ROOTS OF UNITY AS QUOTIENTS OF TWO CONJUGATE ALGEBRAIC NUMBERS

Artūras Dubickas

Vilnius University, Lithuania

ABSTRACT. Let α be an algebraic number of degree $d \ge 2$ over \mathbb{Q} . Suppose for some pairwise coprime positive integers n_1, \ldots, n_r we have $\deg(\alpha^{n_j}) < d$ for $j = 1, \ldots, r$, where $\deg(\alpha^n) = d$ for each positive proper divisor n of n_j . We prove that then $\varphi(n_1 \ldots n_r) \le d$, where φ stands for the Euler totient function. In particular, if $n_j = p_j$, $j = 1, \ldots, r$, are any r distinct primes satisfying $\deg(\alpha^{p_j}) < d$, then the inequality $(p_1 - 1) \cdots (p_r - 1) \le d$ holds, and therefore $r \ll \log d/\log \log d$ for $d \ge 3$. This bound on r improves that of Dobrowolski $r \le \log d/\log 2$ proved in 1979 and is best possible.

1. INTRODUCTION

Let α be an algebraic number of degree d with conjugates $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d$ over \mathbb{Q} , and let n be a positive integer. If $D = \deg(\alpha^n)$ then the list $\alpha_1^n, \alpha_2^n, \ldots, \alpha_d^n$ contains each of D conjugates of α^n exactly d/D times. In particular, $D = \deg(\alpha^n) < d$ if and only if $\mathbb{Q}(\alpha^n)$ is a proper subfield of $\mathbb{Q}(\alpha)$. For $n \ge 2$ and $d \ge 2$ this happens precisely when $\alpha^n = \alpha_j^n$ for some j in the range $2 \le j \le d$, so the quotient of two distinct conjugates of α is a root of unity.

Put

$$U(\alpha) := \{ n \in \mathbb{N} : \deg(\alpha^n) < d \}.$$

Clearly, the set $U(\alpha)$ is either empty or infinite, since $n \in U(\alpha)$ implies $n\ell \in U(\alpha)$ for each $\ell \in \mathbb{N}$. Let $F(\alpha)$ be a subset of $U(\alpha)$ which is defined as

 $Key\ words\ and\ phrases.$ Root of unity, conjugate algebraic numbers, degenerate linear recurrence sequence.

²⁰¹⁰ Mathematics Subject Classification. 11R04, 11R18.

follows:

$$F(\alpha) := \{ n \in \mathbb{N} : \deg(\alpha^n) < d \text{ and } \deg(\alpha^q) = d$$
for each $q \in \mathbb{N}$ satisfying $q < n$ and $q|n\}.$

As we already observed above, $m \in F(\alpha)$ yields $\alpha^m = \alpha_j^m$ for some j > 1, so that $\alpha/\alpha_j = \exp(2\pi i u/m)$ with $u \in \mathbb{N}$ satisfying $1 \leq u < m$ and, by the definition of F, $\gcd(u,m) = 1$. In particular, $\deg(\exp(2\pi i u/m)) = \varphi(m)$ does not exceed the number of roots of unity in the field $\mathbb{Q}(\alpha_1, \ldots, \alpha_d)$, so that the set $F(\alpha)$ is finite. (Throughout, φ stands for Euler's totient function.) Moreover, writing

$$F(\alpha) = \{m_1, \ldots, m_k\},\$$

where, by the definition of F, m_i does not divide m_j for $i \neq j$, we have

$$\varphi(m_1) + \dots + \varphi(m_k) \leqslant d(d-1),$$

since there are d(d-1) quotients of two distinct conjugates of α and the degree of each quotient which is a root of unity must be $\varphi(m_j)$ for some $j = 1, \ldots, k$. By the above, it is easy to see that the set $U(\alpha)$ can be also given in the form

(1.1)
$$U(\alpha) = \{\ell m : \ell \in \mathbb{N}, m \in F(\alpha)\}.$$

Various aspects of the sets $U(\alpha), F(\alpha)$ themselves and their complements $\mathbb{N} \setminus U(\alpha), \mathbb{N} \setminus F(\alpha)$, the smallest positive integer t for which the sets $F(\alpha^t), U(\alpha^t)$ are empty, etc. with their applications to linear recurrence sequences and to other problems of number theory have been investigated in [1–6], [7, Chapter 2], [8, 11–13]. The relation of the problem to linear recurrence sequences rests on the fact that the sets $F(\alpha), U(\alpha)$ are empty iff the linear recurrence whose characteristic polynomial is the minimal polynomial of α over \mathbb{Q} is nondegenerate.

