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The method for determination of diffraction pattern of amor­
phous phase existing in a multiphase system has been described. 
In the course of analysis several samples containing different 
amounts of amorphous as well as crystalline phases have been 
involved according to the general theory for phase analysis. The 
method is based on the difference in convergence of Fourier series 
by which diffraction patterns of multiphase samples and of in­
dividual phases of these samples are defined, since diffraction 
pattern of amorphous phase exhibits stronger convergent Fourier 
series than diffraction pattern of crystalline phase. The method is 
illustrated by three-phase model system containing one amorphous 
phase. 

The solution of multiphase systems with unknown or less known com­
pounds by x-ray diffraction is complicated because an exact distribution of 
the x-ray intensity diffracted by these compounds is not known. An amorphous 
phase of multiphase samples usually produces a diffuse x-ray pattern in Bragg­
-angle intervals, in which crystalline phases of samples yield sharp maxima. 
Therefore the determination of a correct shape of a diffuse x-ray pattern, 
corresponding to a pure amorphous phase, from x-ray patterns of polyphase 
samples is difficult. The determination of an amorphous phase diffraction 
curve required for quantitative phase-analysis can be performed by applying a 
general method for phase analysis (GMPA)1. In the present work a procedure 
for such determination is developed. The method is based on the main relations 
of the GMPA and the fact that the Fourier series of more smooth curves 
converge more rapidly than those of less smooth curves2 . 

THEORY 

According to the GMPA1, the x-ray diffraction curve of a multiphase 
sample can be represented as a sum function r[> (x), i. e. as a sum of products 
of component functions cp; (x), characteristic of individual phases, with the 
corresponding weight fractions w ;: 
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if> (x) = ~ q;i (x) wi 
i= l 

(1) 

where r is the number of phases. The sum function <P (x) and the individual 
function (/Ji {x) are defined by a row of n elements F (n) and fi (n), respectively. 
Therefore equation (1) can be written in a form that is more convenient for 
quantitative phase analysis: 

F (n) = ~ f; (n) wi 
i=l 

(2) 

The number of phases r in a sample can be determined on the basis of the 
following considerations. For r-phase samples which differ with regard to 
the weight fractions of individual phases, the sum functions <Pi (x) (j = 1, 
... , r + 1) satisfy the equation 

~ ai Pi (x) = if>r+ 1 (x) 
i=l 

where a; are proportionality coefficients. 

(~) 

To determine r, sufficiently wide intervals of the x-ray diffraction curve 
of r + 1 samples should be developed into Fourier series. Each Fourier series 
is represented by the coefficients Ai (n) and Bj (n). By substituting the 
Fourier coefficients for the row Fi (n) into equation (3), one obtains the 
expressions 

~ ai A; (n) = A r+i (n) + ii A (n) 
i= l 

~ a; B; (n) = Br+i (n) + Lle (n) 
i= l 

in which L1A (n) and L1e (n) are elemental deviations. 

(4) 

(5) 

The deviation factor including deviations of all 2n Fourier coefficients 
is equal to 

~ (j L1 A (n) J + J L1 B (n) J> 

Rf= 
~< I Ar+ 1 (n) I + J Br+i (n) Jl 

n 
(6) 

n 

The proportionality coefficients a; and the corresponding statistics (devi­
ation factor Rr, correlation factor R and t;-values for the determination of 
significance whether a; ?"' 0) can be calculated by the least-squares-method 
using a system of 2n equations (n » r). 

If the amorphous phase is one of the constituents of a multiphase system, 
then in a criteria! analysis of the number of phases in the system the condi­
tions imposed on the value of the deviation factor Rr should be more rigorous 
than if the system analysed consists only of crystalline phases. The deter­
mination of the number of phases in a system made up only of crystalline 
constituents, with identical structural characteristics in all samples analysed, 
may be regarded as completed if, including the experimental error, the value 
of Rf is less than 0.1. However, if the analysed system contains an amorphous 
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phase, the value of Rf must be less than 0.05 for the assumed number of 
phases to be considered reliable. The reliability with which phase number is 
determined depends also on the difference between values of Rf obtain.ed 
under a correct and an incorrect assumption of the number of phases. When 
this difference is larger the reliability of defining the number of phases is 
higher. 

