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Four theoretical models were developed relating environmental factors,

anthropogenic factors, productivity (fish caught per hour of

electrofishing sampling), and recruitment to several measures of the

abundance of largemouth bass (Micropterus salmoides) in inland Illinois

lakes. Environmental predictors tested were precipitation amounts scaled

for lake, watershed size, and land use practice, growing and cooling

degree days, snow depth, lake conductivity, and variables for lake

morphology. Lake morphology variables were represented by the percent of

lake volume in the euphotic zone, shoreline habitat type, and lake

inshore mean depth. Anthropogenic predictors tested were largemouth bass

stocking, lake rehabilitation events, water level manipulation

practices, aquatic vegetation controls, fish length limit changes and

fish removal practices.

Four response variables were derived from the number of largemouth bass

caught with electrofishing gear during fall sampling. All raw catch-per-

effort data were corrected for catchability and logarithm transformed.

One-year-old fish (age-1 response variable) was used for all predictors

of the anthropogenic component except changes in length limit. Fish 300

mm and larger (adult response variable) was used for changes in length

limits. Average lake catch-per-effort was used to derive the response

variable for factors potentially explaining differences in lake

productivity. Recruitment at age-2 was the response variable for

investigating effects of natural factors on recruitment.

Linear regression was used to analyze predictors' effects on the

response variables. Each anthropogenic predictor was analyzed for main

effects and first-order interactions with the environmental predictors.

Multiple-lake (for broad-based treatment effects) and lake-specific

analyses of the anthropogenic component were performed. Anthropogenic

factors accounted for more variability in response variables than

environmental factors. The age-1 response variable decreased the first

year and increased the second year following lake rehabilitation. The

adult response variable increased following the imposition of all length
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limits. None of the predictors analyzed accounted for differences in

lake productivity. Recruitment at age-2 correlated only with age-1

abundance.
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CHAPTER 1: INTRODUCTION

1.1. Dissertation Format, Summary, and Objectives

The format of this dissertation adheres to the guidelines established by

the Graduate College Executive Committee of the University of Illinois

at Urbana-Champaign and is comprised of five chapters summarized below

(Figure 1).

This Chapter includes a discussion of relevant problems in game fish

management in Illinois. The justification for the response variables and

the general hypotheses are given. The objective of Chapter I is to

justify the need of works such as this for the Illinois sport fishery

sector.

Chapter 2 presents four verbal models; three describing factors

potentially affecting the abundance of largemouth bass (Micropterus

salmoides) and one for largemouth bass recruitment at two-year-old (age-

2). The abundance of largemouth bass was estimated for one-year-old

(age-i) and older fish. Chapter 2 also provides the rationale for

choosing and estimating the predictors, the response variables, and the

data used. Treatment delayed effects used when investigating

environmental and anthropogenic predictors are explained together with

the general analytical procedures.

Chapter 3 pertains to the analytical methods and results of factors

potentially explaining differences in the abundance of largemouth bass

among lake and the effects of the environmental and anthropogenic

predictors on age-I largemouth bass.

The objective of Chapter 4 is to present an approach for predicting

year-class strength for largemouth bass and to present the results of

the impact of environmental factors and changes in size limit
regulations on adult fish abundance.

The objective of Chapter 5 is to interpret the results obtained in

Chapters 3 and 4 and raise qulestions based on the conclusions drawn from

those results, with possible avenues for addressing those quiestions.

1.*2. Background
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The collapse or depression of many fisheries stocks due to anthropogenic

factors such as fishing pressure (Coble et al. 1990) and pollution

(Longwell et al. 1992; Grosse et al. 1997) are evidence of the strong

impact man has on fisheries resources and the need for management for

the sustainable exploitation of fish. The efficacy of management

practices, however, varies depending on when and where they are

conducted, as well as the kind of management practice.

Lake drawdowns have been shown effective for increasing centrarchid

growth rates (Hill 1980; Aggus and Elliott 1975), abundance (Meals and

Miranda 1991; Martin et al. 1981), and in controlling undesired species

of fish (Shields 1957). Among management practices, size regulations are

the most widespread for managing fish (Brousseau and Armstrong 1987;

Wilde 1997). Fishing regulations have been effective as a tool to

restructure population size (Summers 1988; Kurzawski and Durocher 1993;

Wynne et al. 1993). Fishing regulations have also been shown to produce

variable results on fish. Van Horn et al. (1983) investigated a 45 cm

minimum length limit on largemouth bass in four North Carolina

reservoirs. The proportion of fish larger than 300 mnm increased in two

reservoirs and remained unchanged in the other two. Novinger (1987)

reported inconsistent results of a 375 mm minimum length on largemouth

bass at Table Rock Lake, Missouri. Variation in year-class strength due

to environmental factors was the attributed cause of the

inconsistencies. Management practices have also been shown to be

ineffective (Austen and Orth 1988 for fishing regulations; Howick et al.

1993; Boxrucker 1986 for fish stocking).

Environmental perturbations have been a concern when managing fish

stocks (Matsuda et al. 1992) and may influence the efficacy of

management interventions. The effects of environmental variables in

freshwater systems have mostly been investigated on juvenile fish.

Increased vegetative cover has been observed to increase juvenile

largemouth bass winter survival (Miranda and Pugh 1997) and growth rates

(Olson 1998). Clady (1977) reported mean wind velocity and dissolved
oxygen levels to be correlated with abundance and survival of trout-

perch (Percopaia omiscomaycus) and tessellated darter (Etzheostoma

olmstedi) in Oneida lake, New York. Temperature has been observed to

increase egg survival, nesting success (Kramer and Smith 1962), growth
rates of young largemouth bass (Kramer and Smith 1960), and to be

correlated with adult largemouth bass mortality rates (Beamesderfer and

North 1995). Temperature has also been shown to affect first-year growth

of smallmouth bass (Serns 1982). Increased silt deposition and declines
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in water temperature. during spawning periods of northern pike (Eiox

lucius) have been correlated with increased fry mortality rates (Hassler

1970).

The relative influence of environmental and anthropogenic factors on

fish abundance may estimate the importance of considering uncertainty

due to stochastic environmental factors when devising management plans.

Because environmental fluctuations, such as changes in weather, cannot

be predicted over long periods they are often left unaccounted by

managers. if, however, environmental effects are major determinants of

fluctuations of fish abundance, management planning is doomed to

failure, unless a practice coincides with a favorable environmental

condition. When investigating the relative effects of management and

environmental factors on fish, the manager may estimate the potential

for fisheries management success in an unpredictable environment by

recognizing how much control over fisheries resources is possible

through management.

