat et al.,
1972). In adult fish, Mdh-A expression Is observed In all tissues and is
particularly high in liver. The Mdh-B locus is expressed predominantly In
white skeletal muscle. The ontogenetic patterns of total MDH activity during
the development were very similar for four sets of embryos. In the embryos of
all four stocks, the Mdh-A locus Is expressed throughout development, whereas
the Mdh-B is not expressed until late retinal pigmentation. The relative
contributions during development of the Mdh-~A and Mdh-B locl are very similar

among three out of the four sets of embryos (Table 3).
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Adenylate Kinase Activity

AK activity Is encoded In two locl In largemouth bass, only one of which,
AK-A, 1s expressed in embryos and it is expressed throughout development. The
total AK activity proflle‘of the hybrid paralleled that for normal embryos
from the subspecies serving as the maternal parent with the FLMB and F x N

embryos having higher AK activity levels than the NLMB and N x F embryos
(Table 2).

Phosphoglucomutase Activity

There is éf least one PGM locus present in sunfish, Pgm-A, and it is
expressed predominantiy In white skeletal muscle and liver of adult flshes.
PGM=-A activity was present throughout development in all of the embryos,
however, the time of increase In activity differed among the four embryo
stocks (Table 2). However, the overall developmental trend of PGM activity In
each of the hybrid embryos Is similar to that for the subspecies of the

maternal parent.
Isocitrate Dehydrogenase Activity

The IDH isozymes appear to be. encoded in two loci In the largemouth bass.
In adult fish, the Idh-A locus Is predominantly expressed In white skeletal
muscle and the Idh~B locus primarily in the liver. Developmental profiles of
total activity for IDH appeared similar for all four embryo stocks. The NLMB
and N x F embryos exhibited an earlier initial increase in the IDH-A isozyme
activity than the FLMB and F x N embryos (Table 2). The onset of the |dh-B
focus expresslon was undetectable In the N embryos because the IDH-A and B

1sozyme possessed the same electrophoretic mobility. The IDH-B activity in



the N x F embryos flrst appeared when they were weil into retinal
plgmenfaflon. However, in .the embryos derived from a female FLMB, the | dh=B

locus expression was Initially detected just prior to hatching (Table 2).
6-Phosphogluconate Dehydrogenase Activity

In the largemouth bass, 6-PGDH is encoded in a single locus, 6-Pgdh-A.
The activity of 6-PGDH was present throughout development in the embryos of
all four crosses. The initial increase In 6-PGDH activity occurred at various
developmental times in the embryos of the four stocks (Tabie 2). The absolute

activity levels were aiso quite variable.
Aspartate Aminotransferase Activity

in largemouth bass, AAT is encoded in three loci. The Aat-A locus
encodes a cytosolic form of the enzyme expressed predominantly in the white
skeletal muscle. The Aat-B locus encodes a cytosolic form of the enzyme
expressed predominantly in the liver. The Aat-M jocus encodes a mitochondrial
form of the enzyme expressed to some extent in all tissues. Throughout
deveiopment, very low levels of AAT-Mp activity were observed in all crosses.
No detectable Aat-B expression was observed, but a low initial expression of
Aat-A was observed at quite different times among the four stocks (Table 2).
lemporal Patterns of Gene Expression In the Two Subspecies and Their
Reciprocal Hybrids '

A comparison of the enzyme activity of the two Intrasubspecific and the
two reciprocal Fq hybrid Intersubspecific embryos revealed quite a variety of

different temporal patterns (Fig. 8) depending upon the enzyme locus involved.

In one observed pattern, as exemplified by Ck~A, the times of initial
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expression (or initial Increase In activity) were different for the embryos of
the two different subspecies, and the timing of both of the reciprocal hybrids
was the same and intermediate to those of the two subspecies. However, for
the Pgm=-A locus the embryos of the hybrids (F x N and N x F) both exhibited a
ear| ler expression than the embryos of elther pure subspecies.

A principle component analysis was performed to determine whether a
general pattern of enzyme activity differences throughout development could be
detected among the four classes of embryos. The enzyme activity levels of the
hybrics tended to resembie those of the embryos of the subspecies serving as
the female parent (Figure 9). The horlizontai axls shows the factor welghting
which has developmental time as a predominant component. The verticle axis Is
the factor weighting with the time component removed, of the enzymes that
contributed the most to the variation among the four crosses. The enzymes
were in two groups, the first consisted of Ck=B, Ck-C, Gpli-A and Ldh=C, and

the second consisted of Ldh=B, 1ldh-A, 1dh-B, Mdh-A, Mdh-B, Aat-A. When the

activities were high In the first group, they were low In the second and vice

versa. These two factors account for 85% of the variance among the crosses.
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DISCUSSION

The two Micropterus subspecies, M. s. floridanus and M. s. salmoides, now
overlap In a large intergrade zone which extends throughout the southeastern
United States (Philipp et al., 1981, 1983)., These subspecies, however, have
been periodically separated during their evolutionary history, the latest of
which occurred during the Pleistocene (Cooke, 1945)., Templeton (1982) has
stated that when a species occupies a broad range encompassing a wide variety
of environments, It will tend to organize into demes based on common
environments. Therefore, when a widely distributed species such as the
largemouth basé Is separated into two such demes (the northern and Florida
subspecies), adaptive divergence may lead to pre-mating and/or post-mating
reproductive isolation. The completion of reproductive isolation may be rapild
or slow depending upon the kinds of mutational differences present between the
populations, and the nature of the seiective and stochastic forces acting upon
the populations involved.

Different therma! environments exist in the ranges of the two different
subspecies. Recent laboratory and fleld studies on genetic stocks of both
subspecies and both reciprocal Fy hybrids have demonstrated that the two
subspecies have quite different thermal physiological properties (Phillipp and
Whitt, this report). Therefore, environmental temperature appears to be a
major selective force governing the microdifferentiation of the various stocks

of largemouth bass.

Morphogenesis

As observed in this study, as wel! as in a separate study (Philipp et

al., 1984), the number of developmental units required fo reach any given

5-16



morphological stage are similar, but not identical, for the fwo subspecies of
largemouth bass (Table 1). Despite these slight differences in rates of
development betweem the different progeny classes, the gene regulatory
mechanisms of the different subspecies appear to be reasonably compatible.
Although no obvious pre-mating or post-mating barriers between these
subspecies have been detected, we cannot exclude the possibility that the
observed subtle developmental differences between the subspecies may be
leading to reduced fitness In certfain intergrade populations over longer
periods of time.

.The relatively high level of compatibility between the genomes of the two
subspecies Is further evidenced by the high percentages of hatching and
fertilization observed for embryos from all| four of the crosses. Indeed, the
FN embryos consistently demonstrated a higher hatching percentage than control
values, 109% versus 100%. This increased percentage of hatching relative to
controls has been observed for certain other Micropterus hybrids (Beaty, 1980;
Philipp et al., unpublished results). Although the mechanism(s) behind this
effect are not known, it is unllkely that this Increase is due to a release
from inbreeding depression. |f this were the case, this effect would be

expected in both reciprocal Fi hybrids.

Molecular Onfogeny

The differences in the developmental regulation of enzyme locus
expression were assessed by measuring three things: (1) the times of enzyme
activity appearance; (2) the times of the first stabilized iIncrease in enzyme
activity; and (3) the absolute enzyme activity levels at specific stages
throughout embryogenesis. The first assessment was used only for those

enzymes not present in the egg Initially. The second assessment was used only



for those enzymes carrled over from oogenesis and present throughout
embryogenesis. The third assessment was used for all enzymes.

The time of flrst enzyme appearance was determined for seven of the 16
toct studied: Ck-A, Ck-B, Gpi-B, Mdh-B, Ldh~B, Ldh-C, and ldh-B (Table 2).
These loci exhibited quite different temporal patterns of expression. More
importantly, with the exception of Mdh-B, the time of Initial expression of
each iocus was different for each of the two subspecies. The temporal
patterns of gene expression in the hybrids varied from locus to locus.
However, for most loci the time of first enzyme appearance In the hybrids was
slmliar to that of the subspecies serving as the maternal parent.

For 9 out of 16 loci (Ck-C, Ak-A, Pgm-A, Gpi-A, Ldh-A, Idh-A, Mdh-A,
Aat-A and 6-Pgdh-A), the enzymes encoded at these loci are present In the
embryos throughout embryogenesis, and the presence of these maternal enzymes
masked the appearance of enzymes synthesized by the embryonic genes. Thus,
only the time of the first Increase in enzyme activity was determined for 9 of
the 16 enzyme loc! (Table 2). Thls increase In enzyme activity has been
asAumed to approximate the time of Initial gene expression for these loci.

The two subspecles differed In thelr times of first Increase of enzyme
activity for many of the enzyme locl. The different kinds of departures from
the expected temporal pattern in the hybrid presumably reflect different kinds
and/or magnitudes of difference between regulatory elements of the two
subspecies.

The data from both types of assessments of the timing of enzyme locus
expression In the embryos were pooled and analyzed by a principle component
procedure. The FLMB and F x N embryos were closely grouped, whereas the N x F
hybrid embryos and the NLMB embryos belonged to separate groups. The FLMB egg

cytoplasm appears to be exerting a strong dominant effect over NLMB genome
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expression in the F x N embryos, resulting in a strong maternal influence on
the developmenfal’schedules of gene expression. In the reclprocal hybrid, the
presence of the FLMB paternal genome In the female NLMB cytoplasm appears to
result In a more disruptive developmental schedule. The NLMB egg cytoplasm
does not appear to exert the overwhelming dominant maternal effect observed in

the F x N embryos. These results suggest that the cytoplasmic compositions of

the eggs of the two subspecies have diverged.

The absolute levels of speciflc enzyme activity over the entire
developmental period must certainly be partially dependent upon the time of
the ¥Irs+ appearance of embryonic expression of specliflic genes. However, the
differences in the rates of accumulation of enzyme activity, presumably due to
differences In the rates of synthesis, appear to be an even more Important
determinant In the differences In enzyme levels at later developmental periods.
Therefore, comparison of differences In enzyme activity profiles throughout
embryogenesis among the four crosses has provided another means of monitoring
divergence of developmental regulation. The developmental patterns vary from
locus to iocus (Table 2), However, iIn general, the embryos produced from eggs
of a FLMB exhibited higher enzyme activities over the course of development
than did the embryos from NLMB eggs. In addition, the hybrid embryos of both
reciprocal crosses tended to have slightly higher enzyme activity levels than
those of the embryos of thelr maternal subspecies.

The results of the principle component analyses which clustered the sets
of embryos at each of six different developmental times according to the
levels of activity of several enzyme locl, underscore the obvious fact that
enzyme activity increases with deveiopmental time (Fig. 9). More important Is

the observation that enzyme activity levels differed between the two
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subspecies at 11 of the 16 loci. These developmental differences indicate
that the differences iIn the patterns of embryonic gene expression between the
subspecies and the alterations In the normal patterns of expression of some
loci In the hybrids are due fo slight Incompatibilities between the gene
regulatory mechanisms in these subspecies. The existence within species of
naturally occurring regulatory polymorphisms that alter the rates of protein
synthesis prbvldes a basis for the hypothesis that the enzyme activity
differences observed during the development of different subspecies and their
hybrids are the consequence of the divergence of gene regulatory factors
affecting the timing of expression of the many enzymes in these subspecies
(Abraham and Doane, 1978; McDonald and Ayala, 1978; Ayala and McDonaid, 1980;
Hickey, 1981; Klose, 1982; Anderson and McDonald, 1983).

The differences in the patterns of gene expression observed for the loci
studied, ftogether with the high degree of success and the relative similarity
In the rates of morphological development between the subspecies imply that
the mutational differences accumulated in the regulatory genes of the two
subspecies are relatively small. [If this interpretation is correct, it would
imply that there has been a rather gradual rate of divergence between the
northern and Florida subspecies of largemouth bass during their evolution.
Thus, there appears to be no major post-mating isolation mechanisms. Mixture
of these two stocks In the wild will resuit in the production of viable Fy
hybrids with no apparent loss in production compared to Intrasubspecific
matings. However, i1t must be stressed that the developmental success of the
F1 Intersubspecific hybrid embryos does not indicate a concomitant success of
F2 or backcrossed hybrid embryos. The "balanced" genomes found in the F{ may

result in a short term stability or luxuriance. However, folliowing
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recombination and Independent assortment during gamete production, [t is our
prediction that the resulting embryos produced would show a decreased fitness
by exhiblting decreases in the success of morphological development
accompanied by Increases in the abnormalities of deveiopmental patterns of

gene expresslon.
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Table 2

The Normalized Developmental Time of Initial Expression

or Increase of Enzyme Activity

embryoﬁ
F FN NF N

locus

lck-A 0.55 0.75 0.77 1.00
lck-B 0.55 0.55 0.77 1.00
2¢ck-C 0.55 0.55 0.77 1.00
2 Ak-A 0.66 0.45 0.60 0.60
Zpgm-A 0.55 0.36 0.47 0.60
2Gpi-A 0.83 1.00 1.27 1.00
lgpi-B 0.55 0.55 0.47 0.60
21.4h-A 0.17 0.17 0.23 0.23
lpdh-B 1.12 1.00 1.17 0.77
lydh-c 1.12 1.13 1.41 1.41
21dh-A 0.55 0.55 0.47 0.47
l14h-B 0.55 0.55 0.60 0.47
2Mdh-A 0.67 0.67 0.60 0.47
1Mdh-B 0.76 0.76 0.60 6.77
2pat-A 0.76 0.66 0.60 0.47
26Pgdh-Al  0.56 0.56 0.77 0.34

1) Enzyme loci that are first expressed during embryogenesis.
2) Enzyme loci that encode for activities that are present
throughout embryogenesis,
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Table 3

The Percentage of Lnzyme Activity Contributed

by Each Isozyme Locus

Normalized Developmental Time

Embryos Enzyme Locus 0.40 0.65 0.85 1.00 1.30
FxF CK A 0 43 39 38 30
B 0 14 41 21 45

C 100 43 20 21 25

LDH A 100 100 100 100 85

B 0 0 0 0 14

C 0 0 0 0 \

MDH A 100 93 90 91 83

B 0 7 10 9 17

GP1 A 100 717 89 89 86

B 0 23 11 11 14

F x N CK A 0 0 26 32 30
B 0 19 37 34 35

C 100 81 37 34 35

LDH A 100 100 100 90 85

B 0 0 0 10 14

C 0 0 0 0 1

MDH A 100 100 79 92 83

B 0 0 21 8 17

GPI A 100 89 73 73 73

B 0 11 27 127 27
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Table 3, continued

Normalized Developmental Time

Embryos Enzyme> Locus 0.40 0.65 0.85 1.00 1.30
N x F CK A ] 0 17 18 30
B 0 0 33 41 35

C 100 100 50 41 35

LDH A 100 100 100 100 70

B 0 0 0 0 30

C 0 0 0 0 0

MDH A 100 98 90 92 84

B 0 2 10 8 16

GPI A 100 92 76 75 59

B 0 8 24 25 41

N x N CK A 0 0 0 0 30
B 0 0 0 0 39

c 100 100 100 100 31

LDH A 100 100 84 79 67

B 0 0 16 21 33

C 0 0 0 0 )

MDH A 100 100 98 96 83

B 0 0 2 4 17

GPL A 100 87 74 73 74

B . 0 13 26 27 26

5-29



vV urmg

Fig. 1. The ontogenetic profiles of total creatine kinase specific activity
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Fig. 2. The ontogenetic profiles of creatine kinase A subunit activity for
each of the four kinds of embryos. The horizontal axis Indicates
normal ized developmental time from the onset of retinal pigmentation

stage to the active free swimming stage. See Figure 1 legend for
details.
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Fig. 3. The ontogenetic profiles of creatine kinase B subunit activity for-
each of the four types of embryos. The horizontal axlis Indicates
normal ized developmental time from the onset of retinal pigmentation
stage to the active free swimming stage. See Figure 1 legend for
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Fig. 4. The ontogenetic profiles of creatine kinase C subunit activity for
each of the four kinds of embryos. See Figure 1 legend for detalls.
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Fig. 5. The ontogenetic profiles of total glucosephosphate isomerase subunit

activity for each of the four kinds of embryos. See Figure 1 legend
for details.
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Fig. 6. The ontogenetic brofiles of glucosephosphate Isomerase A subunit
activity for each of the four kinds of embryos. See Figure 1 legend
for detalls.