To define the shape of the individual function fPA (x) pertaining to the 
amorphous phase, it is sufficient to determine only 2k Fourier coefficients 
(k « n). This is because the Fourier series for the amorphous phase converges 
more rapidly than the Fourier series for crystalline phases. The indi­
vidual function cpA (x) is defined by a row of elements, fA (n), that is, by a row 
of aA (n) and bA (n), the cosine and sine function coefficients of the Fourier series: 

a
0 

k k 

({IA (x) = - + ~ aA (n) cos 2n nx + ~ bA (n) sin 2n nx 
2 n = l n = l 

(7) 

The remaining elements aA (m) and bA (m) vanish for all values of m such 
that k < m ~ n. Substitution of cpA (x) for <I>r (x) into equation (3) and, corre­
spondingly, replacing Ar (n) and Br (n) in equations (4,5) by aA (n) and bA (n) 
will give a system of 2n equations. From this system T -1 coefficients ai as 
well as k products aA aA (n) and k products aA bA (n) can be determined. All 
together, r - 1 + 2k unknown values can be determined. The system of 2n 
equations with r - 1 + 2k unknowns can be solved by the least-squares method 
provided that 2n » r - 1 + 2k. 

This condition is not usually satisfied, because the number of Fourier 
c·oefficientJs n is limited due to the rapid convergence of the series. For this 
reason, the 2k coefficients are not calculated from a single system of equations, 
but successively, pair by pair. The coefficients calculated in this manner are 
used to set up the r-th Fourier series which represents the individual function 
of the amorphous phase. The first pair of coefficients a (1) and b (1) can be 
calculated from the equation: 

r-1 

~ ai (1) <Pi (x) +a (1) cos 2nx + b (1) sin 2nx = <Pr+J (x ) 
i=l 

(8a) 

In this way, r -1 of all proportionality factors have been calculated as well 
as a (1) and b (1) , so the total number of calculated unknowns is r -1 + 
+ 2 = r + 1. To solve the system of 2n equations of type (8a) with r + 1 
unknowns, the least-squares procedure is allowed when 2n » r + 1. 

The next pair a (2) and b (2) is calculated from an expression similar to (8a), 

r-1 

~ ai (2) <Pi (x) + ar (2) ({lr, 2 (x) + a (2) cos 2n2x + b (2) sin 2n2x = <Pr+i (X) (8b) 
i= l 

where cpr, 2 (x) is a function represented by two terms with the coefficients 
a (1) and b (1) , respectively: 

({!r, 2 (X) = a (1) cos 2nx + b (1) sin 2.crx (8c) 

System (8b) permits the calculation of r of the coefficients ai as well as the 
calculation of a (2) and b (2), which accounts for r + 2 unknowns in all. The least-
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-squares method can be applied, since 2n is still overwhelmingly larger than 
r + 2 when 2n » r + 1. 

In general, the k-th pair a (k) and b (k) can be calculated from the 
equation 

r- 1 

~ ai (k) <Pi (x) + ar (k) rpr ,k (x) + a (k) cos 2JTkX + b (k) sin 2nkx = <P ,.+ 
1 

(x ) (8d) 
; ~ 1 

where <pr, k (x) is a function defined as 

rpr,k (x) = ar (k-1) ?Jr,k-i (x) + a(k - 1) cos 2n (k - 1) x + b (k -··- 1) sin 2JT (k - 1) .r 
(8e) 

Again, system (8d), containing r + 2 unknowns, can be solved by the least­
-squares method because .2n » r + 2, as shown above. 

DISCUSSION 

To carry out a quantitative phase analysis of a multiphase system based 
on the GMP procedure, two preliminary steps must be taken: (1) determination 
of the total number of phases in the system and (2) determination of the·shape 
of individual phase functions . 

I phase 1 

0 1 

I phase 2 

II~ ph••_e 3 ------""~-~ 
0 

Figure 1. Idealized x-ray diffraction patterns of individual phases 
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I aample I I sample 3 

aample 2 I sample 4 

Fi gure 2. Sum functions belonging to samples 1-4 

Let the first step be illustrated in a three-phase model-system consisting 
of four samples with different weight fractions of the three phases. One of 
the individual phase functions, corresponding to one of the idealized x-ray 
diffraction patterns is attributed to a pure amorphous phase (Figure 1). The 
four sum functions <Pi (x) (j = 1, ... , 4) corresponding to idealized x-ray di­
ffraction patterns of the four samples, are shown separately in Figure 2. 
Each pattern is represented by 300 amplitudes used to calculate the coefficients 
of the four respective Fourier series. At first, a two-phase system was tenta­
tively assumed, and the proportionality factors ai, their deviation factor (Rr}, 
correlation factors (R), and ti-values were calculated by the least-squares 
procedure from a system of 100 equations: 

(9) 

where n = 1, . .. , 50 is the number of coefficients in each cosine and sine 
term. Various combinations of 3 out of the 4 equations were used. The same 
parameters were then calculated for a three-ph3.se system, assumed in the 
model. Calculations were based on the following system containing 100 equat­
ions: 

(10) 

where I, J, K and L are indices of samples included in the particular combi­
nations. 