1.3. Statement of the Problem

Sport fishing is a major component of the recreational industry and

fishing license sales are a significant source of revenue for the

Illinois Department of Natural Resources (IDNR). The approximately

84,300 inland lakes in Illinois cover over 122,400 hectares of the

state's surface area. A majority of Illinois lakes are man-made

providing flood controls, water supply, hydroelectric power plant

cooling, or irrigation. Lakes are also used for recreation, which

includes boating, hunting, hiking, and fishing (Neely and Heister 1987).

Illinois sport fisheries managers strive to provide high quiality fishing

to anglers. management incorporates a variety of activities toward

improving game fish population abundance. one of such activities

includes sampling to estimate fish abundance. Sampling is usually

conducted on a yearly basis and may be used to evaluate management
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important when optimization is the goal because an iterative prociess of

successive approximations to the optimal management practice is

required. it is, therefore, desirable -that a given practice be replaced

by a potentially more effective one as soon as the estimated time span

for an effect to emerge has elapsed. An optimum practice for a given set

of circumstances may be identified sooner when such a time span is

adopted as the interval between change of practice..

The effectiveness of management practices in Illinois may also be a

function of environmental conditions. Management practices may lead to

different results at different lakes and years. Managers in Illinois

have not previously had access to data other than that of their own

district. This may restrict the understanding of effects of management

practices, especially when a spatially broad scale of knowledge is

requlired, as when justification for or against statewide practices, such

as fishing regulations, is necessary.

Environmental conditions may interact with management practices (Binet

1982) to produce unexpected outcomes. Environmental effects may also

overwhelm the effects of management, making biological parameters such

as fish abundance appear to fluctuate unpredictably and irrespective of

management interventions when the environmental component is left

unaccounted for. The effectiveness of management practices may be more

accurately estimated when investigated in light of environmental

variation. Furthermore, the relative degree to which management and

environmental factors influence fish abundance may determine the degree

of uncertainty in management plans.

Research on freshwater fisheries management has mostly been limited to

studies that are short-term (Shirley and Andrews 1977; Pasch 1975),

spatially restricted (Larimore et al. 1959),, or both (Zweiacker et al.

1973), which limits the scope of inference of results and may mislead

the manager. Misleading results may occur in situations where a putative

effect due to management is confounded by unaccounted factors occurring
conurrntl 2wih te0pactceMeina eamined..Whnemoralyan
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fisheries management on largemouth bass is herein investigated, due to

the importance of this species for quality angling. Although the quality

of sport fishing is a subjective judgment related to anglers'

preferences (Knuth and McMullin 1996), which are likely to vary over

time and location, quality fishing is generally associated with some

combination of fish size and quantity. Management to maximize abundance

and size of largemouth bass is a goal because anglers desire some

combination of these two properties.

Certain practices are not directly aimed at improving largemouth bass

abundance but may affect it. Such practices include aquatic vegetation

controls (often done to open access for anglers to fishing areas), small

fish removal, and water level manipulations (generally to control

excessive abundance of young fish). Practices not directed at largemouth

bass will be investigated because they may affect largemouth bass

fishing quality.

The response variables chosen to address the problems above were the

abundances of age-1 and adult largemouth bass ages 1 and above, and the

abundance of recruits at age-2 largemouth bass. Age-1 was the size-class

used to investigate the effects on fish abundance due to practices other

than changes in size limit regulations. This age class was chosen

because age-1 is not subject to angler harvest. Typical harvestable ages

of largemouth bass (300 mm and larger) are age-3 and older (Miller 1984;

Howells et al. 1995). Even if age-2 and younger largemouth bass are

harvestable, as is the case for most slot length limits, anglers tend to

release those fish because of their small size (Summers 1990; Gabelhouse

1994; Martin 1995). Young-of-the-year (age-0) largemouth bass was not

used because density-dependent population regulating mechanisms

(competition for food or winter refugia) may operate more strongly

during the first year of a cohort, potentially limiting management

effects to short duration (order of weeks) only. It is more likely that

management practices will affect older fish, and therefore fishing

quality, when the effects of management are first detected on age-i

fish.

Adult largemouth bass were chosen to investigate the effects of size

limit regulations. Adult fish were used because they may offer a direct

measure of the effects of size limits. Changes in size limits may be

more readily reflected on adult fish, because only adult fish are

harvested, provided the regulations are observed. In addition, adult
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fish were used because abundance of spawning fish may determine year

class strength.

Recruitment at age-2 was used to evaluate natural effects on year-class

strength. Recruitment at earlier year classes was not considered due to

density-dependent factors potentially operating more strongly during

earlier periods, contributing to high variability of young fish

abundance relative to older fish.

1.4. General Hypotheses

The null hypotheses emerging from Section 1.3 are described below. Each

problem and related hypothesis are explicitly presented.

Problem 1. The impacts of environmental and anthropogenic factors in

determining largemouth bass abundance are unknown.

Null Hypothesis. The abundance of largemouth bass is not affected by

either environmental or anthropogenic factors.

Problem 2. The time horizon to detect the effect of management practices

is unknown.

Null Hypothesis. There is no impact of management practices over time.

Problem 3. The justification of Illinois statewide management practices

is untested.

Null Hypothesis. There is a uniform response to management practices

over lakes in Illinois.

The next step of this dissertation will be to develop verbal models

based on which the general null hypotheses above will be refined.
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Figure 1. Schematic representation of the central topics addressed in

the five dissertation chapters. ENV = environmental predictors, ANT =

anthropogenic predictors, BIO = biological predictors, CPE = corrected

electrofishing catch-per-effort (Section 2.3.2).
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CHAPTER 2: THEORETICAL BASIS FOR THE CHOICE OF PREDICTORS AND RESPONSE

VARIABLES, DATA SOURCES AND SELECTION, AND GENERAL ANALYTICAL PROCEDURES

This chapter offers a theoretical framework for refining the null

hypotheses described in Chapter 1 and for performing the analyses in

Chapters 3 and 4. Verbal models describing potential factors determining

largemouth bass abundance and productivity are first presented. The

verbal models lead to the definition of the environmental and

anthropogenic predictors, and the response variables. Lastly, the

sources and selection of data are presented, and the general analytical

procedures described.

