A. L. Goodson

Application of Graph-Based Chemical Nomenclature to Theoretical and Preparative Chemistry

315 - 324

A. Graovac,
O. E. Polansky, and
N. N. Tyutyulkov

Acyclic and Characteristic Polynomial of Regular Conjugated Polymers and Their Derivatives

The acyclic polynomial of regular conjugated polymers and some of their derivatives satisfies a recursion formula which contains 2^{l+1} terms where 1 stands for the number of bonds linking the monomer units. The coefficients appearing in the recursion are independent on the degree of polymerization; they are functions only of the acyclic polynomials of the monomer unit graph and its subgraphs obtained by successive deletion of atoms serving as the linking sites. The characteristic polynomial of regular polymers with 1=1 is also studied

325 - 356

K.-D. Gundermann,C. Lohberger, andM. Zander

New Topological Indices for Alternant Polycyclic Aromatic Hydrocarbons

Two new topological indices have been derived from the characteristic graphs of polycyclic aromatic hydrocarbons. These indices correlate with HMO data of the systems. The presuppositions that topological indices have to fulfill in order to correlate with properties of polycyclic aromatics are discussed in detail.

357—363

I. Gutman

Topological Properties of Benzenoid Systems. XXI. Theorems, Conjectures, Unsolved Problems

The main known mathematical results about benzenoid systems (32 theorems and 5 conjectures). Seven unsolved problems. Results on the basic properties of benzenoid graphs, on number of Kekulé structures and on Clar's resonant sextet theory	365—374
Variational Approach to Diabatic States	
After an analysis of the concept of diabatic states a novel variational definition of such states is introduced and a simple general algorithm for their construction is derived	375—382
The Thermodynamic and Kinetic Limits on the Process of Free Energy Storage by Photosynthetic Systems	
The theoretical upper limit for the efficiency of energy transfer in light absorption process depends on the rate constants for the particular photosynthetic model In our proton pump model it is $70^{\circ}/_{\circ}$.	383—387
Perturbational Self-Consistent Orbitals for Open-Shell Systems. An Applica- tion to Xylylenes	
A method of building self-consistent localized MO's for closed shell systems by use of the perturbation theory is extended to open-shell systems. It is illustrated on the ortho-, meta-, and para-xylylenes, and the configuration interaction calculations for the singlet-triplet energy differences are presented	389—395
The Fragments-in-Molecules Method III. Inductive and Mesomeric Effects	
The Fragments-in-Molecules (FIM) Method is a semiempirical SCF MO method in which the wave function of a composite molecule is written as a linear combination of localized fragment orbitals. In the present paper it is shown that this method provides a natural definition of inductive and mesomeric effects and applications within the PPP and CNDO/2 approximations are given	397—403
	about benzenoid systems (32 theorems and 5 conjectures). Seven unsolved problems. Results on the basic properties of benzenoid graphs, on number of Kekulé structures and on Clar's resonant sextet theory Variational Approach to Diabatic States After an analysis of the concept of diabatic states a novel variational definition of such states is introduced and a simple general algorithm for their construction is derived The Thermodynamic and Kinetic Limits on the Process of Free Energy Storage by Photosynthetic Systems The theoretical upper limit for the efficiency of energy transfer in light absorption process depends on the rate constants for the particular photosynthetic model. In our proton pump model it is 70%. Perturbational Self-Consistent Orbitals for Open-Shell Systems. An Application to Xylylenes A method of building self-consistent localized MO's for closed shell systems by use of the perturbation theory is extended to open-shell systems. It is illustrated on the ortho-, meta-, and para-xylylenes, and the configuration interaction calculations for the singlet-triplet energy differences are presented The Fragments-in-Molecules Method III. Inductive and Mesomeric Effects The Fragments-in-Molecules (FIM) Method is a semiempirical SCF MO method in which the wave function of a composite molecule is written as a linear combination of localized fragment orbitals. In the present paper it is shown that this method provides a natural definition of inductive and mesomeric effects and applications within the PPP and CNDO/2 approxima-

