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Graphical and analytical solutions for the crystallite size and 
strain parmneters, causing diffraction broadening, are given using 
two or more orders of the reflexion from the same set of crystal 
lattice planes and representing diffraction profiles with simple 
bell-shaped functions. The effect of the inevitable truncation of 
the profile tails on the derived values of the size and strain para­
meters is also discussed. It has been found that the truncation 
more considerably affects the functions describing the size para­
meter than the ones describing the strain parameter, this being 
in agreement with the experimental evidence. 

INTRODUCTION 

An observed X-ray diffraction line profile, h (e), is the convolution of the 
instrumental pTofile (»standard line profile«), g (s), inherent in the diffraction 
method, and the pure diffraction profile, f (e), produced by small crystallite 
sizes, by faultings on lattice planes and by strains in the crystal lattice:1•2 

h (c) = Sf (c - t) g(t) dt. (1) 

The derivation of f (e) (deconvolut1on) can be done by the Fourier transform 
method, commonly referred to as the Stokes1 method. This procedure does 
not requiTe assumptions in the mathematical descriptions of the profile shapes 
h (e) and g (s). The analysis of the pure diffraction profile, f (e), can be done 
by the Warren and Averbach2 method using directly the Fourier coefficients 
of f (e) obtained by deconvolution. Each coefficient is the product of the »Size« 
parameter (including both the crystallite size and faulting contributions) and 
the »strain« parameter. Since the latter parameter depends on the order of 
the reflexion it can be separated from the former parameter using two or 
more orders of the reflexion from the same set of crystal lattice planes. Hence, 
this analysis gives in principle such information about the sample as the 
mean crystallite size, distribution of sizes, deformation and twin faulting and 
the nature and extent of the lattice strains.2 

On the other hand, simplified methods, circumventing the deconvolution 
process, may be used, especially in routine measurements, wherein the numeric­
al results are required speedily and a good relative accuracy suffices. These 
methods are based on direct measurements of (i) the integral width (the area 

* Dedicated to Professor D. Grdenic on occasion of his 65th birthday. 
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under the diffraction profile divided by the profile height), (ii) the width at 
the half of the diffraction profile height, and (iii) the variance (the second 
moment rof the profile) .3 Much work has been done using the widths of the 
profiles and these techniques have been recently promoted.4 Let the integral 
widths alone be considered in the present paper. The observed integral widths 
Bi and bi of the Ka1 profiles* h (e) and g (e), respectively, and the unknown 
width {Ji of profile f (e) are related as follows (e.g. ref.5): 

bi Pi = Bi S Q(e) f(c) de. (2) 

In order to find the relationship between Bi, b i and f3, in an explicit form, 
one must assume analytical functions for g (e) and f (e) in (2) (e.g. ref. 5•6•8). 
Such assumptions, however, affect the value obtained for fli· Instead, the fol­
lowing empirical relation can be used:9•10 

(3) 

The width {Ji can also be found if the Stokes correction1 is performed and the 
profile f (e) is synthesized. In the following text it is understood that /Ji is 
determined from the observed values for Bi and bi, or from the found f (e). 

The pure diffraction profile f (e) can be considered (analogously to (1)) as 
the convolution of the crystallite size profile (supposing that the faultings are 
not present), p (e), and the lattice strain profile, s (e) :11 

f (c) = S P(e - t) s(t) dt. (4) 

The relation among the corresponding integral widths (Jpi and /3si (unknowns) 
and /3i (derived from (2) or (3) or by the Stokes method1) is (analogously to (2)): 

Ppi Psi= Pi S p(c) s(e) de. (5) 

In order to find the relation (5) in an explicit form one may assume analytical 
expressions for p (e) and s (e) in the form of bell-shaped functions. According 
to Ruland,8 s (e) can be described by the Gaussian function, exp (- k s2 e2) [or 
by (1 + k/ e2f 2 as suggested by other authors11], while p (e) can be described 
by the Cauchy function, (1 + k/ e2f1, for a wide crystallite size distribution, 
or by sin2 (kp e)l (k/ e2) for a narr·OW size distribution. Recently, the diffraction 
profiles have been described by the Voigt function, which is represented as 
the convolution of m Cauchy and n Gaussian functions .12•13 

In the present paper only simple bell-shaped functions are considered. 
Graphical and analytical solutions are given (in the cases where they have 
been missing in literature) for the crystallite size and strain parameters, using 
two or more orders of the reflexion from the same set of the crystal lattice 
planes. The other part of the paper deals with the effect of the inevitable 
truncation of the profile tails on the derived values of the parameters which 
cause broadening. 