S
49~ 3
S S FLMB
3 :
42 S S %
S 8 X ]
{ ' { NLMB

OFN
21
14 o\
.

e N

| | 1 1 | o | |
0.2 04 0]) 08 10 |12 1.4 |6

Normalized Developmental Time

5-35



Fig. 7. The ontogenetic profiles of glucosephosphate Isomerase B subunit
activity for each of the four kinds of embryos. The horizontal axis
Indicates normalized developmental time from the posthatch stage to
the active free swimming stage. See Figure 1 legend for details.
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Fig. 9. The graphical representation of the princlipal component analysls.
The horizontal axis indicates the weighted scores of the first factor
of the analysis. The first factor has a strong developmental time
component and accounts for 76% of the varlance. The vertical axls
Indicates the weighted scores of the second factor of the analysis.
The second factor lgnores the time component and focuses on the
enzyme locl that contributes the most to the between-cross variation
with regard to the levels of enzyme activity. The symbois are as
foilows: O , FxN; O , FLMB; A , NxF; and [0 , NLMB. The numbers
within each symbol designates the developmental times, 1-6 (see

Materials and Methods), during which the enzyme activity leveis were
assessed.
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ABSTRACT

Genetically confirmed stocks of the northern largemouth bass (Micropterus
salmoides salmoides), Florida largemouth bass (M. s. floridanus), and both
reciprocal Fq hybrids were produced in the laboratory using manual
stripping/artificial fertilization techniques. Eggs from each stock were
ralsed through hatching at 20+1°C. Samples of eggs at each of six key
morphological stages of deveiopment were removed and Incubated with 3H-teucine
or SH-uridine to measure amounts of protein or RNA synthesis, respectively.
Although radiocactively labelled precursors were incorporated at low levels,
which increased through embryogenesis, no significant differences in the

pattern of protein or of RNA synthesis could be detected among the four stocks.



INTRODUCT ION

Compared to amphibians and echinoderms, rather |imited data are available
concerning the processes of transcription and transiation in fishes. Available
reports indicate that the synthesis of RNA during teleost oogenesis (Barmeister
1973, Neyfakh and Abramova 1974, Mazabraud et al. 1975) Is similar to the
pattern of Tfanscrlpflon in amphibian oogenesis (Davidson 1976). During early
teleost oogenesis the bulk of the transcribed RNA is tRNA and 5S RNA stored as
42S ribonucieoproteins within the cytoplasm (Mazabraud et al 1975). The bulk
of the 5S RNA in teleost oocytes differs from 5S RNA found in somatic cells
and, therefore, is presumably transcribed from genes normally repressed In
these cells (Mazabraud et al. 1975). The genes encoding the 185 and 28S rRNA
molecules apparently become amplified during early oogenesis (Vincent et al.
1968) with the corresponding 185 and 28S rRNA molecules not becoming
transcribed until late oogenesis (Mazabraud 1975). Only after the synthesis of
these rRNA molecules are the teleost ribosomes assembled and stored in the yolk
(Kafianl and Timofeeva 1962). Throughout teleost oogenesis variable amounts of
high molecular weight heterogeneous RNA accumulates. This heterogeneous RNA
presumably represents the maternal pre~mRNA and mRNA species required to
support protein synthesis during early embryogenesis. As in many other
developing organisms, when the teleost oocyte reaches maturation, transcription
and translation abruptly halt and the egg remains synthetically quiescent until
after fertilization (Kafiani 1971).

From fertilization to organogenesis, there Is relatively littie change in
the total amount of RNA within a developing fish egg: There Is, however, a

significant influx of RNA from the yolk into the cells of the developing
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embryo. This RNA is most |ikely rRNA primarily (Kafiani and Timofeeva 1962).
Despite the relafively constant level of total RNA in developing fish eggs, the
level of transcription of specific classes of genes during this period changes
dramatically. Prior to the formation of the b(asfula only a low level of
transcription Is detectable, much of which has been assigned to the
mitochondria (Baltus et al 1965, Kafianl et al. 1969). Recent evidence,
however, lnd}caTes that at least a portion of the synthesis of precursor tRNA's
during cleavage may be nuclear in origin. However, these tRNA species are
apparently processed only after the mid-blastula stage (Timofeeva and Solovjeva
1973).

In most teleosts, at the mid-blastula stage transcription increases
dramatically (Neyfakh and Abramova 1974), however, the bulk of this newly
synthesized RNA is heterogeneous nuclear RNA (HnRNA) (Kaflani and Timofeeva
1964, Kafiani et al. 1969). As in other developing eukaryotes, this HnRNA is
characterized by having a high molecular weight, a DNA-|ike base composition
and a fast turnover rate within the nucleus (Rachkus et al. 1969a). It has
been postulated that this HnRNA contalns precuréor mRNA which requires one or
more processing steps and transport from the nucleus to the cytopiasm before
maturation of the mRNA molecules is complete (Neyfakh et al. 1972). These
authors have demonstrated a slight but signiflcant temporal separation between
the Initial burst of transcription (at mid-blastula) and the appearance of this
newly synthesized RNA in the cytoplasm. Furthermore, it has been demonstrated
that the majority of the RNA synthesized in the nucleus Is never tfransported to
the cytoplasm, much of the RNA transported to the cytoplasm being found in
large ribonucieoprotein particles of unknown function (Spirin 1966, 1969). The

resuits obtained from DNA-RNA annealing experiments demonstrated that the
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cytoplasmic mRNA molecules synthesized during blastuia formation and epiboly
are more homogenéous than the HnRNA synthesized during this same period
(Rachkus et al. 1969a). As development proceeds from epiboly through
organogenesis, however, the cytoplasmic mRNA molecules become more
heterogeneous in thelr molecular welght as well as their hybridlzation
characteristics. These results suggest that as development proceeds, mRNA
tends tfo become Increasingly franscribed from new unlque sequences.
Competition hybridization experiments, however, have revealed that there is a
significant overlap of RNA species produced at all stages of development
(Rachkus et al. 1969b).

In teleosts there is a low level of protein synthesis in the unfertilized
egg which changes |ittle after fertilization and during cleavage (Krigsgaber
and Neyfakh 1968, 1972, Neyfakh and Abramova 1974), This low level of
synthesis, however, appears necessary for normal morphogenetic development
(Crawford et al. 1973). Protein synthetic activity starts fo rise at
mid-blastula, presumably corresponding to the time at which mRNA molecules
synthesized after fertilization first become transliated. Transiation continues
to Increase at least through epiboly (Krigsgaber and Neyfakh 1968, 1972,
Neyfakh and Abramova 1974). This pattern of activation of protein synthesis
more closely resembles that found In the amphiblans than In the sea urchins.

Embryonic protein synthesis occurs almost exclusively in the cells of the
blastoderm, although fransiation in the mitochondria probably occurs at low
levels In the yolk (Krigsgaber and Neyfakh 1968, Neyfakh and Abramova 1974).
Prior to epiboly, however, translation occurs on preformed ribosomes, some of
which have migrated into the blastoderm cells from the yolk (Kaflani and

Timofeeva 1962, Ajtkhoghin et al. 1964, Krigsgaber and Neyfakh 1968). The
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majority of the proteins synthesized during these periods of early
embryogenesis become associated with the nucleus, while almost none of the
proteins become associated with mitochondria. However, very |ittle information
Is available concerning the synthesis of specific protein molecules during

teleost development, and the factors governing their regulation have not yet

been elucidated.
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MATERIALS AND METHODS

Embryos of each of four stocks of largemouth bass, NLMB, NxF, FxN, and
FLMB, were formed in the laboratory by manually stripping ripe eggs from NLMB
(collected from Clinton Lake, [llinois) or FLMB (collected from Lake Dora,
Florlda) females, spiitting the expressed eggs Into two batches in petri
dishes, and fertilizing one-half of the eggs with sperm from NLMB and one-hal f
with sperm from FLMB. These sperm-egg mixtures were allowed to sit for five
minutes to allow for fertillization. They were then spread thinly into glass
dishes containing approximately 1.0 cm water and allowed to water harden for
about 30 minutes. These eggs were Incubated at 20°+ 1°C until they hatched.
Dead embryos were removed and water changed three to four times daily.
Morphological development was monitored visually using a dissecting mlcroscope.
At each of six key morphological stages during prehatch embryogenesis, sampies
of 200 eggs were removed, washed with sterilized water, and placed in 2.00 mi
sterilized water containing 400 uCi 3H-leucine or 40 uCi SH-uridine. These
eggs were incubated for 20 minutes at 20°C with gentle agitation. Following
Incubation, the 3H-incubation mixture was removed and the eggs were washed with
5.0 ml sterllized water and then frozen in 1.0 ml sterllized water at -20°C
awaiting analyslis.

To determine levels of protein synthesis, the samples incubated with
3H-leucine were thawed, homogenized in a ground-glass Potter-Elvejehm
homogenizer, and centrifuged for 10 minutes at 10,000xg at 4°C to remove
structural debris. The resulting supernatants were brought to 70% safuréfion
with ammonium sul fate to precipitate proteins. The precipitated protein
mixture was col lected by centrifugation at 20,000xg for 10 minutes at 4°C and

resuspended in 2.0 ml of 100 mM Tris-HCI, pH 7.0. This precipitation and
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resuspension procedure was repeated twice to remove unincorporated 3H-leucine.
A 0.10 ml sample of the radioactively labelled protein was precipitated using
cold 10% trichloroacetic acid and collected on millipore fiiters. The
radioactivity was then measured In a Packard Tri-carb scintiliation counter as
described in Philipp and Parsons (1979).

To determine levels of RNA synthesis, the samples incubated with
3H-uridine were thawed, homogenized in a ground-glass Potter-Elvejehm
homogenizer, and centrifuged at 10,000xg for 10 minutes at 4°C to remove
debris. Following addition of unlabelled carrier RNA, labelled RNA was
lsoléfed from the supernatants using a Phenol-SDS extraction procedure
(Phenol-saturated with 10 mM Tris-HCI, pH 9.0 and 0.25% sodium dodecyl!sul fate),
followed by cold ethanol precipitation og the RNA. Following precipitation,
RNA was collected by centrifugation at 20,000xg for 20 minutes at 4°C, and the
resulting precipitated RNA was resuspended in 1.0 mi of 10 mM Tris-HC|, pH 8.1.
A 0.10 ml sample of the radioactively labelled RNA was precipitated using cold
10% trichloroacetic acid and collected on millipore filters. The radioactivity
was then measured in a Packard Tri~carb scintillation counter as described in

Philipp and Parsons (1979).
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RESULTS

Morphological development of the NLMB, NxF, FxN and FLMB embryos followed
the pattern described by Philipp et al. (1984). The percentage of fertilized
eggs In each cross tested was greater than 98%. Hatching percentage for each
cross was greater than 85%. No increased level of morphological abnormalities
were observed in any one of the four crosses. No mortality was observed uring
the 3H-leucine or 3H-uridine Incubation phases.

The results of the transiation experiments using 3H-leucine as a label led
precursor to measure protein synthesis In the embryos of each of the four
stocks Is shown in Table 1. No significant differences In translation patterns
were observed among the four stocks. There was a gradual Increase in the rate
of 3H-leucine incorporation as embryogenesis proceeded from the ealy cleavage
stages untii just prior to hatching. The greatest increase appeared to be
during formation of blastula and epiboly.

The results of the transcription experiments using 3H-uridine as a
labelled precursor to measure RNA synthesis In the embryos of each of the four
stocks Is shown in Table 2. No significant differences In the patterns of
transcription were observed among the four stocks. There was a gradual
increase In the rate of 3H-urldine incorporated as embryo deveiopment proceeded
from early cleavage through hatching. There was no obvious period of major

Increase In transcriptional rates.



DISCUSSION

In previous studies it has been shown that transliation levels In
developing fish embryos are initially low, but increase during formation of the
blastula and epiboiy (Krigsgaber and Neyfakh 1968, 1972, Crawford et al. 1973,
Neyfakh and Abramova 1974), The results obtained In the present study agree
with these other studies. The fact that the overall quantitative patterns of
proféln syntheslis among the four stocks did not significantly differ may not be
surprising, since the morphoiogical patterns of development were so simllar.
Based upon the results obtalned by Parker et al. (1984), qualitative
differences In the speciflic proteins synthesized would be expected. However,
since the amount of 3H-leucine which was-incorporated into newly synthesized
protein was so low, no further fractionation of these labelled proteins was
performed In an attempt to determine qualltative differences among the four
stocks.