2.1. Models for Largemouth Bass Abundance

A framework for refining the null hypotheses presented in Section 1.4

and for the choice of the predictors potentially affecting the abundance

of largemouth bass will be provided in this section by describing the

potential effects determining largemouth bass abundance. Three models

based on largemouth bass life stages are considered. A model describing

factors potentially affecting first-year abundance is first presented,

followed by a model for recruitment at age-2 as a function of natural

events. Lastly, a model for explaining abundance of adult largemouth

bass is described.

2.1.1. Model for Age-i Abundance

Variations in population density of largemouth bass are common phenomena

(Aggus and Elliott 1975; Keith 1975). First-year abundance of largemouth

bass may be a function of fish density, as well as physical, chemical,

and other biological factors operating at the various life stages

described below. The early life history of largemouth bass may be

divided into four periods representing key stages determining abundance

of age-i fish (Figure 2). The response variable depicted in Figure 2 is
age-i largemouth bass abundance in the fall because estimates of

population density used here are based on fall sampling.

2.1.1.1. Spawning Season

The abundance of age-i largemouth bass is potentially dependent on the

abundance and fecundity of spawners, and the quality of nesting sites.

Spawning sites are associated with shoreline areas and built on sandy or
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silty substrates (Heidinger 1975). A high number of eggs and quality of

nesting habitats may increase abundance.

Spawning occurs when the water temperature is between 15 and 240C. A

reduction in temperature may cause largemouth bass to desert the nest

and increase the likelihood of fungal infection of the eggs (Kramer and

Smith 1960). Alternatively, an increase in temperature increases rates

of egg and larval development, which may enhance survival rates (Kramer

and Smith 1960). An increase in temperature, may, therefore, be

beneficial on spawning (Figure 2).

Water level fluctuations may affect age-0 abundance. Miranda et al. 1984

observed an increase in young largemouth bass survival following a water

level increase during spawning, probably due to an increase in habitat

and nutrient availability. Similarly, Meals and Miranda (1991) reported

an increase in age-0 largemouth bass abundance following high water

level years. Conversely, sudden decreases in water level may strand

nests (Moyle and Cech 1982) or increase mortality due to predation

(Zweiacker et al. 1973) and contribute to a decrease in age-0 abundance.

Prolonged periods of low water levels within a year have been observed

to correlate with higher growth rates (Aggus and Elliot 1975). Higher

growth rates may affect survival if predation on larger age-0 fish is

less (Fisher and Zale 1991). Keith (1975) reported an increase in young

largemouth bass survival following flooding events. Shirley and Andrews

(1977) observed young largemouth bass abundance and higher growth rates

following an increase in water level. Water level changes may,

therefore, affect spawning in a negative or positive way (Figure 2).

Management practices may affect survival during the spawning season

through aquatic vegetation control, stocking of fish, and chemical

treatments for controlling small fish abundance. Such activities may

positively or negatively affect age-0 abundance through changes in

habitat that affect predation and competition (Savino and Stein 1982;

Bettoli et al. 1992; Miranda and Pugh 1997; Olson 1998; Figure 2).

Predation on eggs and larvae may be detrimental to spawning of

largemouth bass (Heidinger 1975). Insects (chironomids), mollusks

(gastropods), and fish (sunfishes) may prey on eggs and larvae (Eipper

1975; Kramer and Smith 1962), potentially decimating nests (Kramer and

Smith 1962). Predation, therefore, may be detrimental to egg and larvae

abundance (Figure 2).
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Largemouth bass spawning sites are usually less than three meteru deep

in areas protected from wind or wave action (Heidinger 1975). Kramer and

Smith (1962) observed wind action to be a major deterrent to spawning

success. Wind and wave action potentially destroy nests and, therefore,

may negatively affect spawning (Figure 2).

Potential predictors for largemouth bass early life history include

precipitation (for natural water level fluctuations), wind speed,

management practices, species composition (for predation), and

temperature (or related metrics, such as growing-degree-days).

2.1.1.2. First Sunmmer

The abundance of eggs and larvae may determine the abundance of

largemouth bass fry entering the next key period (first summer in Figure

2). After about twelve days from egg fertilization, the larva exhausts

its yolk-sac reserves and becomes fry, dependent on zooplankton for

food. Individual fry growth may be dependent on food quality, quantity,

and temperature.

Largemouth bass mostly feed on insects and fish after switching from a

zooplankton diet, eventually becoming piscivorous (Heidinger 1975).

Aggus and Elliott (1975) observed accelerated growth rates for age-0

largemouth bass shifting early to a piscivorous diet compared to fish

remaining insectivorous. They also observed a high correlation between

the abundance of rapid growing age-0 fish and recruitment to age-1.

Early shift to a piscivorous diet, with a consequent higher growth rate,

was the attributed cause of the observed relationship. Accelerated

growth rate has also been observed for largemouth bass shifting early to

feed on gizzard shad (Dorosoma cepedianum) (Miller and Storck 1984;

Pasch 1975; Applegate and Mullan 1967). Miranda and Hubbard (1994)

observed larger age-0 largemouth bass, with higher energy reserves, to

be better able to survive winter months. Mortality differences between

smaller and larger age-0 largemouth bass increased with onset of fall

and winter. The higher growth rates have been attributed to temperature,

food quality, and food quantity. Because larger largemouth bass may be

better able to survive winter months, prey availability is indicated as

positively affecting age-i abundance (Figure 2).

Temperature may positively affect growth and fry development (Kramer and

Smith 1962), but extremes (above 35°C) may be detrimental to abundance.
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Temperature in the summer period is, therefore, indicated in Figbre 2 as

producing either a positive or a negative effect.

Management practices during the summer are depicted as potentially

positive or negative because they may induce changes in predation,

competition, and habitat by changing the community or physical structure

of lakes.

Predation on young largemouth bass and intraspecific competition may

have a negative effect on the abundance of age-1. Interspecific

competition for food may affect survival. Planktivorous fish such as

threadfin shad (Dorosoma petenense) may serve as food for adult

largemouth bass, but may compete with fry for zooplankton (Moyle and

Cech 1982). Predation and competition are both indicated to be

detrimental in Figure 2.

Natural and anthropogenic predictors potentially affecting abundance

during the summer may be represented by species composition (predation

and competition), nutrient levels (as an indirect measure of food

quantity), species abundance and composition of benthos (as a direct

measure of food quantity and quality), and temperature (affecting

growth).