In particular, one of the results of Dobrowolski in his famous paper [3], where a so far unbeaten estimate for the Mahler measure $M(\alpha)$ of an algebraic integer α which is not a root of unity was obtained, is the following:

THEOREM 1.1 (Lemma 3 in [3]). For each α of degree $d \ge 2$ the set $U(\alpha)$ contains at most log $d/\log 2$ prime numbers.

Note that, by (1.1), the prime number p belongs to $U(\alpha)$ if and only if it belongs to $F(\alpha)$. So the same upper bound $\log d / \log 2$ also holds for the number of primes lying in $F(\alpha)$.

Although it is known that the main result of [3] can be obtained without the use of Theorem 1.1, this theorem is of interest itself. A stronger version of Theorem 1.1, although not best possible, was obtained by Matveev (see Lemma 6 and a subsequent remark in [10]). A slightly different proof of Theorem 1.1 is also given in the recent book of Masser [9, Lemma 16.3, p. 204].

236

[9, Exercise 16.6, p. 209] asks whether for $p_1, \ldots, p_r \in U(\alpha)$, where p_1, \ldots, p_r are distinct primes, the bound

$$(1.2) (p_1-1)\dots(p_r-1) \leqslant d$$

is true.

The aim of this note is the next theorem which implies that the inequality (1.2) indeed holds.

THEOREM 1.2. Let α be an algebraic number is of degree $d \ge 2$. Suppose that the set $F(\alpha)$ contains some pairwise coprime integers n_1, \ldots, n_r . Then,

$$\varphi(n_1 \dots n_r) \leqslant d.$$

In particular, if each $n_j = p_j$, j = 1, ..., r, is a prime number, then (1.2) holds, since $\varphi(p_1 ... p_r) = (p_1 - 1) ... (p_r - 1)$. To show that the inequality (1.2) is best possible we can consider the number

(1.3)
$$\beta := \exp\left(2\pi i \left(\frac{1}{p_1} + \dots + \frac{1}{p_r}\right)\right).$$

Then, β is a root of unity, $\beta^{p_1 \dots p_r} = 1$ and $p_1 \dots p_r$ is the smallest positive integer q for which $\beta^q = 1$. Hence,

$$d = \deg(\beta) = \varphi(p_1 \dots p_r) = (p_1 - 1) \dots (p_r - 1).$$

The conjugates of β can be written in the form $\exp(2\pi i(k_1/p_1 + \cdots + k_r/p_r))$, where $1 \leq k_j < p_j$ for $j = 1, \ldots, r$. Thus, for β defined in (1.3), we have $p_j \in F(\beta)$ for $j = 1, \ldots, r$ (in fact, $F(\beta) = \{p_1, \ldots, p_k\}$). Hence, we for this β we have equality in (1.2).

Note that the left hand side of (1.2) is at least

$$(2-1) \cdot (3-1) \cdot (5-1) \cdot \dots \cdot (p_r-1),$$

where p_r is the *r*th prime. By the prime number theorem, for this *r* one has the bound

(1.4)
$$r \leqslant c \frac{\log d}{\log \log d}$$

where $d \ge 3$ and c is an absolute positive constant independent of α (and so independent of d). Here, we can take any c greater than 1 for d large enough. The bound (1.4) improves that of Theorem 1.1 and is best possible in the sense that there is an infinite sequence algebraic numbers α_k , $k = 1, 2, \ldots$, such that deg $\alpha_k = d_k \to \infty$ as $k \to \infty$ for which the number of primes in the set $U(\alpha_k)$ is asymptotic to

$$\frac{\log d_k}{\log \log d_k}$$

as $k \to \infty$.