* If one deals with the profiles obtained using the spectrcrl doublet Ka1a2, then 
it is understood that the contribution to the observed profile due to the a2 component 
is eliminated (e. g. ref.M). 
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SEPARATION OF THE SJiZE AND .STRAIN PARAMETERS 

The integral wMths of the crystallite si:ze profile, p(e), and the strain 
profile, s(e), in (5) ·are given by well-known expressions (e.g. ref.5•9): 

}. 
{Jpi = e , flsi = 4 ehkl tan e, 

Lhkl cos 
(6) 

where 2 is the vawelength of the radiation used, 8 is the Bragg angle, and 
L 1,k1 and ehkl are the volume average of the crystallite size and the lattice 
strain, respectively, in the direction normal to the reflecting lattice plains 
(hkl). If (at least two or) several orders of the reflexion are available, it is in 
principle possible to conclude whether one source or two sources of the bro­
adening is/are present, by checking the dependence of {J; on 8. If (3i increases 
with 8 , as I/cos 8, then the crystallite size broadening alone is present 
((3pi = (3i)· If (3; increases with 8 as tan 8, then the lattice strain causes bro­
adening. In either case the parameter causing broadening can be found from 
the pure diffraction width {J; of any order of the reflexion (eq. (6)). If both 
size and strain broadenings are present, the unknowns L hkl and ehkl can be 
found from the relations among (3;, (3pi and /lsi• which ·can be obtained by 
using eq. (5) and making assumptions for the crystallite size and strain 
profiles, p(e) and s(e). Two assumptions are considered here. J 

[1] P(e) = (1 + k/ e2t 1, s (e) =exp (- k/ e2
) 

Ln this case the exact expression relati:ng (3;, (3p; and /lsi was given by 
Schoening.11 As this exact expression in rather complicated and cannot be 
handled conveniently,11,10 Schoening11 in the same paper suggested a simple 
graphical solution for L11k1 and e1,k1 for two orders of the reflexion having 
sin 8 2 = 2 sin 8 1 : from the graphs relating {Lhkl B2f 1 and (B1/B2 - 0.5) (where 
Bi are the measured quantities /3ii cos 8.;12, j = 1,2) against U2 = 4 L1zk/ ehkl 

sin 8212 one f.irst determines (Lhkl B2f 1 and u2, and then L1i k1 and ehkI· Instead 
of the exact expression, Halder and Wagner10 gave a good approximate relation 
(analogously to (3)) for estimation of the crystallite size and strain parameters: 

fl/ = {J; f11>i + flsi2• (7) 

Substituting (6) in the approximate relation (7) it follows 

~ - _A._ ~2 ei + (4 ehk1)2
, 

sin2 CJ Lhkl sm CJ 
(8) 

where ?' = {J; cos 8. 

Eq. (8) provides a means for the graphical solution. All available orders of a 
given reflexion are used to construct a linear plot of y2/sin2 8. against y/sin2 8. 
The size and strain parameters are found from the slope, 2/Lhk/, and the 
ordinate intercept, (4 ehk1)2• In case of an isotropic material, all available 
reflexions can be used. 

Eq. (8) can be also written in the form 

(
sin@)2 ( y )2 y <4 e,,k1>2 -A.- = -A.- -T 

1 

Lhkl . 
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By plotting y = (sin 6)/),)2 as a function of x = y/J.. and approximating it with 
a parabola one can obtain the value of Lhkl from the intercept on the x axis, 
equaling x 0 = 1 / Lhkl, and the value -0f e1zk1 from the slope of the curve in the 
point (x0, 0), which is given by dy/dx = Lhkf1 (4 ehki)-2• 

The explicit analytical expressions for L1ik1 and e1zk1 can be found from (7) 
for two orders of the reflexion having sin 6J2 = 2 sin e.1: 

Llikl = A. (yz - 4Y1) (4 e )2 = Y1 Yi (yz - Y1) 
yz2- 4yl2 ' hkl sin2 el (4yl -yz) ' 

where 
Yj = /J;i cos ei, j = 1,2. 