2.1.1.3. First Winter

Because largemouth bass mortality due to the direct effects of cold

temperatures may be rare (Coutant 1975) temperature is not depicted in

the winter period of Figure 2. In low temperature tolerance experiments,

no mortality due to temperatures below 4°C was reported for largemouth

bass (Guest 1982), suggesting temperature not to be a direct factor

limiting survival during winter months. Low temperatures, however, may

affect tolerance to dissolved oxygen. Largemouth bass has greater

requirements for dissolved oxygen than do many other species of

warmwater fish (Moore 1942). Minimum tolerable dissolved oxygen under

low temperature regimes (4°C) has been observed to be between 2 and 3

ppm (Moore 1942). Tolerance to low levels of dissolved oxygen have been

reported to be of 1 ppm for unstressed fish (Johnson 1965) and to vary

with temperature (Moss and Scott 1961). Dissolved oxygen is, therefore,

a potential limiting factor directly determining survival in the winter

through winterkill (Moore 1942; Greenbank 1945; Ricker 1949; Johnson

1965; Figure 2).
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Potential predictors which indirectly affect age-1 largemouth bass

abundance by influencing levels of dissolved oxygen include temperature

levels (or a related metric such as cooling degree days), lake

morphology such as mean depth (a potential factor for oxygen depletion),

and snow depth (a potential photosynthesis blocking factor).

2.1.1.4. Second Summer

The last period in Figure 2 is when largemouth bass enter their second

year (age-1). Prior to its second winter, fish might experience

predation and shortage of food. Prey availability and predation are,

therefore, indicated in Figure 2 as positive and negative factors,

respectively. Fishing mortality (not shown in Figure 2) is probably

minimal, unless fish attain legal size, which is unlikely until the end

of summer.

Food and predation may be influenced by nutrient levels and species

composition, respectively. Species composition of fish may also

represent a predictor for food availability because largemouth bass is

mostly piscivorous during the second year (Heidinger 1975).

2.1.2. Model for the Recruitment at Age-2

The ability to predict recruitment at harvestable sizes for estimating

year-class strength has been a concern when managing fish stocks (Ricker

1954; Gulland 1982). Most fishes invest in numbers (r-selected), rather

than size (k-selected) of young. Fluctuations in the abundance of r-

selected species tend to be greater than of k-selected species,

especially earlier in life (Ricklefs 1990). Predicting fish recruitment

to catchable sizes based on the abundance of the spawning stock has been

largely unsuccessful (Goodyear and Christensen 1984; Peterman et al.

1988; Mertz and Meyers 1995), partly due to the unexplained high

fluctuations in the survival rates of young fish (Gulland 1982).

Large fluctuations in the abundance of age-0 largemouth bass are common

and difficult to predict due to the many factors operating during key

stages in the early life history of fish (Figure 2). Recruitment at age-

1 largemouth bass might be difficult, if not impossible, to predict,

especially with the current fish abundance assessment methods.

Recruitment at age-2 may prove more predictable and useful for

management, given abundance of age-i fish.
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The leftmost column in Figure 3 shows the possible factors directly

affecting recruitment at age-2 fish. Abundance of age-1 and prey

availability may have positive effects on recruitment to older ages

(Figure 3). Extreme weather conditions may cause winterkills by reducing

levels of dissolved oxygen. Dissolved oxygen (indicated as positive in

Figure 3) may affect recruitment at age-2 as discussed above for age-0

largemouth bass. Competition and predation may similarly affect

recruitment as discussed above for age-0 (negative in Figure 3).

Precipitation (for nutrient level changes as when water levels

fluctuate), species composition (food quantity and quality), winter

conditions (Section 2.1.1.3), and abundance of previous age-classes are

possible predictors for addressing fluctuations in recruitment.

2.1.3. Model for Adult Abundance

Adult fish are defined in this dissertation as largemouth bass larger

than or equal to 300 mm total length (harvestable at the statewide

minimum length limit). Usually fish age-3 and older (300 mm or larger,

Carlander 1969) are harvestable under most size limits at lakes in

Illinois. Adult fish typically have lower mortality rates due to natural

causes than young fish (Gulland 1982). Adult largemouth abundance may be

partly determined by the abundance of young fish in past years (the pre-

adult period in Figure 3). Similarly, adult abundance may decrease when
food is unavailable or when weather conditions are extreme. Increased

availability of prey may affect adults as it may young fish. Extremely

cold winters, especially in shallow lakes, may induce winterkill due to

dissolved oxygen depletion as discussed above. Prey availability and

dissolved oxygen are, therefore, potentially positive effects (Figure

3).

Fishing pressure may be an important factor detrimental to the abundance

of adult largemouth bass (Figure 3). Paragamian (1982) reported a

reduction in the abundance of largemouth bass over 350 mm after the

implementation of a 350 mm length limit, possibly due to intensive

fishing.

Potential predictors affecting adult fish abundance are precipitation,

temperature (for growth), species composition, and winter conditions.

2.2. Development of Predictor Variables
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The data available for this dissertation were observational, not

gathered to directly test the models described in Section.2.1. Many

factors potentially affect largemouth bass mortality throughout life

(Figures 2 and 3) and these factors may interact with others. The

understanding of these mechanisms provide a challenge due to their

complexity. Many factors discussed in Figures 2 and 3 were not available

or may not be readily quantifiable, such as predation and competition,

making it necessary to develop proxy variables for factors of interest

that cannot be addressed directly. Proxy variables were chosen to

address common problems in the management of largemouth bass sport

fishery (Section 1.2) and to refine the general null hypotheses (Section

1.4). An attempt was made to incorporate the many factors depicted in

Figures 2 and 3 in the proxy variables described below. Descriptions of

the proxy variables and the resulting null hypotheses follow.

2.2.1. Environmental Predictors

2.2.1.1. Effects of Precipitation

The potential effects of precipitation were investigated by defining a

compound variable representing land use practices within the watershed,

and the relative sizes of lakes and their watershed. The compound

variable was of mean monthly rainfall multiplied by watershed area

divided by lake volume and this ratio was divided by an index for the

volume development (Cole 1994) and multiplied by an index for land use

practice as indicated below:

PPT = [(RAIN * WSAREA / LVOL) * (1 + LAND / VDI)], where

PPT = Precipitation compound variable (unitless)

RAIN = Amount of precipitation

WSAREA = Watershed area

LVOL = Lake volume

LAND = Percent of landuse practice (see below)
VDI = Lake volume development index

The index for land use practice was of the percent of uncovered land

(sum of barren land, land for agriculture, and urban) added to one. One

was added to the percentage to avoid zero values for watershed covered

by land other than uncovered land (precipitation may still affect lakes

in watersheds of different vegetation cover). Division by the volume

development index was because smaller values of the index may lead to

increased flooded areas for the same value of precipitation. Similarly,
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multiplication by the land use index was because uncovered land may lead

to increase in water turbidity. The resulting variable was an estimate

of the amount of water and sediment carried into the lake for given

levels of precipitation. The relationship of lake to watershed area and

watershed vegetation cover may affect the biota differently for the same

level of precipitation. The biota may be affected by variations in water

turbidity and amount of flooded areas (hypothesized to have an effect on

spawning and young survival, Figure 2). Precipitation during the months

of May and June was chosen as a surrogate variable incorporating the

factors in Figure 2 influencing largemouth bass survival through the

spawning season. The months of May and June were chosen because they

comprise the period when largemouth bass spawn (Kramer and Smith 1962).