Previous studles revealed that levels of transcription during
embryogenesis remaln fairiy constant (Kafianl and Timofeeva 1962, 1964, Baltus
et al. 1965, Kaflani et al. 1969, Rachkus et al. 1969, Timofeeva and Solovjeva
1973). This was observed In the present study. A gradual rise In
transcription rates from early cleavage through hatching did occur, but there
were no major Increases at any one stage. Due to the low level of 3H-uridine
Incorporated during the Incubations, no further fractionation of the
3H-1abelled RNA moiecules was attempted. The use of cell-free ln yitro
transiation systems may in fact reveal greater qualitative differences In gene
expression at this level than this type of In yivo labelling procedure. These

In vitro procedures will be tested In the future.
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Table 1. Incorportion of 3H-leucine Into protein during the development of
NLMB, NxF, FxN, and FLMB embryos.

Incorporated 3H~leucline (cpm/.10 ml allquot)

Morphological (mean of two Incubations)

stage NLMB NxF FxN FLMB
8-16 cell 294 174 192 243
Blastula 386 341 361 392
1/2 Eplboly 478 407 393 441
Body Axls 481 480 ' 461 504
14-16 Somltes 546 502 553 510
Prehatch 533 553 608 579
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Table 2. lIncorportion of 3H-uridine Into RNA during the development of NLMB,
NxF, FxN, and FLMB embryos.

Incorporated SH=uridine (cpm/.10 ml al iquot)

Morphological (mean_of fwo [ncubations)

stage NLMB NxF FxN FLMB
8-16 cell 132 164 153 158
Blastula 146 159 168 170
1/2 Epiboly 198 206 200 189
Body Axls 242 251 228 233
14-16 Somites 291 303 254 286
Prehatch 306 315 298 329
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ABSTRACT

Geneficélly confirmed stocks of the northern largemouth bass (Micropterus
salmoides salmoides), Florida largemouth bass (M. s. floridanus), and both
reciprocal F{ hybrids were produced in Champaign, lllinols through natural
spawning In 0.087hec+ére earthen ponds. Individuals of each of these stocks
were removed durlpg autumn and placed In aerated tanks at collection
temperatures. Temperatures were adjusted at a rate of 1°C per day until final
acclImation temperatures of 8°, 16°, 24° or 32°C were reached. Iindividuals of
each of the four stocks were acclimated for 30 days at each of these four
temperatures. Muscle and liver tissue extracts were assayed spectrophoto-
metrically to determine specific activity levels for six enzyme systems
(lactate dehydrogenase, creatine kinase, glucosephosphate Isomerase, malate
dehydrogenase, Isocitrate dehydrogenase and aspartate aminotransferase).
Serial dilution electrophoretic analysis of these extracts permitted further
partitioning of total enzyme activities into Individual locus contributions.
Several of the enzyme locl expressed in specific tissues, ‘Ldh-A (muscle), Ck-A
(muscle), GplfB (huécle), Mdh-B (musclie) and Aat-B (liver) exhibited a commmon
pattern in.which the FLMB and FxN stocks had much lower activity levels at 8°C
than the NLMB and NxF stocks, but much higher activity levels at 32°C. These -
results indicated that there Is a differential regulation of these Important
metabol ic enzyme loci In these stocks In response to temperature. |In addition,
differential thermal regulation of the northern (B!) and Florida (B3) alleles
at the Aat-B |ocus among the NxF and FxN Fy hybrids Indicated the existence of
different regulatory alleles associated with these different structural

alleles.



INTRODUCT ION

The temperature of the aquatic enQironmenf plays a vital role in the life
history of fishes. Most fish usually deal with abrupt shifts in water
temperature, such as +hése caused by sudden climatic changes or by sudden
influx or cessation of a thermal discharge, through behavioral thermo-
regulation. Largemouth bass, Micropterus salmoides, have a distinct preferred
temperature range, as well as upper and lower avoidance and lethal temperatures
(Fry 1950, Hart 1952, Ferguson 1958, Coutant 1975a, b, Reynoids and Casterlin
1976, Reynolds et al. 1976, Magnuson and Beitinger 1978, Venables et al. 1977,
Cichra et al. 1981, Fields et al. 1984, Koppelman et al. 1984). When abrupt
local ized temperature shifts occur, largemouth bass are usually able to migrate
to more preferred temperatures and thus physicalily avoid undesirable or adverse
thermai condi+lohs.

However, when‘normal seasonal changes occur, thermal fluctuations are
usually gradual, and areas of preferred temperatures often do not exist. Most
fish species exhibit at least a partial capacity for physiological
thermoregulation during seasonal temperature changes (Carey and Teal 1969,
Stevens and Fry 1970, 1974). Thermal acciimation involves metabolic
alterations at a number of different molecular levels (Hart 1952, Brett 1956,
Fry 1967, Fry and Hochachké 1970, Prosser 1973, 1975, Hochachka and Somero
1973, Coutant et al. 1974, Hazel and Prosser 1974, 1979, Somero 1975, Moon
1975, Wilson et al. 1975, Shaklee et al. 1977). The abillity or inability of
one Individual In a population to acclimate Its metabolism to seasonal thermal
regimes is a key factor in governing individual fitness. This acclimation
ability has a strong genetic component which probably encompasses differences

at both structural and regulatory genes (Shaklee et al. 1977).
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Since different populations of a single species often occupy quite
different geographic regions, there may be no one genotype within that species
to allow for optimal thermal acclimation under all environmental conditions
encountered within Its range. Selection for enzymatic attributes suitable for
populations in specific thermal regimes becomes increasingly important for
specles such as the largemouth bass which inhabit geographic areas encompassing
a varlety of thermal environments. The metabolic requirements for |argemouth
bass inhabiting waters In the northern extreme of the range (e.g., Minnesota,
Wisconsin) must certainly be different from those for largemouth bass
Inhabiting waters In the southern extreme of the range (e.g., Fiorida).

Indeed, significant differences in the thermal properties and requfremenfs at
the organismic level have been reported for the two subspecies of fargemouth
bass, the northern largemouth bass, M. s. salmoides, and the Florida largemouth
bass, M. s. floridanus (Hart 1952, Clugston 1964, Addison and Spencer 1972,
Chew 1975, Inman et al. 1976, Zolczynski and Davies 1976, Latta 1977, Bottroff
and Lembeck 1978, Chichra et al. 1981, Smith and Wilson 1981, Wright and Wigtil
1981). The fact that allellc differences exist at loci encoding metabolically
significant enzymes of largemouth bass (Phitipp et al. 1981, 1983a) and that
different allelic isozymes have different thermal kinetic properties (Hines et
al. 1983) suggests that some of these differences may be contributing to
differential organismic fitness.

The purpose of the present study was to monitor quantitative changes in
key metabolic enzymes among four stocks of largemouth bass (NLMB, NxF, FxN,
FLMB) in response to changes in acclimation temperature. In this manner, we
have assessed the variability among these different genetic stocks in the

accl imation responses of different enzyme loci among different tissues. This
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assessment of differences in acclimation responses among the four genetic
stocks serves also to assess the differences In the ability of each of these

stocks to adapt to different thermal ranges.



MATERIALS AND METHODS
Production of Genetic Stocks:

Pure northern largemouth bass (NLMB), M. s. salmoides, were collected
from Bone Lake, Wisconsin during October, 1978. Right pectoral fin clips were
removed from each adult prior tfo sfockfng and utilized for electrophoretic
analyses of each individual (Philipp et al. 1979, 1983a). All Individuals
retained contained only the Mdh-B!, 1dh~B!, Sod-AZ and Aat-B! or BZ alleles,
Indicating they represented the pure northern subspecies. These individuals
were held outdoors In 0.08 hectare ponds until the onset of the project in
April 1980. Pure Florida largemouth bass (FLMB), M. s. floridanus, were
col lected from Lake Dora, Florida during January, 1980 and again during
February, 1981. These fish were air shipped to Champaign and heid indoors at
8-12°C. Left pectoral fin clips were removed from each adult prior to stocking
outdoors and utilized for electrophoretic analyses of each individual. All
individuals contained only the Mdh-B2, |dh-B3, Sod-A! or Sod-AZ and Aat-B> or
Aat-B4 alleles, indicating they represented the pure Florida subspecies. In
March of 1980 'and 1981, the collected individuals were stocked outdoors in 0.08
hectare poﬁds. |

During the spring of 1981, these brood stocks were used to produce NLMB,
FLMB and both reciprocal F! hybrids, NLMB § x FLMB d" (NxF) and FLMB  x NLMBS"
(FxN) by stocking 0.08 hectare ponds as follows:

Pond 1: 5 NLMB % and 5 NLMBO”
Pond 2: 5 NLMB® and 6 FLMBo”
- Pond 3: 6 FLMB? and 5 NLMBJ"
Pond 4: 8 FLMB® and 6 FLMBo”
Spawning was successful In all four production ponds. Ponds were drained on

September 21, 22, 25 and 28, 1981, and approximately 1,200 50 mm fingerlings



were recovered from each pond. Electrophoretic analysis of subsamples of 100

fingerlings from each stock conflrmed thelr genetlc purlity.
Acclimation Procedure:

Fingeriings of each of the four stocks of bass produced in 1981 were
collected and held In thermally regulated aquarla under a 12L-12D 24 hour I1lght
schedule. The temperatures of the aquaria were adjusted at the rate of 1°C per
day untll the deslred acclImation temperatures were reached. The acclImation
temperatures were 8°, 16°, 14°, and 32°C. These largemouth bass were then held
for a 30 day period to allow for total thermal acclimation. During this period
these fingerlings were fed |ive Daphnia magna and frozen brine shrimp three

times daily. Following total thermal acclimation, these largemouth bass were

frozen awaiting enzyme analysis.
Enzymatic Determinations:

For enzyme actlvity determinations, |lver and muscle were dissected and
homogenized In 100 mM Tris-HC1, pH 7.0. After centrifugation, the resulting
supernatants were spllt into two allquots. The first aliquot was used to
spectrophotometrically determine total enzyme activity (speclfic activity:
International Enzyme Units/mg soluble protein) and protein concentrations. The
speclflc enzymatic assays were performed spectrophotometrically at 25°C for the
following enzymes: (1) creatine kinase, CK (EC 2.7.3.2), (2) adenylate kinase,
AK (EC 2.7.4.3), (3) phosphoglucomutase, PGM (EC 2.7.5.1), (4) glucosephosphate
Isomerase, GPl (EC 5.3.1.9), (5) malate dehydrogenase, MDH (EC 1.1.1.37), (6)
lactate dehydrogenase, LDH (EC 1.1.1.27), (7) isocitrate dehydrogenase (NADP),

IDH (EC 1.1.1..41), (8) 6-phosphogluconate dehydrogenase, 6-PGDH (EC 1.1.1.44),
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and (9) aspartate aminotransferase, AAT (EC 2.6.1.11). The reaction mixtures

used for each assay were, with slight changes, based on Shaklee et al. (1977)

with the
(1969).

(1)

(2)

(3)

(4)

(5)

(6)

(7

(8)

(9)

exception of that used for PGM, which was based on Dawson and Mitcheil

AK

PGM

GP!

LDH

MDH

IDH

6-PGDH

AAT

20 mM Tris~HCI pH 7.5, 4.0 mM MgCip, 3.3 mM glucose, 0.5 mM
ADP, 0.15 mM NADP, 1.0 unit/ml hexokinase, 1.0 unit/ml
glucose-6-phosphate dehydrogenanse.

Identical to the AK reactlion mixture except that 10.0 mM
phosphocreatine was added.

4 mM Imidazole-HCI pH 7.5, 3.0 mM MgCip, 1.5 mM EDTA, 0.17
mM NADP, 1.7 mM glucose-1-phosphate, 3.3 mM glucose-1,
6-diphosphate, 1.0 unit/ml glucose-6-phosphate dehydrogenase
(Dawson and Mitchell 1969).

© 20 mM Tris-HCI pH 7.5, 3 mM MgCip, 0.13 mM NADP, 2.0 mM

fruéfose-G-phosphaTe, 1.0 unit/ml giucose-6-phosphate
deydrogenase.

0.1 M phosphate buffer pH 7.0, 1.0 mM pyruvate, 0.14 mM
NADH.

0.1 M phosphate buffer pH 7.0, 0.22 mM oxaloacetate, 0.14
mM NADH. '

50 mM Tris-HCl pH 7.5, 2.0 mM MgCip, 0.15 mM NADP, 1.0 mM
Isocitrate.

50 mM Tris-HCI pH 7.5, 2.0 mM MgCi2, 0.15 mM NADP, 2.0 mM
6-phosphogl uconate.

50 mM Tris-HCI pH 7.5, 0.7 mM ketoglutarate, 10.0 mM
aspartate, 0.08 mM pyridoxal-5-phosphate, 0.1 mM NADH, 1.0

unit/ml malate dehydrogenase.
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Enzyme activities were determined by monltoring the changes In absorbance
at 340 nm using a Beckman Kintrac VI1 spectrophotometer and are expressed as
International Units. The final volume of the reaction mixture was 1.0 mi.
Reactions were Initiated with the addition of enzyme extract (1-50 ul of the
appropriate supernatant, depending upon the enzyme being assayed). Protein
concentrations of each supernatant were determined using the procedure of Lowry
et al. (1951) as modified by Mason et al. (1973).

The second al iquot was subjected to a serial dilution-starch gel
electrophoretic analysis to partition out total enzyme activity to the
individual Isozyme components present In each tissue (Klebe 1975, Magee and
Phillpp 1982). In this way, the relative contribution of the 16 individual
genes was determined for both tissues of each fish Incubated at all four
temperatures. The vertical starch gel electrophoresis and histochemical
stalning procedures used In these analyses were performed essentially as

described in Phillpp et al. (1979).