The results are summarized in Table I. The three combinations to which 
equation (9) was applied gave Rr factors above 0.05 (range 0.076-0.188) 
and correlation factors below unity. This shows that the two-phase assumption 
is unacceptable. In contrast, the use of all samples in equation (10) gave 
Rr = 0.00, R = 1.00 and infinite ti-values (not shown in Table I.). This shows 
that the model requires to be treated as a three-phase system. 
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TABLE I 

Data on the Criterion Analysis for the Determination of the Number of Phases 

Combination 

1 2 3 

1 2 4 

2 3 4 

1 2 3 4 

0.076 

0.093 

0.188 

0.000 

R 

0.995 

0.993 

0.975 

1.000 

Determination of the shape of the individual curve pertaining to the amor­
phous phase in the successive mode (equations (8a-e)) was based on the 
equation 

(11) 

where q; (x) represents the curve corresponding to the strongly convergent 
Fourier series. The amorphous-phase curve was calculated by using three out 
of the four samples, as symbolized by the indices I, J, L. According to the 
results from Table I, any three samples may be used in combination, as for 
them laii>O. 

The required number of Fourier coefficients for best representation of 
the individual curve q; (x) was determined by correlation of the sum functions 
of three samples. The correlation was performed by subsequent multiple 
repetition. For the first correlation, zero-values were assumed for the first 
two pairs of the coefficients of every sample, Ai (p) = Bi (p) = 0, (p = 1, 2); 
for the second to fourteenth correlation, the assumptions were expanded to 
p = 1, 2, 3; p = 1, . .. , 4; . .. p = 1, .. . , 15. Figure 3 shows the dependence 
of Rf and R on the number of Fourier coefficients set zero for samples 1, 2 
and 4. For Fourier coefficients from the eighth term onwards, Rf and R were 
constant (Rf = 0.05 and R = 1.00). Hence the correlations of these series, Fi (n), 
where n > 7 are consistent with a system of only two phases, and q; (x) is 
sufficiently characterized by seven Fourier coefficients (k = 7). 

These coefficients were calculated pair by pair by the least-squares 
method from the 2n equations (n = 1, . . . , 50) based on the correlation of 
the sum functions of samples. The normalized curve represented by q; (x) 
differed from the theoretically constructed curve in Figure 4a, and its Rf 
factor was still above zero (Rf = 0.005). This result required a recalculation, 
taking into account q; (x). This was carried out according to the equation 

(12) 

where ..11 q; (x) is the recalculated function. If Rr remains above zero, the 
procedure is iterated until Rf falls below a fixed limit <I Rr I < c), and the 
shape of the curve changes no longer from one iteration to another. We set 
c = 0.001, which was attained by Rf at the second iteration. Finally, using 
this ..11 q; (x), we calculated the function 

(13) 
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Figure 3. The dependence of the Rr-factor and R upon the number of Fourier coefficients p 
which were assumed to be zero 
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Figure 4. The difference between presumed and calculated curves of amorphous phase 
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which we consider the best function to represent the shape of the required 
x-ray diffraction curve pertaining to the amorphous phase (Figure 4b). 

The described method can be successfully applied only to those systems 
which contain crystalline phases of identical structure. The success of the 
method used depends on the differences between diffraction patterns of indi­
vidual phases of samples, on the difference in proportion of these phases in 
individual samples, and on the strength of the signal arising from each separate 
phase. It is essential that the differences in x-ray diffraction patterns of 
samples are caused solely by a change in proportion of phases present in 
the observed system. Greater differences in diffraction patterns of separate 
phases and in weight fractions of these phases in different samples lead to 
higher accuracy in the determination of the number of phases present in the 
observed system and in the determination of diffraction patterns of individual 
phases. In this case, the deviation factor R1 owing to its higher sensitivity, 
is a more relevant criteria! parameter than the correlation factor R. 

Slight differences in structure of phases cause shift and change in 
the broadening of related diffraction maxima in analyzed samples. These 
facts required a modification of the described m2thod. The method for the 
determining diffraction patterns of the amorphous phase in samples of 
structurally similar crystalline phases will be published in a separate paper. 
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SAZETAK 

Odreaivanje rendgensko-difrakcijske slike amorfne faze 

A. Bezjak, I. Smit i V. Aliijevic 

Opisan je postupak odredivanja difrakcijske slike amorfne faze u visefaznom 
sistemu. Metoda se osniva na razlici konvergencije Fourierovih redova kojima su 
definirane difrakcijske slike amorfne i kristalinienih faza sistema. Fourierov red 
difrakcijske slike amorfne faze konvergentniji je od redova difrakcijskih slika kri­
stalinicnih faza. Postupak je prikazan na trofaznom model sistemu koji sadrzi jednu 
amorfnu fazu, a u skladu sa Opeom teorijom fazne analize u analizu je ukljuceno 
nekoliko uzoraka sa razlicitim udjelima amorfne kristalinicnih faza. 
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