High precipitation may increase water turbidity (Langbein and Schumm

1958) and low precipitation may contribute to nest stranding due to

receding water levels (Moyle and Cech 1982). An increase in turbidity

after suspended sediments settle may result in silty bottoms, less

suitable for spawning compared to nests on hard substrates (Swingle

1949; Robinson 1961). Populations of largemouth bass have been observed

to increase following periods of less turbid water, as is the case when

rainfall is low (Cross 1967; Miller 1975), possibly due to high egg

survival and positive effects on mating (Miller 1975). Buck (1956), as

an example, reported lower growth, reproduction rates, and population

size as turbidity increased in three Oklahoma lakes.

Precipitation levels within the catchment basin influence nutrient input

and water levels. High water levels may increase cover during critical

periods in the early life history of fish (Werner et al. 1977). An

increase in cover may decrease predation on young largemouth bass. An

increase in nutrients may increase food quality and quantity. Higher

water levels have also been associated with increases in largemouth bass

growth rates (Shirely and Andrews 1977), which may enhance first-winter

survival, especially when young fish switch earlier to a piscivorous

diet (Miranda and Hubbard 1994; Gutreuter and Anderson 1985).

Direct measures of species composition (for predation and competition),

water circulation, and wind speed were not available. Data on turbidity

and water level were available for a limited number of lakes (three

lakes with water level and two with turbidity data), enough to

investigate relationships with precipitation. The relationships of water

level and turbidity with precipitation were positive (Figures 4 and 5,
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respectively), supporting the use of precipitation as a surrogate

variable for abundance.

Increased cover and nutrient inputs may occur following high

precipitation events, which may increase abundance. Conversely, an

increase in turbidity after high precipitation or a decrease in water

levels following drought periods may cause a decrease in abundance.

Because precipitation may positively or negatively affect largemouth

bass abundance, the null hypothesis was that the variable incorporating

precipitation is uncorrelated with abundance.

2.2.1.2. Growing-degree-day

Growing-degree-days during the months of April through October were used

to represent the potential for largemouth bass growth. Mean air

temperature for the months of November through March were excluded from

the calculation of growing-degree-days because largemouth bass mostly

stays dormant and ceases to grow during this period due to the low water

temperatures (Rice et al. 1983; McCauley and Kilgour 1990). When

considering the entire year for growing-degree-day calculations, short-

term increases in air temperature may bias the effects of growing-

degree-days because increases in water temperature do not immediately

follow increases in air temperature. A relationship between air and

water temperature is depicted in Figure 6.

Observed changes in the metabolic rates of fish determined the selection

of the base air temperature for calculating the growing-degree-days.

Savitz (1978) studied the effects of growth and other population

parameters of largemouth bass in Illinois and observed growth to cease

during October. No specific day was given but a range of temperature

between 5 and 16°C for that month was recorded by the National Weather

Service. When investigating the relationship between air temperature and

somatic growth for largemouth bass, McCauley and Kilgour (1990) reported

accumulated degree days over 10°C to best correlate with growth. Rice et

al. (1983), when modeling the effects of temperature on largemouth bass,

found respiration to be negligible under 10°C. Lemons and Crawshaw

(1985) showed a depression of activity measured by food intake of

largemouth bass acclimated to temperatures below 10°C. Based on the

works above, the base temperature for calculating growing-degree-days

was 10°C.
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Direct effects of high temperature may reduce largemouth bass survival

if persistent and uniform throughout the water column. High temperature

tolerances of largemouth bass native to Illinois have been reported to

be between the upper 30 to lower 40°C range (Johnson and Charlton 1960;

Fields et al. 1987). Storms et al. (1986) observed stress in largemouth

bass to increase when water temperatures reached 30°C, leading to death

for temperatures above 360C. In natural conditions, howeverg behavioral

thermoregulations may take place, whereby fish seek habitats of suitable

temperatures (Rice et al. 1983). Temperature was, therefore, not used

directly because behavior may mask potential effects of extreme

temperatures and because moderate temperatures were considered always

available in some parts of each lake.

Temperature has been correlated with egg development (Kramer and Smith

1962). Higher recruitment at age-1 has also been associated with larger,

faster growing largemouth bass (Aggus and Elliott 1975; Toneys and Coble

1979; Gutreuter and Anderson 1985). The length of the growing season has

been observed to affect growth rates (Bennett 1971). The length of the

growing season may positively affect growth by extended elevated

temperature periods, as measured by growing-degree-days.

Because the effects of temperature on largemouth bass during the summer

are probably mostly beneficial, the null hypothesis was that an increase

in the growing-degree-days will decrease or not affect largemouth bass

abundance.

2.2.1.3. Cooling Degree Days and Snow Depth

Declines in levels of photosynthesis leading to dissolved oxygen

deprivation are known to cause winterkill. Fish mortality due to reduced

oxygen levels has been reported for largemouth bass (Moore 1942; Ricker

1949; Johnson 1965). Dissolved oxygen depletion has been correlated with

amount of snow cover on lakes (Guenther and Hubert 1991). Snow cover

blocks incoming light, which in turn lessens dissolved oxygen from

primary production (Greenbank 1945; Nickum 1970). Snow removal from

lakes may contribute to increases in dissolved oxygen. Mtiller (1957)

obtained an increased oxygen level in lakes of northern Germany after

removal of snow cover. Paulin (1960) reported lessened winterkills

following snow plowing on a Wisconsin lake.

Data for cooling degree days and snow cover were used because no data

for dissolved oxygen were available. Cooling degree days and monthly
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average snow depth for December through March were used to represent the

effects of low dissolved oxygen on largemouth bass. The base temperature

for cooling degree days was 0°C, because no models were found relating

ice formation on lakes with air temperature. Because of the potentially

detrimental effects of cooling degree days and snow depth on abundance,

the null hypothesis was that an increase in snow cover and cooling

degree days will increase or not affect largemouth bass abundance.