[2] p (e) = (1 + k/ e2r1. s (e) = (1 + k/ e2)--2 

In this case the foll-Owing expression relating fl;, f3p; and {J5 ; can be found 
from (5) (e. q. ref.11): 

fJ, = CfJpi + 2 f3s;)
2 

fJpi + 4fJsi 
(9) 

Schoening11 gave the graphical solution of (9) for L1zkl and ehkl in a similar 
way as in the case [1]. 

Substituting (6) in (9) one obtains for the two orders of the reflexion, 
having sin 6J2 = 2 sin 8 1: 

A. (4 L1zk1 Y1 - Lhkl Yi - 3}.) 
eh kl = ----~--------- , 

32 L1z kl sin el (Lhkl Yi - 2 Lhkl Y1 + 2) 

a Vhkl + b Uhkl + c Lhkl + d = 0, 

where the coefficients in (11) are known quantities, 

with 

a = 8 Y1 Yi (yz - 2 Y1l. 

b = 3 J. y2 (8 y1 - 3 Yz), 

Yi = (Jii cos ei, j = 1,2. 

c = -6 J.2yz, 

d =-J.8, 

(10) 

(11) 

Eq. (11) can be solved graphically for Lhkz; then e1zk1 follows from (10). Or, eq. 
(11) can be rewritten in the form 

D3 + 3 pD + 2 q = 0, (12) 

where 
b 3 ac - b 2 2 b3 be d 

D = L hkl + -3a ' 3 P = - - -- ' 2 q = -- - -- + - . 
3 a2 27 a3 3 a2 a 

The solutions of (12) are as follows (Cardan's formulae): 

D1 = u + v, Dz = W1U + WzV, D3 = WzU + W1V, 
where 

3 a 1 -v3 
U = V - q + V q2 + p S, V = V - q- V q2 + p 3, Wl ,2 = -2 ± i2. 

The number of real solutions of D, and therefore of L 1,kz. depends on the sign 
of q2 + p3• For q2 + p3 > 0 there are one real and two complex solutions. 
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For q2 + p3 < 0 there are three different real solutions. If q2 + p3 = O there 
are two cases: (i) p = 0, q = 0: D1 = D2 = D3 = O; (ii) p3 = -q2 ~ 0: here one 
has three real solutions, but two of them are the same. If one obtains for 
Lhkl a value, which is not expected (too high or too low), or which is negative, 
or if one obtains two or three real solutions for Lhkl, then the assumption [2) 
is not correct. 

It is obvious that assumptions [l] and [2], like others appearing in lite­
rature, affect the final results of the separation of the line profile broadening 
sources. Moreover, the definitions of the crystallite size and strain parameters 
are different in various approaches to the broadening analysis. Therefore, the 
numerical values of the parameters obtained by the same author, who uses 
different methods, may be mutually in disagreement.5 The Warren-Averbach 
and integral width methods define the crystallite size as the dimension normal 
to the reflecting planes, averaged in the crystallite (coherently diffracting 
domain) volume, whereas the variance method gives the cube root of the 
crystallite volume. Besides, the size parameter also depends on the extent 
of faultings and whether or not they are specifically allowed for. The Warren­
-Averbach method provides the root-mean-squared strain averaged over a 
distance normal to the reflecting planes, whereas the integral width method 
yields an approximate upper limit of the lattice strain. One has to bear in 
mind all these when comparing the val:ues iof the size and strain parameters 
as derived using different methods. For a detailed discussion on the accuracy 
of the size and strain parameters obtained from the diffraction broadening 
analysis, the reader is referred to excellent reviews existing in literature 
(e.g. ref.2-5,9,14). 

