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Two basic properties of the topological resonace energy (TRE) 
are established: 1. TRE represents the joint effect of all cycles on 
total it-electron energy (E) of a conjugated system; 2. The effect 
of a particular cycle on TRE is equal to the effect of the same 
cycle on E. An approximate formula is derived, which enables 
one to express TRE as a linear combination of contributions of 
single cycles. 

INTRODUCTION 

Topological resonance energy (TRE) is a new concept in theoretical organic 
chemistry, which was recently introduced by the Zagreb group1 and, indepen­
dently, by Aihara2• TRE was thereafter extensively used in chemical applica­
tions by various authors.3-a The commonly accepted1-s definition of topological 
resonance energy is 

n 
TRE = ~ gi (xi - x/) (1) 

j=l 

where xi and xiR (j = 1, 2, .. . , n) are the zeros of the characteristic and 
matching7 polynomial, respectively, of the molecular graph, while gi is the 
pertinent occupation number. 

We shall use the following graph-theoretical notation and terminology.14 

The molecular graph of the conjugated system considered is G; it possesses n 
vertices. The characteristic polynomial of G is denoted by ::t> (G) = <I> (G, x) . Its 
zeros are x 1 ~ x 2 ~ ••• ~ Xn· The matchi:ng polynomial a (G) = a (G, x) is 
defined via 

[n/2] 
a (G, x) = ~ (-1)" p (G, k) x-2

• (2) 
k=O 

where p (G, k) is the number of distinct k-matchings in the graph G. (A 
k-matching in a graph is a selection of 2k vertices which are pairwise joined 
by k edges.13) The zeros of a (G) are real numbers9•12•15 and will be denoted by 
X1R ~ X 2R ~ ••• ~ XnR· 

Let Ca (a = 1,2 ... ) be a cycle contained in G. Then the subgraph G-Ca is 
obtained by deletion of Ca from G. If Ca and Cb are disjoint cycles (i. e have 
no common vertices), then G-Ca-Cb = (G-Ca)-Cb. The subgraphs G-Ca-
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-Cb-Cc etc. are defined analogously, provided the cycles Ca, Cb, Cc are mutual­
ly disjoint. 

The following relation exists between the characteristic and the matching 
polynomial.11•16 

iP (G) = a (G) - 2 ~ a (G - Ca) + 22 ~ a (G - Ca - Cb) -
a a, b 

- 2a ~ a (G - Ca -- Cb - Cc) + ... (3) 
a, b,c 

with the summations going over all pairs, triplets etc. of mutually disjoint 
cycles. 

Further details about the graph theoretical background of the present 
considerations can be found elsewhere.1a,u 

ON THE CHEMICAL AND MATHEMATICAL INTERPRETATION OF TRE 

All the applications1- 6 of the TRE concept are based on the belief that 
(a) the greater is the value of TRE, the greater ,is the chemical stability 

of the pertinent compound; 
(b) conjugated systems with positive (resp. negative) TRE can be classified 

as aromatic (resp. antiaromatic). 
These assumptions have been tested on numerous examples1- 6•17 and can 

be nowadays considered as firmly established. Thus in the present moment 
TRE should be accepted as one of the most reliable theoretical measures of the 
aromaticity of conjugated molecules having a non-degenerate ground state. 

There exist, however, certain classes of conjugated systems in degenerate 
ground and excited state where the TRE concept should be applied with 
caution and where a non-critical usage of eq. (1) may result in apparent dif­
ficulties. As a characteristic example we consider benzene, which has a doubly 
degenerate highest bonding MO. Therefore in the benzene monocation one may 
assume g1 = g2 = 2, g3 = 1 (which gives TRE = -0.210) or g1 = g3 = 2, g2 = 1 
(which gives TRE = + 0.687). Similarly, for cyclobutadiene we can compute 
TRE = - 1.226 or TRE = + 0.304, depending on the choice of the occupation 
numbers 9i· 

There is a simple way out of the above type of artifacts of the TRE 
method, namely eq. (1) should be slightly modified as 

n 
TRE = ~ (gixi-hix/) 

j=l 

where now the h/s are the occupation numbers of the reference structure and 
hi is not necessarily equal to Yi· 

