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Abstract. Let α be an algebraic number of degree d > 2 over Q.
Suppose for some pairwise coprime positive integers n1, . . . , nr we have
deg(αnj ) < d for j = 1, . . . , r, where deg(αn) = d for each positive proper
divisor n of nj . We prove that then ϕ(n1 . . . nr) 6 d, where ϕ stands
for the Euler totient function. In particular, if nj = pj , j = 1, . . . , r,
are any r distinct primes satisfying deg(αpj ) < d, then the inequality
(p1 − 1) · · · (pr − 1) 6 d holds, and therefore r ≪ log d/ log log d for d > 3.
This bound on r improves that of Dobrowolski r 6 log d/ log 2 proved in
1979 and is best possible.

1. Introduction

Let α be an algebraic number of degree d with conjugates α1 =
α, α2, . . . , αd over Q, and let n be a positive integer. If D = deg(αn) then the
list αn

1 , α
n
2 , . . . , α

n
d contains each of D conjugates of αn exactly d/D times. In

particular, D = deg(αn) < d if and only if Q(αn) is a proper subfield of Q(α).
For n > 2 and d > 2 this happens precisely when αn = αn

j for some j in the
range 2 6 j 6 d, so the quotient of two distinct conjugates of α is a root of
unity.

Put

U(α) := {n ∈ N : deg(αn) < d}.

Clearly, the set U(α) is either empty or infinite, since n ∈ U(α) implies
nℓ ∈ U(α) for each ℓ ∈ N. Let F (α) be a subset of U(α) which is defined as
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follows:

F (α) := {n ∈ N : deg(αn) < d and deg(αq) = d

for each q ∈ N satisfying q < n and q|n}.

As we already observed above, m ∈ F (α) yields αm = αm
j for some j > 1,

so that α/αj = exp(2πiu/m) with u ∈ N satisfying 1 6 u < m and, by the
definition of F , gcd(u,m) = 1. In particular, deg(exp(2πiu/m)) = ϕ(m) does
not exceed the number of roots of unity in the field Q(α1, . . . , αd), so that
the set F (α) is finite. (Throughout, ϕ stands for Euler’s totient function.)
Moreover, writing

F (α) = {m1, . . . ,mk},

where, by the definition of F , mi does not divide mj for i 6= j, we have

ϕ(m1) + · · ·+ ϕ(mk) 6 d(d− 1),

since there are d(d−1) quotients of two distinct conjugates of α and the degree
of each quotient which is a root of unity must be ϕ(mj) for some j = 1, . . . , k.
By the above, it is easy to see that the set U(α) can be also given in the form

(1.1) U(α) = {ℓm : ℓ ∈ N, m ∈ F (α)}.

Various aspects of the sets U(α), F (α) themselves and their comple-
ments N \ U(α), N \ F (α), the smallest positive integer t for which the sets
F (αt), U(αt) are empty, etc. with their applications to linear recurrence se-
quences and to other problems of number theory have been investigated in
[1–6], [7, Chapter 2], [8, 11–13]. The relation of the problem to linear recur-
rence sequences rests on the fact that the sets F (α), U(α) are empty iff the
linear recurrence whose characteristic polynomial is the minimal polynomial
of α over Q is nondegenerate.

In particular, one of the results of Dobrowolski in his famous paper [3],
where a so far unbeaten estimate for the Mahler measureM(α) of an algebraic
integer α which is not a root of unity was obtained, is the following:

Theorem 1.1 (Lemma 3 in [3]). For each α of degree d > 2 the set U(α)
contains at most log d/ log 2 prime numbers.

Note that, by (1.1), the prime number p belongs to U(α) if and only if
it belongs to F (α). So the same upper bound log d/ log 2 also holds for the
number of primes lying in F (α).

Although it is known that the main result of [3] can be obtained without
the use of Theorem 1.1, this theorem is of interest itself. A stronger version
of Theorem 1.1, although not best possible, was obtained by Matveev (see
Lemma 6 and a subsequent remark in [10]). A slightly different proof of
Theorem 1.1 is also given in the recent book of Masser [9, Lemma 16.3, p. 204].
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[9, Exercise 16.6, p. 209] asks whether for p1, . . . , pr ∈ U(α), where p1, . . . , pr
are distinct primes, the bound

(1.2) (p1 − 1) . . . (pr − 1) 6 d

is true.
The aim of this note is the next theorem which implies that the inequality

(1.2) indeed holds.

Theorem 1.2. Let α be an algebraic number is of degree d > 2. Suppose

that the set F (α) contains some pairwise coprime integers n1, . . . , nr. Then,

ϕ(n1 . . . nr) 6 d.

In particular, if each nj = pj , j = 1, . . . , r, is a prime number, then (1.2)
holds, since ϕ(p1 . . . pr) = (p1 − 1) . . . (pr − 1). To show that the inequality
(1.2) is best possible we can consider the number

(1.3) β := exp
(

2πi
( 1

p1
+ · · ·+

1

pr

))

.

Then, β is a root of unity, βp1...pr = 1 and p1 . . . pr is the smallest positive
integer q for which βq = 1. Hence,

d = deg(β) = ϕ(p1 . . . pr) = (p1 − 1) . . . (pr − 1).