TRUNCATION OF PROFILE TAILS 

The effect of the truncation of the profile tails on the broadening analysis 
has been investigated by many authors (e.g. ref.14·4). The truncation necessarily 
occurs because the range of the observation of the experimental profile is 
finite. A profile I(c) of inherently infinite extent is truncated at arbitrary points 
er and -Er. This inevitable truncation can be considered as a multiplication 
of the profile I(c) with the rectangular function, r(c), implied in experiment 
and defined as:14•4 

{ 

1 if - ET "( £ "( ET, 
r (c) = 

0 elsewhere. 

The truncation distorts the Fourier coefficients of the profile and contributes 
to the so-called »hook« effect, thus introducing errors in the obtained size 
and strain parameter values (e.g. ref.2,4 ,5,14). For example, an error of 20°/o 
would be made in the crystallite sfae value, if the truncation were made at 
the points, where the profile ordinate falls to 50/o of its maximum value.14 

An accompanying error, which is often considered together with the truncation, 
is the background level error. In practice the background level is more readily 
over rather than underestimated, owing to overlapping tails of neighbouring 
reflexions. This causes the apparent net intensity to fall to zero well within 
the observation range. Such a profile can be considered as truncated at the 
points where the intensity apparently falls to zero.4 

In the present work the integral widths have been calculated for several 
simple bell-shaped functions, I(s), truncated at the points where the profile 
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ordinates fall to the one hundredth of the profile maximum. These values 
·have been compared with the widths for the infinite range of definition. 
That is, the following expressions have been solved: 

00 

f I (e) de 
B;= I (0) 

(13) 

ET 

f I (e) de 

B; (- Er, E,.) 
-Er 

I (0) (14) 

where I(+ eT) = 1(0)/100. The obtained results are given in Table I, together 
with the half-maximum widths. It follows from Table I, that the truncation 

TABLE I 

Influence of the Truncation of the Profile Tails on the Integml Width 

integral the ra<tio of the integral 
width width of the profile trunca-

bell-shaped for the half- k cT, where ted at the points ± ep and 
function, infinite -maximum 

l(cT) =l(0)/100 the integral width for the I (c) range of width 
definition, infinite range of definition, 

B; (13) Bi (- ET, ET)/B;, i.e. (14)/(13) 

sin2 (k e) :n; 0.885888n 2.852342= 0.902234 --
(k i;)2 k k =:n:-0.289251 0.902822 (for B i(-1', ")) 

(1 + k2e2r1 :n; 2 
v99=9.949874 0.936231 --

k k 

(1 + k2e2r2 :n; 2 v v2-1 3 0.986153 --
2k k 

exp(-k2e2) 
-y--; 2-vln2 vln 100= 0.997597 
k k =2.145966 

much more affects the functions, which describe approximately the size para­
meter [sin2 (k s)l(k s)2, (1 + k 2 s2f 1], than the ones describing approximately 
the strain parameter [(1 + k2 s2f 2, exp (-k2 s2)]. This is in agreement with 
the experimental evidence: the methods for the diffraction broadening analysis 
show that the crystallite size parameter is much more dependent on the 
accuracy with which the profile tails are measured, than it is the strain 

-parameter (e.g. ref.5,4). In parallel to this conclusion it is, therefore, very 
important to avoid a tendency to overestimate the background level, either 
due to the overlapping of the tails of the neighbouring profiles, or due to the 
fact that for the small crystallite sizes and for a wide size distribution the 
tails of the profiles are very long. 
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SAZETAK 

Primjena zvonolikih funkcija u analizi rendgenskoga difrakcijskog prosirenja 

S. Popovi c 

Predocena su graficka i analiticka rjesenja za parametre velicine kristalita i 
deformacije kristcrlne r esetke, koji uzrokuju difrakcijsko prosirenje, kada se u obzir 
uzimaju dva ili viSe redova refleksa od istog skupa mreznih ravnina, a difrakcijski 
se profili opisuju jednostavnim zvonolikim funkcijama. Diskutira se i utjecaj neiz­
bjeznog kresanja repova profila na izvedene vrijednosti pcrrametara velii':ine kristalita 
i deformacije resetke. Nadeno je da kresanje repova mnogo vise utjece na funkcije 
koje opisuju parametar velicine kristalita, nego na funkcije koje opisuju parametar 
deforma-cije, sto je u skladu s eksperimentalnim cinjenicama. 