RESULTS

The specific activity determinations for the ievel of total lactate
dehydrogenase activity, as well as the individual contributions of the Ldh-A
and Ldh=B locl for both muscle and liver tissue In all four stocks are given in
Table 1 and dlagramatically represented in Figures 1 and 2. |In muscle, the
predominant LDH activity is contributed by the Ldh-A locus. The different
stocks demonstrated an Interesting thermal activity pattern, and one which was
seen for several enzyme loci (Fig. 1). At 8°C, the FLMB and FxN had relatively
iow LDH-A activity levels. However, as acclimation temperature increased,
thelr LDH-A activity levels sharply Increased as well, to levels much higher
than the NLMB and NxF stocks at 32°C. Very minimal and constant LDH activity
patterns were observed in Iiver sampies from all stocks (Fig. 2).

The specific activity determinations for the level of total creatine
kinase activity, as well as the Individual contributions of the Ck-A, Ck-B, and
Ck-C loci for both muscle and |lver tissue in all four stocks are given in
Table 2 and diagramatically represented in Figures 3 and 4. In muscle, the
predominant CK activity is contributed by the Ck-A locus. The stocks exhibited
a thermai actlvity pattern simiiar to that for the Ldh~A locus In muscie. The
FLMB and FxN stocks had the lowest activity levels at 8°C, but the highest ones
at 32°C (Fig. 3). Again, only mlHlmaI and relatively constant thermal activity
patterns for CK were observed for all stocks in |iver tissue (Fig. 4).

The specific activity determinations for the level of tfotal
glucosephosphate Isomerase activity, as well as the individual contrlibutions of
the Gpli=A and Gpi-B loci for both muscle and |iver tissue In all four stocks
are given in Table 3 and dlagramatically represented In Figures 5 and 6. In

muscle, the predominant GPl activity Is contributed by the Gpi-B focus. The
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four stocks again exhibited a thermal activity pattern similar to those of the
Ldh=A locus and the Ck-~A locus in muscie. The FLMB and FxN stocks had the
lowesT acfi?ify levels at 8°C, but the highest ones at 32°C (Fig. 5). In
liver, the predominant GP| activity Is contributed by the Gpi-A locus. In this
case, the FLMB had the lowest level of activity at 8°C and the NLMB the highest
level of GPI-A activity. At 32°C, these positions remained unchanged, but they
did grow much closer (Fig. 6).

The specific activity determinations for the level of total malate
dehydrogenase activity, as well as the individual contributions of the Mdh-A,
Mdh-B, and Mdh-M loci for both muscie and liver In all four stocks are given in
Table 4 and diagramatically represented in Figures 7 and 8. In muscle, the
predominant MDH activity is contributed by the Mdh-B locus, although
measureabie Mdh-A locus contribution is also present. Aithough no definitive
thermal activity pattern was observed among the stocks of largemouth bass for
the Mdh-A iocus, the pattern seen before for other loci in muscle (Ldh-A, Ck=-A,
Mdh-B) was observed for the Mdh-B locus In this tissue (Fig. 7). The FLMB and
FxN had the {owest Mdh-B contributions at 8°C, but the highest at 32°C. The
NLMB and FLMB used in this study had fixed allelic differences at this locus.
As a resul+, The.genofype of the four- stocks are as follows: NLMB = B1/B1; NxF
= B1/BZ; FxN = B1/BZ; FLMB = BZ/B2. The differences in thermal activity
patterns among the stocks do not simply reflect differences in the ailelic
Isozymes because the MDH activity patterns of the two reciprocal hybrids are
quite different, even though their genotypes at this locus are identical. In
addition, no differences in allelic contributions between the B! and B2 alleles
were noted in these heterozygous individuals. In all cases, serial dilution
electrophoretic analyses revealed a 1:1 ratio of MDH-B1:MDH-BZ subunits. In

4
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the Ilver, the predominant MDH activity Is contributed by the Mdh-A locus. For
all stocks, the thermal activity pattern was similar, peak activity occurring
at 24°C (Fig. 8). In this case, the NLMB had the highest levels of MDH
activity and the FLMB the lowest.

The specific activity determinations for the level of total Isocitrate
dehydrogenase activity, as well as the individual contributions of the ldh-A
and [dh=B loci for both muscle and liver in all four stocks are given In Table
5 and diagramatically represented in Figure 9. In muscle the predominant [DH
activity is contributed by the Idh-A locus, whereas in liver It Ic contributed
by the Idh-B locus. Relatively constant and similar thermal activity patterns
for atl four stocks were observed for both the Idh-A locus In muscle and the
Idh=-B locus In liver (Fig. 9). Interestingly, the NLMB and FLMB used in this
study had fixed allelic differences at the |dh-B locus. Similar to the Mdh-B
locus, no differential allelic contributions were noted for the Idh-B! (NLMB)
and the 1dh-B3 (FLMB) alleles at any of the acclimation temperatures studied.

The specific activity determinations for the level of total aspartate
aminotransferase activity, as well as the individual contributions of the
Aat-A, Aat-B, and Aé+-M loci for both muscie and liver in all four stocks are
given in Table 6 and diagramatically represented in Figures 10 and 11. |In
addition, the individual contributions of the Aat-B! (M. s. salmoldes) and
Aat-B3 (M. s. floridanus) alleles In the liver of the NxF and FxN Fq{ hybrids
are represented In Figure 12. In muscle the predominant AAT activity Is
contributed by both the Aat-A and Aat-M loci. Relatively constant and similar
thermal activity patterns for all four stocks were observed for both AAT loci
in this tissue (Fig. 10). In liver the predominant AAT activity Is contributed

by the Aat-B locus. Here again, the four stocks exhibited a thermal activity

”
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pattern similar to Ldh-A (muscie), Ck-A (muscle), Gpi-B (muscle) and Mdh-B
(muscle). The FLMB and FxN stocks had the lowest AAT-B subunit activity levels
at 8°C, but the highest at 32°C (Fig. 11). The NLMB and FLMB used in this
study were fixed for alternative alleles at this locus too. NLMB had a gl/8!
genotype, FLMB a B3/B3 genotype and both hybrids a B'/B3 genotype. The thermal
activity patterns for the AAT-B subunits in liver of the two hybrids were quite
different (Fig. 11). However, unlike the Mdh-B and 1dh-B loci, which also had
fixed allelic differences between the subunits, the two alleles showed
differentlial thermal activity patterns in the two Fy hybrid stocks, both with
B1/B3 genotypes (Fig. 12). In both the NxF and FxN hybrid, the activity
contributions of the B! and B3 alleles were approximately equal at 8°C.
However, as the acclimation temperature Increased, the relative amount of the
B3 allele compared to the B! allele Increased dramaticalliy. At 32°C, the ratio
of B3:B! contribution was 1.35 In the NxF and 1.40 In the FxN hybrid. This
divergence from true codominant allelic expression indicates the existence of

some differential regulation of allele expression at the molecular level.
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DISCUSSION

It has been falrly well accepted that most fish species have at least some
capaclity to thermoregulate thelr physiologlcal responses durlng seasonal
changes (Carey and Teal 1969, Stevens and Fry 1970, 1974). In fact,
thermoregulatory acclimation Involves metabolic alteratlons at a variety of
molecular levels (Hart 1952, Brett 1956, Fry 1967, Fry and Hochachka 19770,
Prosser 1973, 1975, Hochachka and Somero 1973, Coutant et al. 1974, Haze!l and
Prosser 1974, 1979, Somero 1975, Moon 1975, Wilson et al. 1975, Shaklee et al.
1977).

I+ has also been shown that largemouth bass have dlstinct upper/lower
avoidance and lethal temperatures (Fry 1950, Hart 1952, Ferguson 1958, Venables
1977, Cichra et al. 1981, Fieids et al. 1984), as well as distinct thermal
preference ranges (Coutant 1975a,b, Reynolds and Casterlin 1976, Reynolds et
al. 1976, Magnuson and Beltinger 1978, Koppeiman et al. 1984). In fact, Fields
et al. (1984) have shown that different genetic stocks of largemouth bass have
significantly different upper thermal tolerance |imits, and that these |imits
greatly depend upon acclimation temperature. Similarly, Koppelman et al.,
(1984) have shown that different stocks of largemouth bass have somewhat
different preferred temperatures, and that these values greatly depend upon
accl imation temperature, as well. These studies suggest that the different
stocks of largemouth bass thermally acclimate their metabolisms differently.
The present study was designed to test this hypothesis.

Although some of the loci studied were expressed at only very low levels
In one or both of the tissues studied, others, which were expressed
extensively, showed quite Interesting thermoregulatory patterns. Most

interesting was a common pattern exhibited by five enzyme loci, Ldh-A, Ck-A,

P
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Gpi-A, Mdh-B, all predominantly expressed In the white skeletal muscle, and
Aat-B, predominantly expressed In the llver (Figs. 1, 3, 5, 7 and 11,
respectively). For these five locl, the levels of expression In the FLMB and
FxN stocks are lower than those expressed in the NLMB and NxF stocks at 8°C,
but higher at 32°C. A somewhat analogous pattern of activity was observed for
the Gpi-B locus predominantly expressed in the liver (Fig. 6). At 8°C, the
FLMB and FxN stocks had much lower activities than the NLMB and NxF stocks.
However, at 32°C the levels of ail four stocks were comparable.

This common pattern Indicated that these different stocks were regulating
their levels of expression of certain specific genes differentially In response
to temperature. These changes In levels of key metabolic enzymes must
certalnly have significant effects upon the biochemical metabolic states of
these fish stocks. The suggestion Is that the two subspecies, the M. s.
salmoides and the M. s. floridanus, have different complements of regulatory
locl which are responding dlfferenf}ally to varying thermal conditions and
thereby regulating the expression of orthologous genes differentially in the
different stocks.

The patterns of thermal activity demonstrated by the Aat-B locus in the
llver tissue among the two Fj hybrids, NxF and FxN, further Illustrate this
differential regulation. The two ‘subspecific broodstocks of largemouth bass
used to produce the Fi stocks In this study had fixed allelic differences at
three loci monitored, Mdh-B, |dh-B and Aat-B. As a result, all Individuals of
both F1 hybrid stocks were heferozygous at these loci, Mdh-B!/B2, 1dh-B1/B3 and
Aat-B1/B3. The expression of the two alleles at the Mdh-B and the |dh-B loci
was exactly codominant at al! temperatures tested. That is, the ratio of

MDH-B!:MDH-BZ and IDH-B!:1DH-B3 subunit activity was always 1.0. This was not

”
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the case for the expression of the two alleles at the Aat-B locus (Fig. 12).
At 8°C the expression of the B! and B3 alleles was relatively codomlnant in
both Fq hybrids. However, as temperature Increased, the dlsparity of allele
expressions increased. At 32°C, the level of the FLMB allele (B3) was
substantially higher than the level of the NLMB allele 81y, reaching B3:B1
ratios of 1.35 in the NxF hybrid and 1.40 in the reclprocél FxN hybrid. There
Is a strong suggestion that the Aat-B loci in the two subspecies may have
different reguiatory elements that are cis-located to the structural gene
Itsel f.

The results presented in this study clearly suggest that the two
subspecies of largemouth bass and their reciprocal Fi hybrids regulate their
biochemical metabolisms differentially in response to different thermal
regimes. In addition, we postulate that this regulatory divergence stems from
an evolutionary divergence between these subspecies In the regulatory genes
controlling the expression of specl%lc enzyme loci. We feel that the
evolutionary divergence among stocks |s most dramatically affected by
divergence at these regulatory loci and less by divergence at structural loci
(Whitt and Philipp 1977, Philipp et al. 1979, 1981, 1983b, Parker et al. 1984).
We also feél that this divergence amohg stocks at specific regulatory loci
plays a major role Iin the genetic talioring of specific stocks for specific
environments through natural seiection, and thus, in determining the fitness of

one stock relative to another.
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SUBUNIT SPECIFIC ACTIVITY (UNITS/mg PROTEIN)

Figure 1. The effect of acclimation temperature on the LDH activity
lTevels in muscle tissue of four stocks of largemouth bass,
400 - NLMB(—), NxF(——), FxN(----), FLMB(-#—).
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Figure 2. The effect of acclimation temperature on the LDH activity
levels in liver tissue for four stocks of ltargemouth bass,
NLMB(—), NxF(—=—), FxN(----), FLMB(—®—).
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Figure 3. The effect of acclimation temperature on the CK activity

SUBUNIT SPECIFIC ACTIVITY (UNITS/mg PROTEIN)

levels in muscle _tissue for four stocks of largemouth bass,
NLMB(—), NxF{(——), FxN(----)FLMB( —o—).
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Figure 4. The effect of acclimation temperature on the activity

SUBUNIT SPECIFIC ACTIVITY (UNITS/mg PROTEIN)

lavels in liver tissue for four stocks of largemouth bass,

NLMB(=—), NxF(——), FxN(----), FLMB(-®—).
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Figure 5. The effect of acclimation temperature on the GPI activity
levels in muscle tissue for four stocks of largemouth bass,

NLMB(—), NxF(——), FxN(----), FLMB(—®—).
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Figure 6. The effect of acclimation temperature on the GPI activity
levels in liver tissue for four stocks of largemouth bass,
NLMB{ ——), NxF(——), FxN(----), FLMB(—e—).
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Figure 7. The effect of acclimation temperature on the MDH activity
levels in muscle tissue for four stocks of largemouth bass,
NLMB(— ), NxF(——), FxN(----), FLMB(-®—).
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Figure 8. The effect of acclimation temperature on the MDH activity

SUBUNIT SPECIFIC ACTIVITY (UNITS/mg PROTEIN)

levels in liver tissue for four stocks of largemouth bass,
NLMB(—— ), NXF(——),FxN(----), FLMB(—®—).
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Figure 9. The effect of acclimation temperature on the activity levels

of IDH in muscle and Tiver tissues for four stocks of largemouth
bass, NLMB(—), NxF{(——), FxN{~---), FLMB(—e—).
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Figure 10. The effect of acclimation temperature on the AAT activity

levels in muscle tissue for four stocks of largemouth bass,
NLMB(—), NxF{(——), FxN(----), FLMB({—e—).
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Figure 11. The effect of acclimation temperature on the AAT activity
levels in liver tissue for four stocks of largemouth bass,
NLMB(— ), NxF(——), LIVER FxN(----), FLMB(-@—).
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Figure 12. The effect of acclimation temperature on the allelic

SUBUNIT SPECIFIC ACTIVITY (UNITS/mg PROTEIN)

expression patterns for the Aat-Bl and Aat-B3 alleles

in the liver of NxF and FxN F1 hybrid largemouth bass.
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ABSTRACT