The conjugates of β can be written in the form exp(2πi(k1/p1+ · · ·+kr/pr)),
where 1 6 kj < pj for j = 1, . . . , r. Thus, for β defined in (1.3), we have
pj ∈ F (β) for j = 1, . . . , r (in fact, F (β) = {p1, . . . , pk}). Hence, we for this
β we have equality in (1.2).

Note that the left hand side of (1.2) is at least

(2− 1) · (3− 1) · (5− 1) · · · · · (pr − 1),

where pr is the rth prime. By the prime number theorem, for this r one has
the bound

(1.4) r 6 c
log d

log log d
,

where d > 3 and c is an absolute positive constant independent of α (and so
independent of d). Here, we can take any c greater than 1 for d large enough.
The bound (1.4) improves that of Theorem 1.1 and is best possible in the
sense that there is an infinite sequence algebraic numbers αk, k = 1, 2, . . . ,
such that degαk = dk → ∞ as k → ∞ for which the number of primes in the
set U(αk) is asymptotic to

log dk
log log dk

as k → ∞.
In the proof of Theorem 1.2 we shall use the following:
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Lemma 1.3. If α and α′ are two conjugate algebraic numbers of degree

d > 2 and ζ := α/α′ is a root of unity, then deg(ζ) 6 d.

Various proofs of Lemma 1.3 are given in [1, 4, 8, 13]. In the next section
we shall prove Theorem 1.2.

2. Proof of Theorem 1.2

Let L be the Galois closure of Q(α) over Q and G := Gal(L/Q). Assume
that n1, . . . , nr are pairwise coprime positive integers lying in F (α). Here,
n1, . . . , nr > 1, since 1 /∈ F (α). Note that nj ∈ F (α) yields αnj = α

nj

j , where

αj 6= α is a conjugate of α over Q. Furthermore, by the definition of F (α),
we have αq 6= αq

j for any positive proper divisor q of nj . Thus, ζj := α/αj is

a root of unity of the form ζj = exp(2πiuj/nj), where uj ∈ N, 1 6 uj < nj

and gcd(uj , nj) = 1.
Starting with ζ1 = α/α1, we select an automorphism σ2 ∈ G which

maps α 7→ α1. Applying it to ζ2 = α/α2, we find that σ2(ζ2) = α1/σ2(α2).
Multiplying these equalities cancels α1, so we obtain

(2.1) ζ1σ2(ζ2) =
α

α1

·
α1

σ2(α2)
=

α

σ2(α2)
.

Next, we select σ3 ∈ G which maps α 7→ σ2(α2) and apply it to ζ3 = α/α3.
Multiplying (2.1) and σ3(ζ3) = σ2(α2)/σ3(α3) we further obtain

ζ1σ2(ζ2)σ3(ζ3) =
α

σ3(α3)
.

Continuing in this way with the next equality ζ4 = α/α4, etc. up to ζr = α/αr

we derive that

(2.2) ζ1σ2(ζ2)σ3(ζ3) . . . σr(ζr) =
α

σr(αr)
.

Since ζj ∈ L for each j = 2, . . . , r, the number σj(ζj) is conjugate to ζj
for j = 2, . . . , r. Hence, σj(ζj) = exp(2πiwj/nj) for some wj ∈ N satisfying
1 6 wj < nj , gcd(wj , nj) = 1. Setting, for simplicity of notation, w1 := u1

we find that the left hand side of (2.2) is equal to

(2.3) ζ = exp
(2πiw1

n1

)

r
∏

j=2

exp
(2πiwj

nj

)

= exp
(

2πi
(w1

n1

+ · · ·+
wr

nr

))

.

Since ζ is a root of unity and, by (2.2) and (2.3), equals the quotient α/σr(αr)
of two conjugates of α of degree d, from Lemma 1.3 we deduce that

(2.4) deg(ζ) 6 d.

Consider the number

(2.5)
w1

n1

+ · · ·+
wr

nr

=
w

n1 . . . nr

,
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where w :=
∑r

i=1 wiki and ki :=
∏

j 6=i nj . We claim that gcd(w, n1 . . . nr) =
1. Indeed, for a contradiction suppose that there is a prime number p which
divides n1 . . . nr and w. Without restriction of generality we can assume that
p|n1. Then, using p|ki for i = 2, . . . , r and p|w, we deduce that p|w1k1.
However, in view of gcd(w1, n1) = 1 and p|n1 the number p does not divide
w1. Similarly, p does not divide k1 = n2 . . . nr, since for each j > 2 the
numbers nj and n1 are coprime.

Now, from (2.3) and (2.5), it follows that

ζ = exp(2πiw/(n1 . . . nr)),

where w ∈ N and gcd(w, n1 . . . nr) = 1. Consequently, ζn1...nr = 1, where
n1 . . . nr is the smallest positive integer with this property. Hence, deg(ζ) =
ϕ(n1 . . . nr) and so (2.4) implies the required inequality ϕ(n1 . . . nr) 6 d.
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5e Année (1977/78), Exposé No. 13, Paris, 1978, 5 p.
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