2.2.1.4. Largemouth Bass Index of Abundance

A largemouth bass index of abundance was estimated here as the absolute

number of age-1 and older fish derived from electrofishing sampling and

catchability estimates (Section 2.3.2) during years when no

anthropogenic action (see below) were implemented. The index was used in

an attempt to explain differences in largemouth bass abundance among

lakes. Because age-1 and adult fish were combined, the theoretical model

for selecting the abiotic predictors in this section is as presented in

Sections 2.1.1 and 2.1.3. Differences among lake abiotic factors may

lead to differences in productivity. Productivity was analyzed without

anthropogenic actions because lakes with different productivity may

produce different effects on fish following a similar management

practice.

Growing-degree-days, percent of lake volume in the euphotic zone, lake

conductivity, shoreline habitat type, and lake inshore mean depth were

used in a static model (predictors constant through time) to predict

differences in largemouth bass abundance among lakes.

Lake volume in the euphotic zone and inshore mean depth were used to

represent lake morphology. Lake primary production may be directly

proportional to the amount of littoral euphotic zone (Cole 1994) and may

positively affect productivity. The percent of lake volume in the

euphotic zone is a function of the amount of light penetrating through

the water (Cole 1994). Light may penetrate deeper and reach a higher

proportion of the bottom of clear water lakes, which in turn may

increase the density of aquatic vegetation in the littoral zone. Denser

vegetation may provide additional cover for young or influence predation

efficiency of adult largemouth bass and potentially affect productivity

(Bettoli et al. 1992; Miranda and Pugh 1997; Olson 1998). Inshore mean

depth (see below) and the percent of lake volume in the euphotic zone

were used as predictors because largemouth bass live in close

association to littoral zones (Miller 1975) most of the growing year.
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The shape of the lake basin as represented by inshore mean depth may

affect the potential for summer and winterkill. Studies addressing

inshore mean depth are rare. Studies addressing mean depth, however, may

be used for postulating effects on productivity because mean depth and

inshore mean depth correlate (Figure 7), potentially producing similar

statisical effects on fish. Shallower lakes may be less suceptible to

summerkill and winterkill because wind-induced mixing can reoxygenate

the water column down to the substrate. Deeper lakes with a thermocline

may have a hypolimnion that can deoxygenate the whole lake when the

thermocline is disrupted (Coles 1994). The shoreline steepness is

characteristic of lakes with higher inshore mean depth and also

influence productivity. Fish in lakes with a steep shore may be less

affected by changes in water level than lakes with a more gradual slope.

Lakes with a gradual slope will inundate or expose a larger area with

similar vertical water level changes, potentially providing for more

cover, nesting, and nursing areas.

The effects of temperature and dissolved oxygen may also be affected by

lake inshore mean depth. The effects of high temperature in the summer

may be ameliorated by wind generated circulation, water turnover during

cool nights (Cole 1994), and thermoregulatory responses by fish (Rice et

al. 1983). In the winter, lakes with a low mean depth may be more prone

to kill fish if depletion rates of dissolved oxygen are higher (Mathias

and Barica 1980).

Conductivity is a measure of dissolved solids, which may be indicative

of primary production, which in turn may increase productivity (Cole

1994; Moyle and Cech 1988). The shoreline habitat type was represented

by amount of hard cover. Lake shoreline habitat structure may influence

abundance if dense cover is available, protecting young largemouth bass

from predators.

Because the predictors above may increase or decrease survival of

largemouth bass, the null hypothesis for all predictors except average

growing-degree-days and conductivity was that largemouth bass abundance

will remain constant. The null hypothesis for average growing-degree-

days and conductivity was that largemouth bass abundance will remain

constant or decrease with an increase in those predictors.

2.2.2. Anthropogenic Predictors

24



Database Management and Analysis of Fisheries in Illinois Lakes: Optimizing Fisheries Management (F-69-R Segments10- 12) Vol.2 (1999)

Anthropogenic predictors were the following frequent sport fishery

management practices at lakes: largemouth bass stocking, lake

rehabilitation, water level manipulation, aquatic vegetation control,

changes in the fish length limit, and chemical fish removal. The

rationale and description of the null hypothesis for each predictor are

given below.

2.2.2.1. Stocking

Stocking practices have had detected (Swingle ±950; Buynak et al. 1991;

Fielder 1992) and undetected effects (Krumholz 1952; Saila 1952) on fish

abundance. However, for largemouth bass, effects for stocking have been

generally disappointing. After evaluating stocking densities of 10, 20,

40, and 80 fingerling largemouth bass in two 0.04 ha earthern ponds,

Howick et al. (1993) reported a decrease in average size and condition

of fish with increasing stocking rate. Boxrucker (1986) evaluated the

effectiveness of fingerling largemouth bass stocking in two Oklahoma

impoundments. Stocked fish were initially over 70% of the total

population, declining to less than 206 at the end of the third growing

season. Higher natural mortality of stocked fish was the attributed

cause of the ineffective stocking. Ineffective stocking, probably due to

the higher natural mortality of hatchery fish compared to naturally

reproducing largemouth bass, has also been reported elsewhere (Lawson

and Davies 1977; Filipek and Gibson 1986). Survival rates of hatchery

fry were reported to be between 35 and 40% in rearing ponds between the

months of August and October (Davis 1930). A survival rate of up to 80%

in fertilized rearing ponds was reported by Blosz (1952). Much lower

survival rates (not reported) were observed in unfertilized ponds.

Roseberry (1950) after investigating the effects of largemouth bass

stocking, concluded that stocking was ineffective due to low water

fertility. Survival of fry and success of stocking, therefore, seems to

be closely related with food availability for age-0 fish.

Because adding fish potentially increases abundance, the null hypothesis
was of a decrease or an unchanged largemouth bass abundance with an

increase in the quantity of fish stocked.

2.2.2.2. Lake Rehabilitation and Water Level Manipulation

Lake rehabilitation is here defined as a major drop in water level

followed by removal and subsequent stocking of fish. Water level
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manipulation is defined herein as any man-made increase or decrease in

water level without any additional practice.

Natural fluctuations in water levels are a characteristic of floodplain

lakes and rivers and may be emulated by manipulating water levels in

artificial lakes. Fluctuations in water level may be caused by annual

cycles of wet and dry seasons or by events longer in duration, such as

those caused by droughts over multiple years. In artificial lakes,

managers may alter water levels for aerating the bottom, facilitating

fish removal, controlling excessive macrophytes, and controlling forage

or stunted fish (Jenkins 1970).