Four genetically confirmed stocks of largemouth bass (northern, Florida,
and both reciprocal Fi hybrids) were evaluated to establish whether thermo-
regulatory behavioral differences exist among them. Acute testing methods were
used in the laboratory to determine thermal preferenda in relation to seven
acclimation temperatures ranging from 8° to 32°C. Cubic regression analyses of
the results of the testing demonstrated that both pure subspecies and both
reclprocal Fy hybrids have similar final preferred temperatures. However, each
stock responded differently to the various acclimation temperatures, indicating

that the thermoreguiatory behavior of these different stocks differ.
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INTRODUCT ION

The impact of temperature on fish populations has been proposed to be
greater than any other abiotic factor (Beltinger and Fitzpatrick 1979). The
various thermal regimes assocliated with environments located in different
regions of the country must certainly be a strong selective force driving the
divergence of different stocks of fishes. As a result, it Is important to

evaluate the various effects of environmental temperature on all |ife stages of

fish (Beitinger and Magnuson 1979),

Thermal preference studies have been proposed to be precisely measurable
analyses of thermal adaptation among fish species (Magnuson et al. 1979).
These types of analyses have been conducted for various fish species of
different size and geographic locatlons to assess the effects of environmental
parameters such as season, photoperiod, salinity, and dissolved oxygen (Meldrim
and Gift 1971, Barans and Tubb 1973, Cherry et al. 1975, Goddard and Tait 1976,
Hall et al. 1978, ,Richards and Ibara 1978, Peterson et al. 1979, Tranqullll et
al. 1979, Mathur et al. 1981). Neill (1971) and Reynolds et al (1976), using
largemouth bass (Micropterus salmoides) in laboratory testing during daylight
hours, determined final thermal preferenda of 29 and 30.1°C, respectively.
Coutant (1975), when monitoring largemouth bass in small Tennessee lakes,
observed a final thermal preference of 27°C, Other centrarchid analyses have
ylelded varied results according to the species tested. Smallmouth bass
(Micropterus dolomieul) have been observed to prefer temperatures somewhat
lower than the largemouth bass. Barans and Tubb (1973) reported a therma|
preference range of 18-30°C. Ferguson (1958) reported a 28°C preferenda for
smal Imouth bass, a value close to that for largemouth bass reported by both

Coutant (1975) and Reynolds et al. (1976). Different studies on bluegilis
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(Lepomis macrochirus) have reported values ranging from 27.2°C observed during
night testing in the field (Neill 1971) to iaboratory values of 32.3°C
(Ferguson 1958, Reynolds and Casterlin 1976). During laboratory testing, green
sunfish (Lepomis cyanellus) expressed final preferred temperatures of 27.3,
28.2, and 30.6°C (Jones and lrwin 1965, Beltinger et ai. 1975, Cherry et al.
1975).

Although testing procedures differed among the various investigators with
regard to fish size and age, season, etc., it Is apparent that two imperative
conditions must be met when testing behavioral responses to a temperature
regime. First, ali test fish should be genetically analyzed to account for
potential physiological or behavioral response differences that may influence
movement toward a preferendum (Reynolds and Casterliin 1979). Secondly, all
fish used for testing purposes need to be fully (metabolically and
physiologicaliy) acclimated to test temperatures. Reynolds and Casterlin
(1979) further emphasized the importance of using confirmed genetic strains of
fish in these studies.

Philipp et al. (1981, 1983) recentiy completed a biochemical genetic
survey of 90 largemouth bass populations In the U.S. and determined that
substantial genetic differences exist among these populations. [n addifion,
latitudinal clines in the allele distributions at several loci were observed
(Philipp et al. 1982, 1983). In trying to understand the evolutionary basis
and thus the mode of seiection for existing genetic variation, researchers have
attempted correlations between enzyme phenotypes and certain environmental
varlables (Lewontin 1974). Since fish are poikilothermic, temperature is a
major environmental factor in controlling many aspects of their [1fe cycle.

Detecting clinal distributions of allele frequencies does not necessarily mean
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that these allele frequency differences arose as a result of these
environmental influences (Kimura and Ohta 1971, Ohta and Kimura 1971, Aspinwall
1974). However, clinal distributions of allele frequencies correfated with
environmental factors such as temperature can be the basls for further
investigations Into genetic differentiation. Observed gene frequencies can be
used to assess stock structures and subsequent analyses of each stock may
reveal functional differences.

Unfortunately, little consideration has been given to protecting the
Integrity of these different stocks. Significant genetic differences exist
between Florida largemouth bass (M. s. floridanus) and northern
largemouth bass (M. s. salmoides) (Phillpp et al. 1983)., Stocking
efforts to achieve bigger largemouth bass have involved the transportation of
the Florida subspecies to areas outside of their natural range (peninsular
Florida). Florida targemouth bass grow to much greater sizes than northern
largemouth bass when each are in their respective native ranges. However, this
is mainly the resuit of a combination of the longer growing season in the south
and the unique genetic attributes of the native largemouth bass which have been
selected for this specific environment.

In any given environment, performance of a stock determines the fitness
and thus the success of the stock in that environment. Selection pressures
have altered the genetic composition of the species, resulting In "tallored"
populations for specific environments. Thus, In a given environment, specific
genes in specific combinations which were advantageous, or at least not
deleterious, persisted, resuITIng in stocks tallored by thousands of
generations of selection in that environment. The introduction of a stock of

largemouth bass obtained from one environment into a population of largemouth
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bass existing in a different environment could very well disrupt these
advantageous allele combinations and any co-adapted gene complexes present in
the reciplent population. This could result in a substantial reduction In the
fitness of the recipient poputation. Current and future fisheries management
programs need to protect the diversity of genetic stocks of largemouth bass
(Ryman 1981, Philipp et at. 1983). |In addition, information regarding the
performance of the genetic stocks In different environments and their
physiological and behavioral qualities as determined by their genetic structure
must be fully evaluated.

The purpose of this study was to assess the thermoregulatory behavioral
differences among four genetically confirmed stocks of largemouth bass.
Specifically, It was to determine thermal preference values for each of the two
pure subspecies, the northern and Florida largemouth bass, M. s. salmoides and
M. s. floridanus, respectively, and both reciprocal Fq hybrids obtained by

crossing NLMB? with FLMB3 (NxF) and FLMB? with NLMBZ (FxN).
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MATERIALS AND METHODS

Production of Genetic Stocks:

Pure northern largemouth bass (NLMB), M. s. salmoides, were collected
from Bone Lake, Wisconsin during October, 1978. Right pectoral fin clips were
removed from each adult prior to stocking and utilized for electrophoretic
analyses of each Individual (Philipp et al. 1979, 1983). All individuals
retained contained only the Mdh-B', 1dh-B!, Sod-AZ and Aat-B! or B2 al leles,
Indicating they represented the pure northern subspecies. These individuals
were held outdoors in 0.08 hectare ponds until! the onset of the project in
April 1980. Pure Florida largemouth bass (FLMB), M. s. florjdanus, were
collected from Lake Dora, Florida during January, 1980 and again during
February, 1981, These fish were air shipped to Champaign and held indoors at
8~12°C. Left pectoral fin clips were removed from each adult prior fto stocking
outdoors and utilized for electrophoretic analyses of each individual. All
individuals contalned only the Mdh—BZ, ldh-B3, Sod-A! or Sod-AZ and Aat-B> or
Aat-B4 alleles, Indicating they represented the pure Florida subspecies. In
March of 1980 and 1981, the collected Individuals were stocked outdoors in 0.08
hectare ponds.

During the spring of 1981, these brood stocks were used to produce NLMB,
FLMB and both reciprocal Fq hybrids, NLMB® x FLMB& (NxF) and FLMB® x NLMB &
(FxN) by stocking 0.08 hectare ponds as follows:

Pond 1: 5 NLMB? and 5 NLMB&
Pond 2: 5 NLMB® and 6 FLMBJ

Pond 3: 6 FLMB? and 5 NLMBZ
Pond 4: 8 FLMB% and 6 FLMB &
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Spawning was successful in all four production ponds. Ponds were drained on
September 21, 22, 25 and 28, 1981, and approximately 1,200 50 mm finger!ings
were recovered from each pond. Electrophoretic analysis of subsamples of 100

fingerlings from each stock confirmed their genetic purity.
Acclimation Procedure:

During fall of 1981, young-of-the-year largemouth bass (40-60 mm total
length) were removed from production ponds and placed in holding tanks at
ambient temperatures in Conviron controlled environmental chamber:s.

Acclimation to a succession of temperatures from 8 to 32°C was achieved by
first altering water temperatures 1°C per day until reaching the desired
testing temperature and then holding the fish at that temperature for a minimum
of three weeks. Fish were fed frozen brine shrimp and live Daphnia daily. A

12D/12L natural photoperiod was maintained during the acclimation period.
Temperature Preference Determinations:

Four stainiess steel test chambers (3.0 x 0.51 x 0.25 m) patterned after
Meldrim and Gift (1971), with the addition of 11 plywood baffles (35.6 x 1.9 x
25.4 cm) positioned tranversely to create a shifting flow pattern, were used
for all preference testing (Fig. 1). Water 5 cm in depth was heated as It
flowed the length of a test chamber by three series of Incandescent lamps which
established a horizontal thermal gradient of approximately 20°C in range.

Water depth was maintained by pumping cooled water from a Min-0-Cool
circulating water bath into one end of a test chamber and draining the excess
through a standing pipe at the heated end. Perforated 5 mm Tygon tubing

attached to the Inside bottom of each test chamber supplied the aeration which
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successful ly el iminated any vertical temperature stratification and prevented
any super-saturation of gases caused by heating the water. Calibrated
thermometers were suspended in the center of each compartment created by the
baffles and readings were taken every 15 minutes during testing.

For a given run, flive fish of a single genetic stock were placed In each
test chamber. Individuals of one each of the four stocks were placed in one of
four test chambers, so that alil stocks were tested simultaneousiy. When
introduced into the test chamber, the flish were placed at a point in the
gradient at which the temperature was the same as the acclimation.temperature.
A 30 minute period was allowed for adjustment to the new environment. The
temperatures at which each of the fish was positioned were recorded every 10
minutes for 2.5 hours, for a total of 75 observations per test chamber run.
Five runs per stock (for a total of 25 individuals) were conducted at each of
seven acclImation temperatures. Test chambers used by each stock were rotated
each successive run to elimlinate variability due to possible test chamber
differences. All testing occurred between 1000 and 1500 hours.

One of three methods of analysis was used to determine the thermal
preferendum at each acclimation temperature for each stock: (1) a mean of all
observations for ali runs at a particular acclimation temperature; (2) an
asymptotic regression to determine when movement toward a preferendum had
stablilzed; and (3) a segmented regression, which divided the curve of movement
by time Into two "segments", a curvelinear portion (movement) and an asymptotic
portion. The method having the lowest standard error was selected. Once
preferred temperatures had been determined for each stock at each acclimation
temperature, cubic regressions were used to plot a line for preferred versus

acclimation temperature for each stock. The point at which the regression line
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intersected a 45° line (preferred temperature = acclimation temperature) was

used to determine the final preferred temperature for each stock.



RESULTS

Temporal patferns of thermal behavior after release into the test chambers
revealed gradual movement toward the preferred tempersture. Figures 2-5 show
examples of this temporal behavior for one stock, FxN, acclimated to each of
four temperatures, 8°, 16°, 24°, and 32°C. However, all stocks exhibited very
similar patterns when acclimated to the same temperature level. The closer the
acclimation temperature was fto the final preferred temperature, the smaller the
amount of gravitation was needed fto reach the final preferendum. Table 1 shows
the preferred temperature values for each stock acclimated to eacﬁ of the seven
different acclimation temperatures. For all acclimation temperatures except
32°C, all four stocks preferred higher or equal temperatures than those at
which they were acclimated. When acclimated to 32°C all stocks preferred areas
of the test chambers below 32°C.

Fry (1947) defined final preferred temperature as that temperature to
which a fish will eventually gravitate, regardless of Its previous thermal
history, and the temperature at which acclimation and preferred temperatures
are equal. Although cubic regression analysis resulted in the fwo Fy hybrid
stocks, NxF and FxN, having slightly higher final preferred temperatures than
the two pure subspecies, NLMB and FLMB (Figs. 6-~9), the final preferred
temperatures for all four stocks statistically were not different from each
other (Table 2). However, the thermoregulatory behavior at temperatures above
and below that value did vary among the stocks (Figure 10). For example, the
pure Florida stock displayed the lowest preferred temperatures at the lowest
and highest acclimation temperatures, but intermediate to high preferred

temperatures at intermediate acclimation temperatures (12-28°C).



DiSCUSSION

For a species as a whole, the greater the developmental flexibility of the
phenotype, the better that species can cope with selection pressure. This
flexibility is clearly advantageous for those organisms exposed to highly
unpredictable environmental conditions (Mayr 1983). Different thermal
surroundings exert a great Influence on developing and adult largemouth bass by
affecting growth, reproductive success, swimming speed, and metabolic rates
(Coutant 1975). A population of largemouth bass must have within its
constituents the abiilty to meet the physiological demands for gréwfh and
deveiopment before reproduction efforts can determine the success of a
population, Growth in fish will occur only after temperature dependent
metabollc maintenance requirements are met (Cox and Coutant 1981). Temperature
also can have an effect on food availability, habitat conditions, and
predator/prey interactions, all of which can directly influence growth and
success of largemouth bass.

Philipp et al. (1981, 1983) determined through electrophoretic analysis
that Florida and northern largemouth bass have fixed allelic differences at two
loci (1dh-B, Aat-B) and show significant differences in allelic frequencies at
two other loci (Mdh-B, Sod-A). These authors showed that the geographic
distributions of the alleles at these four loci described specific latitudinal
clines, suggesting geographically induced genetic differences among these
populations. A large area of intergradation exists between the ranges of the
pure subspecies (Philipp et al. 1983). The distribution of a species over a
large geographic area presumably leads to individual populations within that
area becoming genetically tailored through time fo the thermal environments

which they Inhabit. Thus, not only are there differences between the two
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subspecies, but there also exists an area between the subspecific ranges that
contalns populations of largemouth bass that potentially may show quite
variable thermoregulatory behavior.