We emphasize once again that the TRE method gives good results for the 
great majority of the chemically interesting conjugated compounds and that 
the only cases where modifications of the method are necessary are the 
conjugated radicals, polyradicals, radical ions and excited states. The dif­
ficulties which occur when TRE is applied to these latter compounds were 
discussed elsewhere.1s 

In the following we present a formal demonstration of the fact that (from 
a mathematical point of view) TRE reflects the simultaneous effect of all 
cycles of the molecule on total n:-electron energy. 
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Within the Ruckel molecular orbital model the total n-electron energy (E) 
of a conjugated molecule can be calculated from the zeros of the ch·aracteristic 
polynomial of the molecular graph. This polynomial, on the other hand, can 
be determined from the set S of all Sachs graphs of the molecular graph.14 

Hence there exists a mapping f such that 

n 
E = l: 9; X; = f (S) 

j=l 

(4) 

The crucial idea of the TRE concept is1,2 to construct the reference energy 
ER by applying the same mapping f to the set SR of those Sachs graphs (of the 
molecular graph) which do not contain cycles. 

n 
ER= l: 9; xt = f (SR) 

j=l 

(5) 

Eqs. (4) and (5) imply TRE = f (S) - f (SR). Therefrom, the following conclusion 
is evident. 

Proposition 1. TRE is the joint effect of all cycles of the conjugated system on 
total n-electron energy. 

The fact that TRE can be calculated from the set S will be symbolized by 
the function F, viz. TRE = F (S). 

Let C be a cycle in the molecular graph G. Then some Sachs graphs of G 
contain C as a component. Let SIC be the set of all Sachs graphs (of G) which 
do not contain the cycle C. Then F (S) - F (SIC) is the effect of the cycle C 
on TRE, while ef (G, C) = f (S) - f (SIC) is the effect of the same cycle on the 
total n-electron energy. 19,20 

Proposition 2. The effect of a particular cycle C on TRE is equal to ef (G, C). 

Proof is based on the fact that by deletion of the cyclic Sachs graphs from 
either S or SIC one obtains the same subset, namely SR = (SIC)R. Then 

F (S) - F (S/C) = f (S) - f (Sn) - [f (S/C) - f ((S/C)R)] = 

= f (S) - f (Sn) - [f (S/C) - f (SR)] = f (S) - f (S/C) = ef (G, C) 

The ef (G, C) function was calculated for a large number of conjugated 
systems19 and recently also various its mathematical properties have been 
determined.20 Because of the above proposition, these former results apply 
equally well to TRE. They will not be reproduced here once again. 

Proposition 3. If G represents a monocyclic conjugated system, then ef (G, C) = 
=TRE. 

Proof. If C is the unique cycle of G, then SIC = SR and TRE = f (S) - f (SR) = 
= f (S) - f (SIC) = ef (G, C). 

AN APPROXIMATE LINEAR FORMULA FOR TRE 

According to Proposition 1, TRE results from a simultaneous action of all 
cycles in a conjugated system. It would be desirable to express this effect as 
an additive function of the contributions arising from single cycles. According 
to Proposition 2, there is no exact solution of this problem. However, it is 
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possible to derive an approximate formula for TRE, which is a linear function 
of terms being associated with cycles of the molecular graph. 

Let us consider alternant conjugated systems having doubly occupied 
bonding and unoccupied antibonding MO's (note, however, that all the obtained 
conclusions are valid for non-alternants as well). Then the following integral 
expression for TRE holds1•14 

<15 (G, ix) 
TRE = < log > 

a (G, ix) 
(6) 

Substituting eq. (3) back into (6) and taking into account the definition (2) of 
matching polynomials, one obtains 

TRE = ( log [1- 2 ~ (-1) I c. !t2 (G- Ca) + 
a 

+ 22 ~ (- 1) <I c. I + jc b 1>12 (G - Ca - Cb) - ... J) 
a,b 

with I Ca I being the size of the cycle Ca and 

~ p (G - Ca, k) x n- 1c.1-2 k 

(G-Ca) = k 

~ p (G, k) xn-2k 
k 

~P (G-Ca-Cb, k) xn-1 c. !- 1 Cb l -2k 

(G - Ca - Cb) = _k _______________ _ 

~ p (G, k) xn - 2k 
k 

etc. It is important to note that the functions (G-Ca), (G-Ca- Cb) etc. are 
positive for all values of the variable x (x ,,: 0) and may vanish only for x = 0. 