The sudden reduction of water volume and surface area of a lake may

affect the fauna and flora. When subject to stress from extreme

crowding, predation, or high temperatures, some fish may die, leaving a

population adjusted to the diminished levels of food and space

available. As the habitat expands when normal water levels are reached,

fish will have opportunities to better grow and reproduce due to the

increase in space and food from the reflooded areas (Bennett 1971),

Hill (1980) reported an increase in angler catch rates of largemouth

bass, and an increase in average size and young growth rates of

largemouth bass and bluegill were shown two years after drawdown. Other

studies have shown an increase in catch rates and a restructuring of

largemouth bass populations toward larger sizes, probably due to an

increase in growth rates following lake drawdowns (Pierce et al. 1965,

six months after drawdown; Lantz et al. 1967, one year after drawdown;

Paller 1997, nine months after drawdown). Conversely, Zweiacker et al.

(1973) reported a decrease in growth rate of largemouth bass one year

following a decrease in water level, possibly due to a decrease in food

supply.

Water level manipulations and lake rehabilitations were each treated as

separate predictors. Because changes in water level may affect many
components determining the numbers of largemouth bass (Section 2.1.1.1,

Figure 2), the null hypothesis was of largemouth bass abundance

fluctuating independently of water level changes. Because lake

rehabilitation potentially removes the majority of fish, the null

hypothesis for lake rehabilitation was that largemouth bass did not

increase.

2.2.2.3. Aqulatic Vegetation Control
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Production of fish may be related to the type of littoral zone and its

associated aquatic vegetation (Werner et al. 1977; Mittelbach 1988;

Conrow et al. 1990). Vegetated littoral areas provide habitat, nursery,

and refuge for fish (Werner et al. 1977; Hall and Ehlinger 1989).

Controlling vegetation growth may be intended to reduce odor and improve

aesthetics (Mikol 1984). Indirect biological effects, however, may occur

as a consequence. Higher plants often sequester nutrients that would

otherwise be available to the fauna in the lake, decreasing the

potential for fish production (Bennett 1948; Strange et al. 1975).

Macrophytes may also affect food habits and predation of piscivorous

fish. Bettoli et al. (1992) assessed largemouth bass piscivory as a

function of habitat complexity. Largemouth bass were shown to shift to a

piscivorous diet earlier in life history when in habitats without

submersed vegetation. Predation success by largemouth bass has been

shown to be a negative function of aquatic vegetation density. Predation

success to near zero values were observed at high densities of aquatic

vegetation stems (Savino and Stein 1982). Largemouth bass first winter

survival has been shown to be optimum at an intermediate level (10-25%)

of vegetative cover (Miranda and Pugh 1997). Similarly, Wiley et al.

(1984) evaluated the effects of different levels of macrophyte abundance

on largemouth bass. Largemouth bass production decreased at low and high

levels of macrophytes, again suggesting an intermediate optimum level of
vegetative abundance. Olson et al. (1998) observed an increase of growth

rates for most age classes of largemouth bass after 20% vegetation

removal in four Wisconsin lakes, providing additional support for the

benefits of intermediate density of aquatic vegetation.

Because aquatic vegetation may provide protective cover or decrease prey

visibility, the null hypothesis tested was that the abundance of

largemouth bass remained unchanged after vegetation control practices.

2.2.2.4. Length Limit Regulations

The primary reason for devising length limit regulations in recreational

fisheries is to increase yield of harvestable fish by controlling the

population size structure. Length regulations include a minimum, an

exclusive slot, or a maximum limit. Minimum length limits, whereby a

fish below a given size cannot be harvested, are based on the premise

that the protection of young fish from fishing will allow them at least

to reach a size of first reproduction or to lower the potential for
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growth overfishing. Slot limit protects fish within (exclusive slot) or

outside (inclusive slot) a specified length range. Usually adult fish

are protected to bring a population to a desired size structure after

slot limit implementations. Maximum length limits are regulations under

which all fish above a certain size are not to be harvested. The

rationale for maximum length limits is that larger, more fecund fish

will more promptly rebuild a population. Maximum length limits are not

extensively used due to mostly social, rather than biological, reasons

(Brousseau and Armstrong 1987).

Minimum length limits have had impacts on abundance, population

structure, and growth of largemouth bass. An increase in electrofishing

catch-per-effort (Ager 1989; Buynak et al. 1991) and a population size

structure skewed towards larger sizes of largemouth bass (Ager 1989) was

observed following an increase in minimum length limits. Conversely,

Paragamian (1982) reported a restructuring of population size toward

smaller fish after implementation of a 350 mm length limit for

largemouth bass. Increased pressure on fish larger than 350 mm was the

attributed cause of the observed effect. Increases in growth rates

following implementation of a 300 mm minimum length limit have also been

observed for largemouth bass (Farabee 1974; Johnson and Anderson 1974).

Conversely, Ming and McDonald (1975) reported an increase in sublegal

largemouth bass and a decrease in growth rates of adult largemouth bass

from a no-regulation to a 300 mm minimum length limit.

Exclusive slot limit regulations have produced changes in largemouth

bass population structure and abundance. A trend of population size

structure toward larger fish has been the most commonly reported effect

of exclusive slot limit regulations (Summers 1988; Novinger 1990; Wynne

et al. 1993; Martin 1995). Protected fish measured by catch-per-effort

usually increases following exclusive slot limit regulations for

largemouth bass (Eder 1984; Summers 1988; Dean et al. 1991; Cofer 1993;

Kurzawski and Durocher 1993; Martin 1995), but decreases have also been

observed (Martin 1995). Increases (Wynne et al 1993) and decreases (Eder

1984) of catch rates have also been reported after imposition of

exclusive slot limit regulations for largemouth bass.

The effects on largemouth bass abundance of changes in length limits

were investigated here. The length limit changes investigated consisted

of an increase from the statewide minimum length limit of 300 mm to 350

mm, an increase from the statewide minimum length limit to 375 mm, and

the substitution of a 350 to 375 mm exclusive slot limit for the
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statewide minimum length limit. Each of the changes in length limit was

treated separately.

Because size limits are dependent on fishing pressure (unavailable), the

null hypothesis was that changes in size limits will not affect

largemouth bass abundance.

2.2.2.5. Fish Removal

Fish removal practices to control stunted fish populations are widely

used as a management tool. The removal of fish is intended to enhance

growth of the remaining individuals, restructuring the population

towards fewer and larger fish.