Temperature of optimum growth values of 25° and 30°C were obtained for
largemouth bass in Ontario and Texas, respectively (Strawn 1961, Niimi and
Beamish 1974). These values are consistent with the hypothesis that
populations of largemouth bass become genetically tailored to their thermal
environments (Philipp et al. 1981, 1983). However, the results of this study
indicate that the FLMB bass prefers water temperatures of 28°C anc lower.
These results seem to Indicate that this FLMB stock may prefer a cooler than
optimal metabolic thermal environment. This may be a result of learned food
avallability or learned upper thermal avoidance behavior.

The simiiarities in the determined final preferred temperatures for pure
northern and Florida largemouth bass and for both reciprocal intersubspecific
F1 hybrids do not suggest that major thermoregulatory behavioral differences
exist among the four stocks. However, the thermoregulatory behavior of each
stock after acclimation to temperatures above and below the final preferred
temperature did differ. Mathur (1981) observed the same phenomenon upon
testing a variety of fish species other than largemouth bass. Hall (1978), in
testing white perch (Morone americana), determined there are significantly
different thermal preference responses in fish from different geographic areas.
These responses support the hypothesis that fish undergo physiological and
biochemical adaptations to environmental temperature (Hochachka and Somero
1971). A population becomes genetically suited to Its specific environment

through selection for a particular phenotype (Mayr 1970, Holland et al. 1974).

8-11



Tranquilli et al. (1979) found through radiotracking studies of largemouth
bass In Lake Sangchris, lllinois, a power plant cooling lake, that final
preferred temperatures ranged from 28.2 to 30.5°C. These values are somewhat
higher than the results obtalned in this study for NLMB (Table 2). In Lake
Shelbyville, tllinois, an unheated lake, the investigators found final
preferred temperatures of 26.5°C, a value only slightly lower than our results
for NLMB. An explanation of these results may be found in the fact that
accl imation to high water temperatures did not occur in unheated Lake
Shelbyville as occurred in the heated Lake Sangchris. Similarly,-largemouth
bass, when fully acclimated in the taboratory to temperatures of 28° and 32°,
had a therma! preferenda of approximately 28°C. The period required for full
metabolic thermal acclimation has been determined to be from 3 to 4 weeks (2-4
weeks for smaller fish) (Sidell et al. 1973, Sidell 1977). Thus, seasonal
differences in natural environmental temperature (field acclimation
temperatures) would have substantial effects upon the preferred temperature
values determined, unless fish were removed from the field and sufficiently
accl imated tfo a common temperature.

Two methods have been used for determining thermal preferenda In the
laboratory, acute or gravitational (chronic). Acute experiments commoniy have
been 2-3 hours In length and gravitational 2-3 days in length. Both have had
criticisms as to their ability to reveal true results (Reynolds and Casterlin
1979). For example, the phenomenon of overshoot in gravitational methods could
lead to higher results, as would linearly extrapolating the preferenda data to
determine flnal preferred temperatures in acute testing. Richards et al.
(1977) concluded that other factors invclved in testing, i.e., age, size, and
season may have more effect on the outcome of experiments than the type of test

used. Meldrim and Gift (1971) and McCauley and Huggins (1979) showed no
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signlficant differences between fish of different ages or size. Hence, for
this study, first year largemouth bass offspring were used for all tests.

A number of different statistical methods have been used to assess the
relationship between preferred temperatures and acclimation temperatures when
determining final thermal preferences. The problem of using |inear equations
to describe non-|inear relationships has been overcome in this treatment of the
data by computing cubic regressions, which more accurately define the behavior
observed. Intersection with a line of equal ity between acclimation and
preferred ftemperatures (Fry 1947) remains the determinant method <f calculating
the final thermal preferenda.

In conclusion, northern and Florida largemouth bass were shown fo have
similar final thermal preferenda but different thermoregulatory behavior at
acclimation temperatures above and below that temperature. This most Iikely
results from selective adaptations to the thermal conditions present in the
range of each subspecies. Hochachka and Somero (1971, 1973) stated that
adapations have occurred which can enable lower vertebrates to succeed or at
least survive fluctuating environmental conditions. Thus, current and future
stocking programs need to consider a variety of issues pertaining to the
genetic background of the fish being propagated for introduction into different
geographic regions. |t must be determined whether the genetic composition of
these fish will enable them to thrive in the new environment. |f the
introduced fish are not well suited for the recipient environment, deleterious
effects to these native populations would be expected to occur. Before
largemouth bass management and stocking practices continue to unknowingly
m;nlpulafe different genetic stocks of largemouth bass, more information must
be obtalned on the physlologlcal.and genetic qualities of this species and of

its constituent genetic stocks.
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Table 1. Preferred temperatures (°C) for four stocks of largemouth bass
(NLMB, NxF, FxN, FLMB) at various acclimation temperatures.

Acclimation Temperature
Stock 8° 12° 16° 20° 24° 28° 32°

Preferred Temperature

NLMB 24,6 25.8 25.8 25.9 25.8 27.7 29.5
NxF 24.2 26.3 25.6 27.9 26.2 28.1 27.9
F xN 24.4 26.3 26.8 27.8 26.5 28,8 28.2
FLMB 22.0 25.8 27.9 26.0 26.3 28.1 27.3




Table 2. Final preferred temperatures (°C)
for four stocks of largemouth
bass (NLMB, NxF, FxN, FLMB).

Stock Final Preferred
Temperature

NLMB 26.7

N x F 28.4

F x N 27.8

FLMB 26.7
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ABSTRACT

The relative effect of acclimation temperature on thermal tolerance was
studied in four genetic stocks of juvenile largemouth bass: northern largemouth
bass, NLMB (Micropterus salmoides salmoides), Florida largemouth bass, FLMB (M.
s. floridanus) and both reciprocal F; hybrids, NLMB® x FLMB3 (NxF) and FLMB®
x NLMB& (FxN). Thermal tolerance for each of these stocks was measured by two
methods. The first method determined Acute Thermal Maxima (ATM) at various
acclimation temperatures. ATM is defined as the temperature at which death
occurs during a rapid temperature increase (1°C per 5 minutes). Thermal
tolerance was also studied in each of the four stocks by determining the
Chronic Thermal Maxima (CTM) for fish acclimated to 32°C. CTM is defined as
the temperature at which death occurs during a gradual femperature increase
(1°C per day). The order of greatest ATM and CTM values were identical and
were FxN > FLMB > NxF > NLMB. Results showed that increased acclimation
temperature resulted in significant, proportional increases in ATM for all
stocks. Second generation hybrids (NxF Fy and FxN F2) were acclimated at 24°C
and examined for ATM. The NxF F2 had a higher overall ATM (38.4) than did the
FxN Fo (37.8), however, these values were Intermediate to those of the NLMB
(37.3) and FLMB (39.2). Subsequent genetic analysis revealed no correlation
between ATM and genotype at the four loci studied, showing that a large
proportion of Florica alleles at these loci had no direct influence on thermal

tolerance of hybrid offspring.



INTRODUCT ION

Two recognized subspecles of |argemouth bass, the northern (Micropterus
salmoides salmoides) and the Florida (M. s. floridanus), were originally
separated Into subspecies by morphological differences (Bailey and Hubbs 1949).
Despite Inconsistencies in results of studies that attempted to compare growth
qualffles between the strains (Clugston 1964, Inman et al. 1976), some resource
managers have assumed enhanced genetic and physiological tralts in M. s.
floridanus due to its superior growth in its native habitat. As a result,
Florida largemouth bass stocking programs have been suggested as one method of
enhancing frophy fish production in northern waters. The apparent success of
the Introductions of Florida largemouth bass In Texas and California have
further provided impetus to the idea that artificially heated reservoirs in
northern climates may be similar enough to the native habitat of M. s.
floridanus that introduction of this subspecies may Improve the fishery.
However, the shortcoming of studles comparing the subspecies in Texas (lnman et
al. 1976) and California (von Geldern and Mitchell 1975, Moyle and Holzhauser
1978) has been a lack of genetic verification of stocks used. This problem has
been substantiated and partially redressed by Philipp et al. (1981, 1982,
1983a), but for the most part, no assessments have been made of the ultimate
impact of the Introduction of the Florida subspecies on the endemic stocks of
largemouth bass In northern waters.

One potentially important physiological difference between the Florida
and northern largemouth bass Is thermal tolerance, or the abllity to survive
thermal stress. This may be measured via the Acute Thermal Maxima (ATM), the
temperature at which disorientation, and uitimately, death occurs after rapid
temperature Increase (Cowles and Bogert 1944)., This is a dynamic process

dependent upon cumulative affects and prior conditioning, and recorded values
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may depend somewhat upon subjective judgment by the experimenter. In a study
of extended exposure to thermal stress, Hart (1952) found that northern
jargemouth bass were less susceptible to extended heat stress than Florica
largemouth bass. As in other studies, increased acclimation temperature was
found to signiflcantly increase thermal tolerance. However, here too, the
comparison between strains must be conslidered somewhat questionable due to a
lack of genetic verification. Smith and Scott (1975) found that acclimation
temperature also affects tolerance to acute thermal stress, as has been seen in
numerous studies. In a South Carolina cooling pond, Yardley et al. (1974)
found correlation between malate dehydrogenase allele frequencies and
environmental thermal stress in largemouth bass, which implies a selective
advantage for a single genotype. However, Smith and Scott (1975) found no
relation between this environmental phenomenon and |aboratory determined ATM
values.

This study was undertaken tfo examine one potential parameter of thermal
tolerance in pure northern and Florida largemouth bass and two generations of
hybrid offspring. That is, fish of known genetic composition were assessed
under identical conditions, so that the relative importance of genotype versus
environmental conditioning, in this case acclimation temperature, was evaluated
independently. Pure northern (NLMB), pure Fiorida (FLMB), and both reciprocal
hybrid offspring (NLMBY x FLMB& , NxF, and FLMB® x NLMBJ\, FxN) were used tfo
determine the Chronic Thermal Maxima (CTM) and the effect of acclimation
temperature on Acute Thermal Maxima (ATM). |In addition, the assertion that a
large donation of Florida alleles at structural loci imposes genetic
superlority for thermal tolerance was cvaluated among NXF Fy individuals for he
single criterion of survivability. The enzyme loci selected for analysis were

those used as markers to distinguish the two subspecies, Mdh-B, 1dh-B, Aat-B.



Thus, through correlation of electrophoretic results with ATM results for each
F> individual tested, we assessed the impact of NLMB versus FLMB alleles at

each of those structural loci on thermal tolerance.
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were recovered from each pond. Electrophoretic analysis of subsamples of 100
tingeriings from each stock conflrmed their genetic purity.

During the spring of 1982 the NxF Fy stock was used to produce F»
offspring. Similarly, during the spring of 1983 the FxN F; stock was used to
produce Fo offspring, as well. Specifically, equal numbers of male and female
Fq hybrids were placed in 0.08 hectare ponds and allowed to spawn naturally.
Young-of-the-year Fp hybrid offspring remained in ponds until [ate September.
The Fp hybrid fingerlings were recovered by draining the pond which contained

them or by seining and elecTrofishing methods.
Acclimation Procedure:

Fingerlings of each of the four Fy stocks of largemouth bass produced in
1981 were collected and heid in thermally regulated aquaria initiaily adjusted
to the field temperature at collection time under a 12L-12D 24 hour |ight
schedule. The temperztures of the aquaria were adjusted at the rate of 1°C per
day until the desired acclimation temperatures were reached. These largemouth
bass were then heid for a 30 day period to allow for total thermal acclimatlion.
During this periud these fingeriings were fed |ive Daphnia magna, frozen brine

shrimp or |ive fathead minnows (EBimephales promelas) three times dally. All

Chronic Thermal Tolerance test (CTM) fish were acclimated to 32°C for 4 weeks
prior to testing. All Acute Thermal Tolerance (ATM) test fish were acclimated
to one of four temperatures, 8°, 16°, 24° or 32°C for at least three weeks

prior to testing.
Determination of Chronic Thermal Tolerance (CIM):

Chronic (CTM) tests were conducted in aerated 20 gallon aquaria in a
Conviron environmental chamber. Prior to testing, these fish had been

acclimated to 32°C for 30 days. The temperatures in the tanks were controlled



by adjusting the temperature of the environmental champer. 1esis weis
conducted by raising the temperature 1°C per day. Survival of the fish was
monitored three times daily and the temperature at which death occurred for
each fish was recorded. All stocks were tested simul taneousiy with ten flsh of

each stock being tested. During testing, fish were fed |ive Daphnia three

times daily.
Determination of Acute Thermal Tolerance (ATM):

Acute (ATM) tests were conducted In an aerated 20 gallon aquarium
Into which heated water was added at a constant rate. An outflow siphon
maintalned a constant water level. The water was mixed by vigorous aeration
and a magnetic stirring bar isolated from the test chamber by a wire screen.
Prior to the tests, fish were held in the chamber for 15 minutes to adjust to
the new environment. The water was then heated at a rate of 1°C per minute or
less. This rate was fast enough to minimize cumulative stress on the fish, yet
al lowed the observer sufficient time (5-10 seconds) to record fish behavior or
time of death between 0.1°C Intervals. For comparison of acclimation effects
on thermal tolerance, times of initial loss of equilibrium, total loss of
equilibrium and death were recorded. Death was presumed to occur when the
gills flared and subsequent paralysis made respiration Impossible. Only the
time of death was recorded for the portlon of the study assessing F2 hybrids.

All fish were frozen at -20°C Immediately after death for subsequent genetic

analysis.
Genetic Analyses:

The genotypes at each of three enzyme |joci (Mdh-B, ldh-B and Aat-B) for
each of the F; hybrids were determined by vertical starch gel electrophoresis.,
The procedures used for tissue preparation, electrophoresis and histochemical

staining was essentially as described in Philipp et al. (1979).