In the proof of Theorem 1.2 we shall use the following:

LEMMA 1.3. If α and α' are two conjugate algebraic numbers of degree $d \ge 2$ and $\zeta := \alpha/\alpha'$ is a root of unity, then $\deg(\zeta) \le d$.

Various proofs of Lemma 1.3 are given in [1,4,8,13]. In the next section we shall prove Theorem 1.2.

2. Proof of Theorem 1.2

Let \mathbb{L} be the Galois closure of $\mathbb{Q}(\alpha)$ over \mathbb{Q} and $G := \operatorname{Gal}(\mathbb{L}/\mathbb{Q})$. Assume that n_1, \ldots, n_r are pairwise coprime positive integers lying in $F(\alpha)$. Here, $n_1, \ldots, n_r > 1$, since $1 \notin F(\alpha)$. Note that $n_j \in F(\alpha)$ yields $\alpha^{n_j} = \alpha_j^{n_j}$, where $\alpha_j \neq \alpha$ is a conjugate of α over \mathbb{Q} . Furthermore, by the definition of $F(\alpha)$, we have $\alpha^q \neq \alpha_j^q$ for any positive proper divisor q of n_j . Thus, $\zeta_j := \alpha/\alpha_j$ is a root of unity of the form $\zeta_j = \exp(2\pi i u_j/n_j)$, where $u_j \in \mathbb{N}$, $1 \leq u_j < n_j$ and $\gcd(u_j, n_j) = 1$.

Starting with $\zeta_1 = \alpha/\alpha_1$, we select an automorphism $\sigma_2 \in G$ which maps $\alpha \mapsto \alpha_1$. Applying it to $\zeta_2 = \alpha/\alpha_2$, we find that $\sigma_2(\zeta_2) = \alpha_1/\sigma_2(\alpha_2)$. Multiplying these equalities cancels α_1 , so we obtain

(2.1)
$$\zeta_1 \sigma_2(\zeta_2) = \frac{\alpha}{\alpha_1} \cdot \frac{\alpha_1}{\sigma_2(\alpha_2)} = \frac{\alpha}{\sigma_2(\alpha_2)}$$

Next, we select $\sigma_3 \in G$ which maps $\alpha \mapsto \sigma_2(\alpha_2)$ and apply it to $\zeta_3 = \alpha/\alpha_3$. Multiplying (2.1) and $\sigma_3(\zeta_3) = \sigma_2(\alpha_2)/\sigma_3(\alpha_3)$ we further obtain

$$\zeta_1 \sigma_2(\zeta_2) \sigma_3(\zeta_3) = \frac{\alpha}{\sigma_3(\alpha_3)}$$

Continuing in this way with the next equality $\zeta_4 = \alpha/\alpha_4$, etc. up to $\zeta_r = \alpha/\alpha_r$ we derive that

(2.2)
$$\zeta_1 \sigma_2(\zeta_2) \sigma_3(\zeta_3) \dots \sigma_r(\zeta_r) = \frac{\alpha}{\sigma_r(\alpha_r)}.$$

Since $\zeta_j \in \mathbb{L}$ for each $j = 2, \ldots, r$, the number $\sigma_j(\zeta_j)$ is conjugate to ζ_j for $j = 2, \ldots, r$. Hence, $\sigma_j(\zeta_j) = \exp(2\pi i w_j/n_j)$ for some $w_j \in \mathbb{N}$ satisfying $1 \leq w_j < n_j$, $\gcd(w_j, n_j) = 1$. Setting, for simplicity of notation, $w_1 := u_1$ we find that the left hand side of (2.2) is equal to

(2.3)
$$\zeta = \exp\left(\frac{2\pi i w_1}{n_1}\right) \prod_{j=2}^r \exp\left(\frac{2\pi i w_j}{n_j}\right) = \exp\left(2\pi i \left(\frac{w_1}{n_1} + \dots + \frac{w_r}{n_r}\right)\right).$$

Since ζ is a root of unity and, by (2.2) and (2.3), equals the quotient $\alpha/\sigma_r(\alpha_r)$ of two conjugates of α of degree d, from Lemma 1.3 we deduce that