In addition ,it can be shown that 

(G-Ca) > (G-Ca-Cb) > (G-Ca-Cb-Cc) > ... 
and 

2 (G-Ca) ~ 1 

for all values of the variable x. Assuming that the terms (G-Ca-Cb), (G-Ca­
-Cb-Cc) etc. are negligibly small with respect to (G-Ca), and that 2 (G-Ca) 
is much smaller than unity, we arrive to the following approximate expression. 

TRE == ~I (G, C) (7) 
c 

where I (G, C) = - 2 (- l) IC[/2 ( (G-C) ). Eq. (7) has the desired linear form. If 
we interpret the term - 2 (-l) IC[/2 ( (G-C) ) as an approximate contribution 
of the cycle C to TRE, then we immediately obtain the following conclusions. 

(a) If the cycle C is of the size 4m + 2, then I (G, C) > 0. If the cycle C is 
of the size 4m, then I (G, C) < 0. Hence, we have reproduced the well-known 
fact that (4m + 2)-membered cycles increase and (4m)-membered cycles de­
crease TRE. 

(b) If the cycle C is odd, then (G- C) is an odd function and I (G, C) = 0. 
Consequently, within the validity of eq. (7), odd-membered cycles have no 
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effect on TRE. This means that the actual effect of odd cycles on TRE is rather 
small and usually of no chemical significance. 19 

(c) The function (G-C) is bell-shaped and has the following asymptotic 
behaviour. 

(G-C) -
K(G-C) 

K(G) 

for large \ x \ 

for small \ x \ 

where K (G) and K (G-C) are the numbers of Kekule structures of the systems 
G and G-C, respectively. Therefore21 , the greater is the size of the cycle C, 
the smaller is the contribution of C to TRE. The greater is the ratio K (G-C)/ 
!K (G), the greater is the contribution of C to TRE. 

Eq ( 7) 
• 
·~, 

0.5 
, ________ 4 3 

25 24 23 22 

TRE 

1.0 0.5 

• 15 

• 

~g -0.5 18 

20 

.__-21 

Figure 1. Correlation between eq. (7) and exact TRE values. 1. phenanthrene 2. anthracene 3. 
a cenaphthe nyl radical 4. naphthalene 5. benzene 6. 2-phenyl-allyl radical 7. styrene 8. [10]-annu­
lene 9. azulene 10. benzyl radical 11. biphenylene 12. m-xylylene 13. p-xylylene 14. o-xylylene 
15. [4]-radialene 16. 1,2-dimethylene-cyclobutadiene 17. pentalene 18. 1,3-d imethylene-cyclobuta­
diene 19. benzcyclobutadiene 20. methylene-cyclobutadiene radical 21. dicyclobuta(a,c)benzene 

22. [12]-annulene 23. cyclooctatetraene 24. dicyclobuta(a,d)benzene 25. cyclobutadiene 

The validity of eq. (7) was tested on a number of conjugated systems, both 
alternant and non-alternant, monocyclic and polycyclic. Some typical results 
are presented in Figure 1. As it can be seen, the relation between the apprnxima­
tion (7) and the exact TRE is apparently not linear. The correlation is relatively 
good for systems having positive and small negative values of TRE. However, 
considerably high violations exist in the case of antiaromatic molecules, espec­
ially (4m)-annulenes. 
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SAZETAK 

Utjecaj prstenova na topologijsku rezonancijsku energiju 

I. Gutman 

Utvrdena su dva temeljna svojstva topologijske resonancijske energije (TRE): 
1. TRE predstavlja zajednicki utjecaj svih prstenova na ukupnu n:-elektronsku ener­
giju; 2. utjecaj pojedinaenih prstenova na TRE jednak je utjecaju tih prstenova na 
ukupnu n:-elektronsku energiju. Izvedena je priblizna formula koja prikazuje TRE 
kao linearnu kombinaciju doprinosa pojedinacnih prstenova. 
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