RESULTS

The three data sets (Chronic Thermal Tolerance [CTM] of Fj stocks,
accl Imation effects on Acute Thermal Tolerance [ATM] of Fi stocks, and ATM
determinations for individual Fp fish) were evaluated independently using
analysls of varliance (ANOVA). The liberal Duncan's multiple range test and the
more conservative Scheffe's test were used to determine the relatedness

groupings of FLMB, NxF, FxN and FLMB stocks.
Chronic Thermal Maxima (CTM) of Fy Stocks:

Ten individuals of each of the F{ stocks, NLMB, NxF, FxN and FLMB, were
tested simultaneously. The results are summarized in Table 2. The temperature
at death was correlated with genetic origin (F = 20.67, RZ = ,633 and P =
.002). The order of CTM was FxN > FLMB > NxF > NLMB. Pure M. s. salmoides had
a CTM significantly lower than all other stocks according to both Duncan's and
Scheffe's tests. Only the liberal Duncan's test separated the high CTM of the

FxN Fq from the other stocks.
Acute Thermal Tolerance (ATM) of F4 Stocks:

Initlal and total loss of equilibrium at all acclimation temperatures
were consistent with temperatures of death. Mean death temperatures for each
stock are summarized in Table 3. The effect of acclimation temperature on ATM
values Is shown In Figure 1. ANOVA results in Table 3 depict the genetic-
dependent variation between groups. Genetic origin contributed significantly
to the variation of ATM observed between stocks at all acclimation
temperatures. |t should be noted, however, that not all of the variation can

be attributed to genetic origin alone (see RZ values, Table 3). The order of
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mean ATM for the test at each acclimation temperature (FxN > rimo -~ wa - vciws
was the same as that for mean CTM values (Table 2). At low acclimatlon
temperatures (8°C, 16°C), both Duncan and Scheffe's groupings isolated the ATM
of NLMB from the FxN Fy. The FLMB did not differ slignlficantly from either
hybrid. Only at higher temperatures (24°C, 32°C) were the ATM values of the
pure subspecies significantly dlfferent. Thus, as acclimatlon temperature is
raised, the disparity between Florida and northern |argemouth bass adaptation

to thermal stress becomes more apparent,

Acute Thermal Tolerance (ATM) of Fp Stocks:

The total average ATM values for both Fy stocks are shown in Table 4.
Interestingly, although at an acclimation temperature of 24°C, the ATM for the
FxN F1 Is greater than that for the NxF F1, the reverse was true for the F»
generation. In addition, at an acclimation temperature of 24°C, the ATM of the
NxF hybrids increased from the F1 (37.0) to the F2 (38.4) generation, whereas
the reverse was true for the FxN hybrids. The ATM of the FxN F1 (37.9) was
higher than that of the FxN Fp (37.8). However, NxF F2 and FxN F2 groups were
not tested simultaneouslsy. Therefore, comparison between these two stocks and
the other four stocks must be considered somewhat tentatively.

There was no correlation between ATM and genetic expression at any of the
loci examined (Table 4). Variation within genetic groups was as large as the
overall variation. ATM was not correlated with the number of Florida alieles,
the number of homozygous Florica loci, the number of homozygous northern loci

or the degree of heterozygosity.



ol SCUSSICN

Biochemical evclution in habitats under unique environmental pressures
should result in quantifiable physiological differences between divergent
stocks. Transient environmental conditions should affect the degree to which
biochemical variations are expressed. In the present study, thermal
acclimation was founc to significantly affect subsequent response to thermal
stress, within limits imposed by genetic origin. The correlation between CTM
and allelic expression at three enzyme loci which had fixed allellc differences
between the two subspecies, is consistent for only the pure subspecies (M. s.
salmoides and M. s. floridanus). The reletionship is not conclusive in first
generation hybrids, and no correlation is apparent in second generation fish.
M. s. salmoides exhibited significantly lower thermal tolerance than M. s.
floridanus. |t is important to note that the disparity between M. s. salmojdes
and M. s. floridanus becomes most apparent at high acclimation temperatures.
The adaptive significance of genetically controlled thermal tolerance is thus
directly releted to the environment in which it evolved. This is contrary to
the findings of Hart (1952), but the lack of genetic verification of stocks
used in that study prevents a direct comparison. As can also be seen from the
data (Tables 2 and 3), significant differences exist between the ATM values for
reciprocal hybrids. The FxN F; ATM was consistently higher than that of the
NxF Fy, and even higher than the FLMB stock. Clearly, this disparity cannot be
explained by allelic variation at the tested enzyme loci, as all Fy hybrids
received equal genetic donation from each parent subspeclies. The source of the
Observed disparity is unclear. However, non-reciprocity among reciprocal Fj
hybrids has teen documented extensively (whitt and Philipp 1977, Philipp et al.
1983b, Parker et al. 1984). Genetic expression does not account for all

variaticon among test groups in the presenT study (see RZ values, Table 3),



Lowever, varieticn in size amcng juvenile (first-year) fish was noT iarg

[

, OuT
lhere may have been scme variatior In nutritional state. It is alsc tempting
o compare the date obfainec for the two Fp hybrids to those of the others.
lhis must be done cautlously, since each of the Fp tests was run separately and
uncontrollable variebles may have affected the absolute values obtainec. For
cxemple, unnoticed fransient deviations in acc!imation temperature may
osignificantiy alter the final ATM.

The Chronic Thermal Tolerance (CTM) tests probably best simutate the
intermittent exposure to sublethal temperatures In the environment. Thus, the
data obtained may represent more realistic absolute lethal temperatures for
cach stock. Tolerance to short-term thermal stress may more closely reflect
adaptations to rapicly rising temperatures in the environment. Although the
stress Is more acute than any likely fto be encountered in unal tered
environments, the consistency of these results and their relation to long term
data indicate the usefulness of this measurement as an indirect paremeter of
adaptebility.

The three enzyme foci examined (Mdh-B, 1dh-B, Aat-B) exhibit allelic
expressions (Table 1) that describe latitudinally generated geographic clines
(Philipp et &al. 1981, 1983a). |If physiological response to thermal stress is
partially dependent upon variable expression at a few important loci, then the
above loci are likely candidates for investigation. Leigh~Brown (1977)
described two criteria for testing the adaptive significance of phenotypic
clinal distritutions: the allellic isoczymes under investigation must be shown tc
te differentially affected jn yifro by the presumed environmental selection
pressure; and the expression of Tﬁese isozymes must be correlated with jn vivo
responses to the seme selective pressure. The largemouth bass locus for which

the most extensive data are avallable in *thic context ic Mdh-B. Thermal



kinetic studies of the two allelic isozymes, MDH B'B! and MDH BZBZ jpn vitro
have shown a correlation with the latitude-dependent distribution of these two
alleles among natural populations (Hines et al. 1983). The occurrence of
specific alleles at another MDH locus in largemouth bass had been shown by
Yardley et al. (1974) to be correlated with different thermal regimes within a
heated body of water. However, the findings of Smith and Scott (1975) and the
present study faliled fo relate this phenomenon for fish in a controlled thermal
experiment. There are several possible explanations for this discrepancy.
Perhaps the ATM is not a reliable Indicator of adaptation to increased
sublethal temperatures. This is not |ikely however, since the correlation of
this parameter with that expected for the two pure subspecies is very good.
Alternatively, the Mdh-B locus and other loci may not be as important to
thermal tolerance as indicated. The enzyme systems studied represent only
three among the many thousands expressed, and the occurrence of clines in
allele distribution patterns may be the result of random mutation and genetic
drift among ecologically isolated strains. However, this does not explain the
differential occurrence of loci within a body of water such as that found by
Yardley et al. (1974). |t is most likely that polygenic complexes of
regulatory as well as structural genes interact to provide adaptability to
potential thermal variation. Hence, the F, generation would be expected to
demonstrate highly variable ATM and CTM responses under controlled laboratory
conditions. Also, the complex interactions of thermal preference and
tolerance, as well as physiological efficiency, may serve to refine the genetic
composition of fish for a specific set of environmental circumstances.

The Implication of this study for manangement practices is that, although
the pure Florida subspecies and its reciprocal hybrids with the northern

subspecies appear to be genetically superior to NLMB for adaptation to high
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PLpGE G UL U S WBlG,  gh T epSl A s weay nud ue ine prevailing
environmental condition which contributes most to the genetic tailoring in
natural habitats. In fact, in most northern habitats the ability to folerate
cold temperatures during the winter appears to be more Important to the
survival of a stock. The difference among these stocks in their upper thermal
tolerance does indicate the sometimes overlooked need of prohibiting the
introduction of NLMB or any stock of largemouth bass contalning a portion of
NLMB aileles into waters in peninsular Fiorida. The genetic integrity of the
FLMB needs to be protected as much as that of the NLMB. Before Florida
largemouth bass or any non-native stock of largemouth bass are released into
the waters of Illinois to remedy specific problems, extensive study of
successive hybrid generations Is needed to establish the relation of thermal
tolerance and genetic orligin. Further definition and refinement of the
pertinent ecological factors Involved in differential adaptability are also
necessary for a complete understanding of how different genetic stocks perform

in different environments.
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Table 1. Electrophoretic variation among NLMB and FLMB stocks.@

Alleles found Alleles found

Enzyme Source Locus in northern in Florida
Malate white
Dehydrogenase skeletal muscle B 1,2b 2
Isocitrate
Dehydrogenase liver B 1 3
Aspartate
Aminotransferase |iver "B 1,2 3,4

3 Adapted from Philipp et al. 1982

b Although NLMB populations contain both the B! and BZ alleles, the NLMB
svock from Bone Lake used as NLMB broodstock in producing NLMB, NxF and FxN
F1 stocks was fixed for the B! allele.
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Table 2.

Mean long-term thermal maxima (LTM)
values for the four Fq{ stocks of
largemouth bass, NLMB, NxF, FxN and
FLMB.

Long=Term Thermal Maxima (°C)

(+ one standard deviation from mean)

NLMB
N x F
F x N

FLMB

37.3 + 0.60
39.1 + 0.97
40.1 + 0.64

39.2 + 0.64




Table 3. Mean short-term thermal maxima (CTM) values for the four F{ stocks
of largemouth bass, NLMB, NxF, FxN and FLMB, and parameters of
genetic-dependent analysis of variance.

Acclimation

Temperature NLMB  NxF Fy FxN Fq FLMB F P RZ
32 40.9 41.6 41.9 41.8 8.13  0.0003 0.41
24 36.5 37.0 37.9 37.5 13.00 0.0001 0.52
16 33.6 34.0 34.4 34,1 3.17 0.0359 0.21

8 29.2 30.1 30.8 30.4 4.92 0.0058 0.29




Table 4. Mean short-term thermal maxima (CTM) values for NXF Fz and FxN F7
stocks and for Individuals with different genotypes at the three
diagnostic loci (Mdh-B, 1dh-B and Aat-B).

F xNFo NxF Fp

Overall mean + S.D. 37.8 + 0.62 38.4 + 0.77
No. Florida alleles@ Mean temp. Mean temp.

0 38.0 38.2

1 37.9 38.4

2 38.1 38.5

3 37.7 38.6

4 37.6 38.0

5 37.8 38.4

6 38.2 38.6
No. Heterozygous loci

0 37.9 38.4

1 37.9 38.4

2 37.8 38.3

3 37.7 38.6
No. Homozygous foci with FLMB alleles

37.9 38.4

1 37.7 38.2

2 37.8 38.3

3 37.7 38.6
No. Homozygous locl with NLMB alleles

0 37.6 38.3

1 38.0 38.5

2 38.0 38.4

3 38.0 38.1

8 At the Aat-B, {dh-B and Mdh-B loci.

§-20



CRITICAL THERMAL MAXIMUM (°C)

FIGURE 1,

44 4 THE RELATIONSHIPS OF ACCLIMATION
-{ TEMPERATURE TO CRITICAL
yp 4 THERMAL MAXIMA FOR FOUR /7
STOCKS OF LARGEMOUTH §&
7 BASS (Micropterus if//
40 4 salmoides) !
38
36
34~
32 FLVMB
. FXN Fq
30 NXF Fyq
. NLMB
284
OT'
i T T T ]
0 10 20 30 40

ACCLIMATION TEMPERATURE (°C)

9-21



STUDY 105
JoB 1, 2

CHAPTER 10

Biochemical Genetic Analysis of Largemouth
Bass Populations in |ilinois

Jeffrey B. Koppelman’, Christine Kaminskil,
Gregory S. Whitt3,1 and David P. Philipp!»2

1aquatic Biology Section

I11inois Natural History Survey
607 East Peabody Drive

Champaign, illinois 61820

2DeparTmenT of Animal Science
University of llilinols
328 Mumford Hal |

Urbana, lllinols 61801

3DeparTmenT of Genetics and Development
University of lllinois
515 Morrill Hall

Urbana, lllinois 61801



ABSTRACT

Population genetics studies of largemouth bass, Micropterus salmoides,
have definite applications in attempting to provide a successful fishery in the
State of Illinois. Previous studies on largemouth bass populations existing in
the United States have described clinal distributions of allele frequencies
correlated with temperature. Electrophoretic methods were used to determine
allele frequencies at each of six enzyme loci in 48 populations of largemouth
bass throughout Iilinois. Populations in areas throughout +he United States
have already been characterized with respect to the allele frequencies at these
six locli. Fixed ailelic differences between the two subspecies of largemouth
bass, M. s. salmpides and M. s. floridanus, have been described at two loci,
Idh=B and Aat-B. Although clinal distributions of alleles encoded at the Mdh-B
locus exist in populations across the United States, no clinal distributions at
this locus were observed in lllinois. This is most likly due to the transfer
of different fish stocks from one body of water to another in I|llinois
throughout the years. |I[f there is to be an increase or at least a maintainence
of the presenf largemouth bass fishery, manangement programs must avoid mixing

different genetic stocks of largemouth bass.



INTRODUCT ION

The use of biochemical genetic markers in characterizing largemouth bass
populations is a valuable and necessary tool in managing largemouth bass
populations today (Philipp et al. 1981). Through time, native largemouth bass
stocks have developed specific local attributes as a result of natural |
selection. Temperature 1s perhaps the greatest single environmental factor
influencing poikiiofherms. The thermal "tailoring" of a largemouth bass
population results in the evolu%ionary development of a population that has
maximized its fitness for the thermal situation which it inhabifs; Previous
genetic s+u&ies on other fish species have demonstrated the existence of
geographic clines in the distribution of alleles encoded in a variety of enzyme
loci (Nyman and Shaw 1971, Merritt 1972, Johnson‘1974, 1977, Avise and Smith
1974, Utter et al. 1974, Place and Powers 1978, 1979, Powers and Place 1978).
North-south clinal distributions, for example, suggest that differential
selection pressures are resulting in the predominance of one allele in a
geographic area and the predominance of the alternate allele in another area.
Alternative explanations involving isoléfion and random drift have also been
proposed (Kimdra and Ohta 1971, Ohta and Kimura 1971, Aspinwall 1974).

