CCA-1260

YU ISSN 0011-1643 UDC 539.19 Note

On the Characterization of Monocyclic Structures. Hosoya's Index

I. Gutman*

Institut für Strahlenchemie im Max-Planck-Institut für Kohlenforschung, Mülheim a. d. Ruhr, F. R. Germany

Received May 15, 1980

The previous work by Bonchev et al.³ is complemented by an explicit general topological formula for Hosoya's index of a cycle.

A large number of topological indices which characterize various topological properties of molecules have been proposed in the current chemical literature. (For a recent review see¹.) The main chemical applications of these indices are in bond-additive and other empirical schemes for correlating molecular properties (e. g. boiling point, density, refractive index, surface tension, viscosity, octane number, chromatographic constants, thermodynamic constants, pharmacological activity etc.) with molecular structure^{1,2}.

In the majority of the papers dealing with topological indices only acyclic structures were considered. However, in recent investigations by Bonchev et al.^{3,4} an attempt was made towards the application of topological indices for the characterization of cyclic structures. Monocyclic systems were examined in³ and polycyclic systems in⁴. In particular, Bonchev et al. considered³ the following topological indices of the cycle C_N : the Wiener number W, Randić's connectivity index χ_R , Platt's index F, Gordon's and Scantelbury's index S, the indices M_1 and M_2 , Hosoya's index Z and the information index I_D . They presented explicit analytical expressions for the indices W, χ_R , F, S, M_1 and M_2 , but not the analogous formula for Hosoya's index. In this note we shall solve the problems posed in ref.³ for the case of Hosoya's index.

Let G be a graph with N vertices and let N = 2m or N = 2m + 1. If we denote the number of k-matchings of this graph by p(G, k), k = 1, 2, ...,then Hosoya's index of G is defined as^{3,5}

$$Z(G) = \sum_{k=0}^{m} p(G,k)$$

while the matching polynomial of G is given by⁶

$$a(G) = a(G, x) = \sum_{k=0}^{m} (-1)^{k} p(G, k) x^{N-2k}$$

It is immediately seen that

$$Z(G) = i^{-N} \alpha(G, i)$$

(1)

^{*} Alexander von Humboldt fellow. Permanent address: Faculty of Science. University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Yugoslavia

Let C_N denotes the cycle with N vertices. It is well known⁷ that

$$p\left(\mathbf{C}_{N},k\right)=\frac{N}{N-k}\left(\begin{array}{c}N-k\\k\end{array}\right)$$

Therefore

$$Z\left(C_{N}\right) = \sum_{k=0}^{m} \frac{N}{N-k} \left(\begin{array}{c} N - k \\ k \end{array} \right)$$

is the required topological formula for Hosoya's index of C_N . Another, more convenient expression for $Z(C_N)$ is obtained from the relation⁸

$$\alpha(C_N) = x \alpha(C_{N-1}) - \alpha(C_{N-2})$$

which together with (1) yields

$$Z(C_N) = Z(C_{N-1}) + Z(C_{N-2})$$
(2)

The solution of the recurrence relation (2) reads⁹

$$Z(C_N) = [(\sqrt{5}+1)/2]^N + (-1)^N [(\sqrt{5}-1)/2]^N$$
(3)

where we have used the initial conditions $Z(C_3) = 4$ and $Z(C_4) = 7$. It is now easy to calculate that

$$\Delta Z \text{ (odd } \rightarrow \text{ even}) - \Delta Z \text{ (even } \rightarrow \text{ odd}) =$$

$$= -(\sqrt{5}-2) \left[(\sqrt{5}+1)/2\right]^{N} + (\sqrt{5}+2) \left[(\sqrt{5}-1)/2\right]^{N}$$
(4)

where N is the size of the even-membered cycle. The expression on the right side of eq. (4) has negative values for all $N \ge 4$ and thus the application of Hosoya's index leads to conclusions about the change in relative cyclicity which are just the opposite to those formulated in Rule 1 in ref.³.

In ref.³ it was found that Hosoya's index cannot be normalized by dividing it by the number of carbon atoms. This conclusion is now evident from eq. (3) since we see that $Z(C_N)$ increases exponentially with increasing N. We would therefore propose another normalization, namely

 $\overline{Z}(C_N) = \frac{1}{N} \log Z(C_N)$ (5)

which has the advantageous property (6).

$$\Delta \overline{Z} (\text{odd} \rightarrow \text{even}) - \Delta \overline{Z} (\text{even} \rightarrow \text{odd}) > 0 \tag{6}$$

Thus Rule 1 in ref.³ can also be justified on the basis of the normalized Hosoya's index, eq. (5).

Concluding this note we would like to point out some relations between Hosoya's numbers of a cycle and a path (chain). Let P_N be the path with N vertices. It is long known⁵ that

$$Z(P_N) = Z(P_{N-1}) + Z(P_{N-2})$$

and

$$Z(P_N) = \sum_{k=0}^{m} \left(\frac{N-k}{k} \right) = \left[(\sqrt{5}+1)/2 \right]^{N+1} / \sqrt{5} + (-1)^N \left[(\sqrt{5}-1)/2 \right]^{N+1} / \sqrt{5}$$

82

From the following identities between the matching polynomials of paths and cvcles¹⁰

$$\begin{split} a & (C_N) = a & (P_N) - a & (P_{N-2}) \\ a & (C_N) & (P_{N-1}) = a & (P_{2N-1}) \end{split}$$

we deduce

$$Z(C_N) = Z(P_N) + Z(P_{N-2}) = Z(P_{2N-1})/Z(P_{N-1})$$

Consequently,

$$Z$$
 (chain) — Z (cycle) = — $Z(P_{N-2}) < 0$

and

$$\overline{Z}$$
 (chain) — \overline{Z} (cycle) = — $\frac{1}{N}$ log $[1 + Z (P_{N-2})/Z (P_N)] < 0$

Acknowledgement. — The author thanks the Alexander von Humboldt Foundation for financial support of this research.

REFERENCES

- 1. A. T. Balaban, Theor. Chim. Acta 53 (1979) 355.
- 2. L. Kihr and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York 1976.
- 3. D. Bonchev, O. Mekenyan, J. V. Knop, and N. Trinajstić, Croat. Chem. Acta 52 (1979) 361.
- 4. D. Bonchev, O. Mekenyan, and N. Trinajstić, Internat. J. Quantum Chem. 17 (1980) 845.
- 5. H. Hosoya, Bull. Chem. Soc. Japan 44 (1971) 2332.
- 6. See for example: I. Gutman, Math. Chem. (Mülheim) 6 (1970) 75; C. D. Godsil and I. Gutman, J. Graph Theory, in press.
- 7. D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs Theory and Application, Deutscher Verlag der Wissenschaften, Berlin 1980, p. 73.
- 8. I. Gutman and H. Hosoya, *Theor. Chim. Acta* **48** (1978) 279. 9. D. Cvetković and I. Gutman, *Croat. Chem. Acta* **46** (1974) 15. 10. I. Gutman, *Z. Naturforsch.* **35a** (1980) 453.

SAŽETAK

O karakterizaciji monocikličkih struktura. Hosoyin indeks

I. Gutman

Kao dopuna rada Bončeva i suradnika³ izvedena je eksplicitna opća topološka formula za Hosoyin indeks monocikličkih struktura.

INSTITUT ZA KEMIJU ZRAČENJA MÜLHEIM, SR NJEMAČKA

Prispjelo 15. svibnja 1980

83