(2.4)
$$\deg(\zeta) \leqslant d.$$

Consider the number

(2.5)

$$\frac{w_1}{n_1} + \dots + \frac{w_r}{n_r} = \frac{w}{n_1 \dots n_r},$$

where $w := \sum_{i=1}^{r} w_i k_i$ and $k_i := \prod_{j \neq i} n_j$. We claim that $gcd(w, n_1 \dots n_r) = 1$. Indeed, for a contradiction suppose that there is a prime number p which divides $n_1 \dots n_r$ and w. Without restriction of generality we can assume that $p|n_1$. Then, using $p|k_i$ for $i = 2, \dots, r$ and p|w, we deduce that $p|w_1k_1$. However, in view of $gcd(w_1, n_1) = 1$ and $p|n_1$ the number p does not divide w_1 . Similarly, p does not divide $k_1 = n_2 \dots n_r$, since for each $j \ge 2$ the numbers n_j and n_1 are coprime.

Now, from (2.3) and (2.5), it follows that

$$\zeta = \exp(2\pi i w / (n_1 \dots n_r)),$$

where $w \in \mathbb{N}$ and $gcd(w, n_1 \dots n_r) = 1$. Consequently, $\zeta^{n_1 \dots n_r} = 1$, where $n_1 \dots n_r$ is the smallest positive integer with this property. Hence, $deg(\zeta) = \varphi(n_1 \dots n_r)$ and so (2.4) implies the required inequality $\varphi(n_1 \dots n_r) \leq d$.

ACKNOWLEDGEMENTS.

I thank the referees for suggesting some simplifications and other useful remarks and corrections.

References

- M. G. Aschbacher and R. M. Guralnick, On Abelian quotients of primitive groups, Proc. Amer. Math. Soc. 107 (1989), 89–95.
- [2] J. Berstel and M. Mignotte, Deux propriétés décidables des suites recurrentes linéaires, Bull. Soc. Math. France 104 (1976), 175–194.
- [3] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979) 391-401.
- [4] P. Drungilas and A. Dubickas, On subfields of a field generated by two conjugate algebraic numbers, Proc. Edinburgh Math. Soc. 47 (2004), 119–123.
- [5] A. Dubickas, Roots of unity as quotients of two roots of a polynomial, J. Austral. Math. Soc. 92 (2012), 137–144.
- [6] A. Dubickas and M. Sha, Counting degenerate polynomials of fixed degree and bounded height, Monatsh. Math. 177 (2015), 517–537.
- [7] G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence sequences, Mathematical Surveys and Monographs 104, American Mathematical Society, Providence, RI, 2003.
- [8] I. M. Isaacs, Quotients which are roots of unity (solution of problem 6523), Amer. Math. Monthly 95 (1988), 561–562.
- [9] D. Masser, Auxiliary polynomials in number theory, Cambridge Tracts in Mathematics 207, Cambridge University Press, Cambridge, 2016.
- [10] E. M. Matveev, On a connection between the Mahler measure and the discriminant of algebraic numbers, Math. Notes 59 (1996), 293–297.
- [11] P. Robba, Zéros de suites récurrentes linéaires, Groupe Étude Anal. Ultramétrique, 5e Année (1977/78), Exposé No. 13, Paris, 1978, 5 p.
- [12] A. Schinzel, Around Pólya's theorem on the set of prime divisors of a linear recurrence, in: Diophantine equations. Tata Inst. Fund. Res. Stud. Math., 20, Tata Inst. Fund. Res., Mumbai, 2008, pp. 225–233.
- [13] K. Yokoyama, Z. Li and I. Nemes, Finding roots of unity among quotients of the roots of an integral polynomial, in: Proceedings of the 1995 international symposium on symbolic and algebraic computation (ed. A.H.M. Levelt), ISSAC'95, Montreal, Canada, July 10–12, 1995, New York, NY: ACM Press, 1995, pp. 85–89.

A. Dubickas Department of Mathematics and Informatics Vilnius University Naugarduko 24, Vilnius LT-03225 Lithuania *E-mail:* arturas.dubickas@mif.vu.lt *Received:* 13.4.2017. *Revised:* 29.5.2017.