J. V. Knop, W. R. Müller, K. Szymanski, M. Randić, and N. Trinajstić	Note on Acyclic Structures and their Self Returning Walks	
	Analysis of walk based atomic codes on all rooted trees up to 16 vertices revealed that there exist isospectral trees without isocodal points, non-isospectral trees with isocodal points, and single trees with several isocodal points	405—409
J. V. Knop, D. Plavšić, M. Randić, and N. Trinajstić	Chemical Graph Theory. V. On the Classification of Topological Biradicals	
	The classification of topological biradicals, based on the multiplicity of the zero eigenvalue is discussed. All acyclic forms having 12 or fewer carbon atoms, and all cyclic forms having 8 or fewer carbon atoms have been examined	411—441
J. V. Knop, K. Szymanski, G. Jashari, and	The Connection Between the Adjacency Matrix and Boundary Code of Benze- noid Hydrocarbons	
N. Trinajstić	Algorithms for interconversion of adjacency matrix and boundary code of benzenoid hydrocarbons, and its application for getting approximate values of TRE via Gutman-Petrović formulae, starting with known boundary code, is presented	443—450
J. Koutecký, D. Plavšić, and D. Döhnert	Topological Properties on Small Li Clusters and the Pariser-Parr-Pople-Type Model	
	A simple analysis of the spin multiplicity of the ground state is presented in the weakly correlated limit. The ab initio MRD-CI predictions on the small Li clusters and the full CI results of the Pariser-Parr-Pople model for the corresponding network of centers exhibit a close parallelity which is possible to rationalize .	451—459
Z. B. Maksić and K. Rupnik	Point-charge Description of Some Mo- lecular Properties	
	The calculations of ESCA chemical shifts, diamagnetic shielding of muclei and diamagnetic part of the molecular magnetic susceptibility are described. A relation between the effective atomic charges and total molecular SCF energies is illustrated	461—476

R B. Mallion	An Analytical Illustration of the Relevance of Molecular Topology to the Aufbau Process A series of networks introduced by Balaban was considered in view of obtaining an unique $\pi\text{-electronic}$ ground state configuration on the basis of the Aufbau Principle. It was shown that it can be achieved only in the special case	477—490
A. Moyano and J. C. Paniagua	Topological Localized Molecular Orbitals of Hückel and Möbius Annulenes A localization method for π -molecular orbitals which relies only in molecular topology has been used in a comparative study of the π -localized molecular orbitals of Hückel and Möbius annulenes	491—497
J. C. Paniagua and A. Moyano	On the Relationship between Localized Molecular Orbitals and Kekulé Structures Localized molecular orbitals for π -systems of benzenoid as well as cyclobutadiene-containing polycyclic hydrocarbons have been calculated at the Hückel level. The connection between the localized and Valence Bond structures has been considered	499—507
G. Winkelhofer, R. Janoschek, F. Fratev, and P. v. R. Schleyer	Acetylene, Vinylidene, and the Vinyl Cation in Ground and Excited States Ab initio calculations using the improved virtual orbital formalism are reported for acetylene, vinylidene, and C2H3+ ion, in classical and bridged geometries. A modified Walsh diagram for acetylene and simple molecular orbital considerations explain excited structures and energy orderings	509—524
T. P. Živković	Molecular Orbital Resonance Theory: A Simple Model and the Generalised Hückel Rule A simple approximation called MORT-1	
- CNS THE SECOND THE S	is formulated assuming Hückel Hamiltonian and retaining MORT Kekulé structures only. In the case of even alternant hydrocarbons MORT Kekulé structures interact with each other only if their superposition contains no 4m-type cycle. In the nonalternant case the interaction between the two subsets is due to the »cis-bridge« (nonalternant) bonds	525—551

CROATICA CHEMICA ACTA

Croat. Chem. Acta Vol. 56 No. 3

315—552 (1983)