Allelic differences in specific isozymes among intraspecific populations
of largemouth bass from +hroughou+ the United States have been correlated with
such physical factors as heating and cooling degree days, and latitude (Philipp
et al. 1982). This has been postulated to result from the fact that largemouth
bass are poikilothermic organisms, and therefore, that temperature plays such
an Important role in their |ife cycle. Philipp (1981) found that fixed allelic
differences exist between Florida and northern largemouth bass at the ldh-B and

Aat-B loci. In addition, M. s. floridanus was fixed for the Mdh-BZ allele,
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whereas the M. s. salmoides contained both the Mdh-B! and Mdh-BZ alleles.
Simitarly, whereas the northern subspecles contained only the Sod-AZ allele,
the Florida subspecies contained both the Sod-A! and Sod-AZ alleles.

Using these four gene loci and two others that were polymorphic within
Illinois, Gpi-B and Ck~C, populations of |ilinois largemouth bass were analyzed
to reveal the genetic composition of 48 samples collected throughout the state.

In addition, the level of correlation of the allele frequencies at the Mdh-B
locus with environmental factors-such as heating and cool ing degree days were
determined for the populations sampled. In this manner we assesscd the degree
of genetic variability which exists among largemouth bass populations within
It1inois and 1f there were distinct genetic differences between populations in

northern versus southern lllinois.
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MATERIALS AND METHODS

Largemouth bass samples of 20 individuals each were collected from 48
sites located throughout the State of Iilinois (Table 1, Figure 1). Two
samples were taken from different areas in each of two lakes, Clinton Lake
(population samples 3 and 4) and Baldwin Lake (population samples 5 and 6).
Individual fish in all collections were individually wrapped in foil and frozen
shortly after cap+ure, and were kept frozen at -20°C until tissues were excised
from each individual for geneflc.analysls.

White skeletal muscle and liver tissue samples were prepared-as described
in Philipp et al. (1979) and subjected to vertical starch gel electrophoresis
in conjunction with specific histochemical staining procedures to determine the
genotype for each individual at six enzyme loci (Philipp et al. 1979). The six
enzyme loci monitored were Mdh-B, 1dh-B, Aat-B, Sod-A, Gpi-B, and Ck-C. Allele
frequencies at each locus for each population were calculated after the
phenotypes were visualized following staining of the gel. The number of
heating and cooling degree days (Table 1) were calculated according to Philipp
et al. (1982). Regression equations we}e computed using Mdh-B! allele
frequencies for each population in comparison with both heating and cooling

degree days.
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RESULTS

Allelic variation was observed among populations of largemouth bass
studied in lllinois at all six enzyme loci examined, malate dehydrogenase-B
(Mdh-B), isocitrate dehydrogenase-B (I1dh-B), superoxide dismutase-A (Sod-A),
aspartate aminotransferase-B (Aat-B), creatine kinase-C (Ck-C), and
glucosephosphate isomerase-B (Gpi?B). However, no alleles were detected in
these populaTions.ThaT had not been previously reported (Philipp et al. 1983.)

Two alleles were observed at the Mdh-B locus. Three populations were
fixed for the Mdh-B! allele, whereas the remaining populations contained the
alternate BZ allele at frequencies of up to 0.375 (Table 2). The geographic
distribution of the two allieles at this locus did not descriﬁe a latitudinal
clinal distribution (Figure 2). In addition, no significant correlation was
found between the frequencies of the Mdh-B! ajlele and the number of heating
degree days (correlation coefficient of r = -0.055) and cool ing degree days
(correlation coefficient of r = 0.047) for each population sampled.

Two alleles were also observed at the Idh-B locus. Only three population
samples were not fixed for the |dh-B! a}lele. These three populations, New
CITy‘Lake,.Joﬁes Lake, and Little Grassy Lake, contained the alternate B>
allele (representative of the Florida subspecfes) at frequencies of 0.025,
0.025, and 0.050, respectively (Table 2, Figure 3).

Three alleles were observed at the Aat-B locus, two of which have been
determined to be representative of the northern largemouth bass (Aat-B! and
B2). These alleles predominated in all of the populations sampled. However,
Lake of Egypt, Jones Lake, and Little Grassy Lake had frequencies of an
alternative B> allele, an allele representative of the Florida largemouth bass,

of 0.050, 0.075, and 0.025, respectively (Table 2, Figure 4).
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The Sod-A locus found in largemoufh bass encodes two described alleles, Al
and A2, Northern largemouth bass are fixed for the AZ allele, as were all of
the Illinois populations examined except three populations. The Lake of Egypt,
Newton Lake, and Little Grassy Lake largemouth bass population samples all

exhibited a frequency for the Al allele (found only in the Florida subspecies)

of 0.025 (Table 2, Figure 5).

Three Ck-C allieles have been observed in largemouth bass populations
throughout the country. All three alleles were observed in the present study,
as well. The C2 allele was the predominant allele In all populations, being
fixed or nearly fixed (frequency > 0.900) in 38 of the 48 samples (Table 2,
Figure 6). The alternate c! allele was present at frequencies of 0.025 to
0.475 in 27 populations, whereas Kincaid Lake was the only population to
possess the c3 allele, and at a frequency of only 0.05 (Table 2, Figure 6).

Three Gpi-B alleles have been observed in largemouth bass populations
across the country. Again, all three alleles were observed among the
populations examined in this study. Most populations were fixed for the Gpi—B2
allele (39 of 48 populations) with a second allele, B3, being present at
frequencies from 0.025 to 0.300 in nine populations (Table 2, Figure 7). The
third allele, Gpi-B!, was found only in the Schuy-Rush Lake population and at a

frequency of 0.025,
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DISCUSSION

The existence of "Florida" alleles (Aat-B3, ldh~B3, Sod-Al) in certalin
I1linois largemouth bass populations is most |ikely the resulf'of "yvolunteer"
stocking efforts that have undoubtedly succeeded to a certain degree due to the
more southernly locality of these lakes (Littie Grassy Lake in Wiimington
County; New City Lake in Bond County; Jones Lake in Saline County; Lake of
Egypt in Johnson County; and Newton Lake in Jasper County). In fact, Lake of
Egypt and Newton Lake receive heated effluent. Bodies of water exposed to
thermal effluents have been reported to favor genotypes heavily influenced by
the Florida largemouth bass genome (Yardley et al. 1974). Obviously, these
alleles have not arisen through mutation in these separate lakes. Personal
conversations with fishing club members in southern Ililinols confirmed the fact
that largemouth bass from Georgia and Florida have repeatedly been introduced
into Lake of EgypT: It is reasonable to assume that similar fargemouth bass
could have been introduced into surrounding lakes. Management efforts in
I11inols need to guard agalnst supplementing the spread of Florida alleles
among other lllinois lakes.

Movement of largemouth bass Throughouf the state is strongly suggested by
the great amount of heterogeneity in the frequency of the Mdh-B alleles among
the populations studied. 'Disfihcf north-south clinal distributions of alleles

at this locus throughout the United States would suggest that a similar clinal

distribution would be expected in Illinois (Philipp et al. 1981, 1983). We
would have expected populations in southern lilinols to have higher Mdh=~B2
frequencies than populations in northern Iliinois. However, this was not the

case. In fact, only older, well established populations, such as the Fox Chain

of Lakes, Crab Orchard, and Devil's Kitchen Lakes, showed this frend. This
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relatively random geographic distribution of Mdh-B alleles is indicative of
introductions of hatchery stocks obtained from areas other than where they were
stocked.

Mixing of different stocks In this manner becomes important when one
conslders that the different alleles at the Mdh-B locus may be related to or at
least be an indicatlon of the thermal characteristics possessed by the stock.
These characteristics may directly bear on the success of that stock in a
particular environment. Natural selection has taken many years to genetically
tailor populations or stocks of largemouth bass to spec}fic thermal
environments. Undoubtedly, different thermal conditions exist which will
influence the success of introducing different stocks of largemouth bass into
different thermal environments. Tolerance to both high and low temperatures,
both acute and chronic, is needed to succeed in many lllinois environments.
Hatchery practices have, in the past, overlooked the genetic differences that
exist among conspecific populations of largemouth bass. Today's management
goals should Include an evaluation of the different hatchery fish stocks both
genetically and physiologically to assure that their performance in the
environment Is maximlzed‘and to protect The genetic integrity of largemoufh-

bass populations in lllinols.
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Tabie 1.

Populations of largemouth bass analyzed plus the corresponding
heating and cool Ing degree day values.

Number Lake Name (County) HDD CDD
1. Lake Sangchrls (Christian) 5046 1027
2, Lake Shelbyvilile (Shelby) 5066 1084
3. Clinton Lake SC (DeWitt) 5426 985
4, Clinton Lake NF (DeWitt) 5426 985
5. Baldwin Lake=cold (Randolph) 4080 1441
6. Baldwin Lake-hot (Randolph) 4080 1441
7. Coffeen Lake (Montgomery) 5066 1084
8. Lake of Egypt (Johnson) 4057 1354
9, Crab Orchard Lake (WIi{iamson) 4057 1354

10. Forbes Lake (Marion) 4452 1220

11, Beaver Dam (Macoupin) 4835 1150
12. Lake Springfield (Sangamon) 5197 1067

13, Lake of the Woods (Champalign) 5379 929
14, Dawson Lake (MclLean) 6027 985
15, Dale Lake (Wayne) 4266 1296
16. Newton Lake (Jasper) 4956 1052
17. Sam Parr Lake (Jasper) 4956 1052
18. Red HIllls Lake (Lawrence) 4414 1225
19, Greenville Lake (Bond) 5118 1128

20, New Clity Lake (Bond) 5118 1128

21, Otter Lake (Macoupin) 4835 1150

22, Lincoln Trall Lake (Clark) 5061 1048

23, Collins Lake (Grundy) 5862 768

24, Lake Vermiifon (Vermillon) 5323 887

25, Lake Marie (Lake) 6381 504

26. Lake Catherine (Lake) 6381 504
27. Grass Lake (Lake) 6381 504

28. Argyle Lake (McDonough) 5539 952

29. Gladstone Lake (Henderson) 5766 872

30. Apple River Canyon Lake (Jo Davless) 6672 582

31, Johnson Sauk Lake (Henry) 5856 845 °

32, Lake George (Roch'island) 6171 797

33, Lake Le~-Aqua-Na (Stephenson) 6672 582

34, N. Spring Lake (Tazewell) 5800 872

35. Plerce Lake (Winnebago) 6612 659 .

36. Shabbona Lake (DeKaib) 6512 625

37. Randolph Co. Lake (Randolph) 4080 1441
38. Washington Co. Lake (Washington) 4080 1441

39, Devlilts Kitchen Lake (Willliamson) 4057 1354
40. Jones Lake (Sallne) 3983 1369
41, Cedar Lake (Jackson) 4057 1354
42, Little Grassy Lake (Willlamson) 4057 1354
43, Kincaid Lake (Jackson) 4057 1354
44, Dolan Lake (Haml!|ton) 4108 1382
45, Schuy-Rush Lake (Schuyler) 5285 1052
46. Welnberg-King Lake Pond #1 (Schuyler) 5285 1052
47, Siloam Springs (Adams) 4957 1300
48, Nauvoo State Lake (Hancock) 4957 1300
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Figure 1. Locations of the largemouth bass collections. Numbers

correspond to those in Table 1.
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Figure £. Distribution of the alleles at the Mdh-B locus. The
frequency of the Bl allele is shown in white, the B2
allele in black.
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Figure s. Distribution of tne ailieies at tne idn-s locus. ine

frequency of the Bl allele is shown in white, the B3
allele in black.
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Figure <. Distribution of the alleles at the Aat-B locus. The
frequency of the Bl allele is shown in white, the BZ
allele in black, the B3 allele in spotted.
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Figure 5. Distribution of the alleles at the Sod-A locus. Tne
frequency of the Al allele is shown in black, the AZ
allele in white.
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Ficare o, Distibution oi tne alleles at the Ck-U docus. The
frequency of the C1 allele is shown in black. the CZ
allele in white, the €3 allele in spotted.
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tigure ,. Uistribution of the alleles at the Gpi-B locus. The
frequency of the Bl allele is shown in spotted, the B2
allele in white, the B3 allele ‘in black.

10-22



1‘

GENERAL RECOMMENDATIONS

Since meristic counts routinely used in the past to identify the two
subspecies of largemouth bass were shown to be invalid for this purpose, we
recommend that only electrophoretic analyses (specifically, the
determination of the genotypes at the Idh-B and Aat-B loci) be accepted as

confirmation of the subspecific status of largemouth bass populations.

Since the northern targemouth bass outperforms all other genetic stocks of
largemouth bass tested with respect to growth and survival in Illinois, we
recommend that no |jargemouth bass containing any portion of the genome of

the Florida subspecies be Introduced into the waters of Illinols.

Since the reproductive potentials and embryonic thermal requirements of the
four genetic stocks were shown to differ significantly, we recommend that
studies assessing the long-term success of each stock in competition be
performed to determine the potentlal Impact that the Introduction of the
Florida subspecies may have upon native northern largemouth bass

populations.

Since the four genetic stocks of largemouth bass were shown to have quite
different gene regulatory mechanisms during embryogenesis and in response
to different thermal regimes, we recommend that further studies be
performed fo determine at a molecular |evel how these genes are
differentially regulated and to what extent this divergence In gene

regulation has contributed to the evolution of the two subspecies.



Since the four genetic stocks of largemouth bass demonstrated differences
in thermal tolerance and thermal preference we recommend that

radiotelemetry studies be conducted to assess the differences in behavior
which apparently exist among these stocks in response to different thermal

conditions.

Since genetic dlfferences were observed among different populations of
iargemouth bass from different regions of Illinois, we recommend that the
potential of developing different hatchery stocks of largemou+h bass for

Introduction into different regions of the state be Investigated.

In general, we recommend that this investigation of different genetic
stocks of largemouth bass be used as a model to illustrate how the stock
concept can be Incorporated into the management philosophy for all managed

fish and wildlife species, so that the principles of genetic conservation

are well served.

We also recommend that each state set up a State Fisheries Genetics
Research Program to accomplish +hése goals, that the U.S. Fish and Wiidlife
Service sponsor a National Fisheries Genetics Research Program In a
nationally coordinated effort, or that some combination of these two

efforts be estab|ished.