Zagreb, 1. listopad, 1983

SADRŽAJ

Primjena kemijske nomenklature zasnovane na grafovima u teorijskoj i preparativnoj kemiji A. L. Goodson	315—324
Aciklički i karakteristični polinom regularnih konjugiranih polimera i njegovih derivata A. Graovac, O. E. Polansky i N. N. Tyutyulkov	325—356
Novi topološki indeksi za alternantne policikličke aromatske ugljikovodike KD. Gundermann, C. Lohberger i M. Zander	357—363
Topološka svojstva benzeno idnih sustava. XXI. Teoremi, hipoteze, neriješeni problemi $\dots \ \textbf{I. Gutman}$	365—374
Varijacijski pristup dijabatskim stanjima J. Hendeković	375 - 382
Termodinamička i kinetička ograničenja u procesu pohranjivanja slobodne energije kod fotosintetskih sistema	383—387
Perturbacijske samousklađene orbitale za sisteme s otvorenom ljuskom. Primjena za ksililene P. Karafiloglou	389—395
Metoda molekularnih fragmenata III. Induktivni i mezomerni efekti M. Klessinger	397—403
Bilješka o acikličkim strukturama i njihovim samovraćajućim šetnjama J .V. Knop, W. M. Müller, K. Szymanski, M. Randić i N. Trinajstić	405—409
Kemijska teorija crteža. V. O klasifikaciji topologijskih biradikala J. V. Knop, D. Plavšić, M. Randić i N. Trinajstić	411—441
Odnos između matrice susjedstva i rubnog koda benzenoidnih ugljikovodika J. V. Knop, K. Szymanski, G. Jashari i N. Trinajstić	443—450
Topološka svojstva i model Pariser-Parr-Pople tipa za male Li klastere J. Koutecký, D. Plavšić i D. Döhnert	451—459
Opis nekih molekularnih svojstava pomoću točkastih naboja Z. Maksić i K. Rupnik	461—476
Analitička ilustracija značaja molekularne topologije u Aufbau procesu R. B. Mallion	477—490
Topološke lokalizirane molekularne orbitale Hückelovih i Möbiusovih anulena A. Moyano i J. C. Paniagua	491—497
O vezi lokaliziranih molekularnih orbitala s Kekuléovim indeksom J. C. Paniagua i A. Moyano	499—507
Acetilen, viniliden i vinil kation u osnovnom i pobuđenim stanjima G. Winkelhofer, R. Janoschek, F. Fratev i P. v. R. Schleyer	509—524
Molekulsko-orbitalna rezonancijska teorija: jednostavan model i poopćeno Hückelovo pravilo T. P. Živković	525—551

CROATICA CHEMICA ACTA

Croat. Chem. Acta Vol. 56 No. 3

315-552 (1983)

Zagreb, October 1, 1983

CONTENTS

Application of Graph-Based Chemical Nomenclature to Theoretical and Preparative Chemistry A. L. Goodson	315—324
Acyclic and Characteristic Polynomial of Regular Conjugated Polymers and Their Derivatives	
A. Graovac, O. E. Polansky, and N. N. Tyutyulkov	325—356
New Topological Indices for Alternant Polycyclic Aromatic Hydrocarbons KD. Gundermann, C. Lohberger, and M. Zander	357—363
Topological Properties of Benzenoid Systems. XXI. Theorems, Conjuctures, Unsolved Problems I. Gutman	365—374
Variational Approach to Diabatic States J. Hendeković	375 - 382
The Thermodynamic and Kinetic Limits on the Process of Free Energy Storage by Photosynthetic Systems	383—387
Perturbational Self-Consistent Orbitals for Open-Shell Systems. An Application to Xylylenes P. Karafiloglou	389—395
The Fragments-in-Molecules Method III. Inductive and Mesomeric Effects M. Klessinger	397—403
Note on Acyclic Structures and their Self-Returning Walks J. V. Knop, W. R. Müller, K. Szymanski, M. Randić, and N. Trinajstić	405—409
Chemical Graph Theory. V. On the Classification of Topological Biradicals J. V. Knop, D. Plavšić, M. Randić, and N. Trinajstić	411—441
The Connection Between the Adjacency Matrix and the Boundary Code of Benzenoid Hydrocarbons J. V. Knop, K. Szymanski, G. Jashari, and N. Trinajstić	443—450
Topological Properties on Small Li Clusters and the Pariser-Parr-Pople- -Type Model J. Koutecký, D. Plavšić, and D. Döhnert	451459
Point-charge Description of some Molecular Properties Z. B. Maksič and K. Rupnik	461—476
An Analytical Illustration of the Relevance of Molecular Topology to the Aufbau Process R. B. Mallion	477—490
Topological Localized Molecular Orbitals of Hückel and Möbius Annulenes A. Moyano and J. C. Paniagua	491—497
On the Relationship Between Localized Molecular Orbitals and Kekulé Structures J. C. Paniagua and A. Moyano	499—507
Acetylene, Vinylidene, and the Vinyl Cation in Ground and Excited States G. Winkelhofer, R. Janoschek, F. Fratev, and P. v. R. Schleyer	509—524
Molecular Orbital Resonance Theory: A Simple Model and the Generalised Hückel Rule T. P. Živković	525—551