Chemical fish removal is the most widely used and most economical means

to control stunted fish (Lennon et al. 1970). The success (attainment of

desired fish population structure or species com~position) of fish

removal practices varies widely. Chemical treatments (Avault and

Radonsky 1968; Keith 1968; Johnson and Osborne 1977) are apparently more

effective than physical methods (Jackson 1966; Scott 1968; Warnick 1977;

Goeman and Spencer 1996) and increases in fish growth rates seem to be

the most common result of fish removal (Pierce et al. 1965; Johnson

1975; Johnson and Osborne 1977; Davis 1979).

Chemical fish removal is not directed at largemouth bass, but may affect

them. Fish affected directly by removal practices may compete with or

serve as prey for largemouth bass. The null hypothesis, therefore, was

that removal practices had no effect on largemouth bass abundance.

2.3. Response Variables

2.3.1. Definition

Fish numbers caught were corrected for catchability according to Bayley
and Austen (1987) to obtain estimates of abundance rather than catch-

per-ef fort to be used for the response variables. The area covered by a

unit of time of electrofishing was constant among lakes. The response

variables computed were logarithm transformed abundance of largemouth

bass caught per hour of fall electrofishing samples. Logarithm

transformation was used to normalize the distribution and stabilize the

variance (Figure 8).
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Response variables based on age-1, age-2, and adult largemouth bass were

derived. The response variables were investigated independently because

they addressed different models. Age-1 fish was used to address the

model in Section 2.1.1 (factors affecting young fish) and age-2 for the

model in Section 2.1.2 (recruitment at age-2). The model in Section

2.1.3 (factors affecting adult fish) was assessed using adults.

Productivity was assessed using the absolute number of age-1 and older

fish caught per hour of electrofishing sampling during years when no

anthropogenic predictors were implemented (Section 2.2.1.4).

2.3.2. Catchability

Catchability of fishing gears is defined as the fraction of fish caught

by a unit of fishing effort (Ricker 1975). Catchability is a function of

biotic and abiotic factors and may, therefore, vary when sampling

different fish sizes and species, habitats, or the same habitat at

different times. When catchability varies, estimates of fish abundance

become unreliable and may lead to erroneous conclusions of management or

natural effects on fish. Mortality estimates, as an example, may yield

impossible outcomes if catchability for younger fish is lower than for

older age-classes. Comparison of data across systems, especially in

situations when different gears and sampling protocols are used, is only

meaningful with correction for catchability.

To correct for catchability, data from fall electrofishing sampling were

calibrated based on a quasi-likelihood, logistic model with inshore mean

depth, macrophyte density, fish length and length squared as predictors

(Bayley, personal communication; Bayley and Austen 1987). A simplified

model based on fish length was used herein because an inshore mean depth

effect for the ranges studied was not detected for largemouth bass

(Bayley, personal communication) and information on macrophyte density

was not available. A peak of efficiency of 0.08 was estimated for

largemouth bass 30 cm long in a defined inshore zone (Figure 9).

2.3.3. Caveats on Past-Fish Sampling

1. Fish populations in Illinois inland lakes have been assessed since

the early 1960s using a variety of sampling gear, principally boat

electroshockers. Boat electrofishing is the only sampling method

consistently used. Prior to 1985, sampling data were not always reported

with regard to the type of sampling gear. Data were frequently reported

as pooled catches from various gears, making it difficult to identify
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the proportion of the sample caught with electroshockers. Since.1985

there has been more consistent recording of the type of gear used to

sample each fish species, allowing the estimation of the proportion of

largemouth bass caught with electrofishing prior to 1985. Analysis of

the annual percentage sampled with electrofishing gear in post-1985

data, indicate that largemouth bass are caught almost exclusively with

that type of fishing gear (Table 1). At Lake Defiance (in 1991), Lake

Pierce (in 1985 and 1986), and Ramsey Lake (in 1988), the catches using

gears other than electrofishing gear were large enough to warrant

concern about possible confounding of largemouth bass abundance

estimates with that of fish species other than largemouth bass. The

large amount of data where largemouth bass is proportionately high,

however, may mask the potential bias during those four instances. Pooled

data by gear, therefore, were used even though they may overestimate

largemouth bass catches. The extent to which data prior to 1985 may

overestimate largemouth bass catches, however, cannot be identified and

ignoring such data would probably be harmful, because they comprise over

75% of the total data.

2. No direct age information was used to determine size at age of

largemouth bass. Length-frequency distributions were used to define

largemouth bass age classes using a likelihood-based method for

analyzing multiple data sampled at different times (Fournier et al.

1990). Largemouth bass has well defined spawning seasons (Heidinger

1975), which potentially makes age estimation from length-frequency data

more accurate than for species that have multiple spawning periods (such

as bluegill). A chi-square test was used to estimate the best fitting

likelihood model. The likelihood model fitted over a series of years was

used to control for observer bias which might have occurred if relying

on length-frequency plots alone when estimating size ranges for the age-

1 and age-2 classes. The length range at age was established by adding

and subtracting two standard deviations from the mean length at age

estimated from the likelihood model. Two standard deviations were used

to minimize overlap between age classes yet include over 95% of the fish
of an age class in the estimated interval for that age class. When the

lower limit for age-2 fish overlapped with the upper limit of age-i fish

the upper limit for age-i fish (lower for age-2) was taken to be the

midrange of the overlap area (Figure 10, panel A).

Fish from IDNR fall electrofishing catches are frequiently subsampled for

age determination of fish. Only a range of size by age is recorded in

IDNR final reports. The resulting likelihood estimates were cozmpared
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with the observed IDNR range of size f or age-l and age-2 largemouth bass

to determine if there was disagreement between estimates .(Figure 10.,

panel B). Disagreement occurred only in cases two years after complete

lake rehabilitation events were performed, potentially due to an

increase in growth rates of fish following those practices. Size at age

in years following rehabilitation practices were larger than estimated

by the model. Size ranges were determined by direct examination of

length-frequency plots for these events.

2.4. Data Sources and Selection

2.4.1. Environmental Data

Climatic data were obtained from the Midwest Climate Center. This

information was accessed through the Midwest Climate Information System.,

a computer-based application for storing climatic data from the National

Climatic Data Center, the Climate Analysis Center, National Weather

Service stations and state weather networks. Data regarding the

environmental predictors were obtained first from the closest weather

station located within the same catchment basin as each lake. if

information was unavailable from the nearest weather station, data were

collected from the weather station which was next closest to the lake,

as long as the station was located in the same catchment basin. Data

were only occasionally obtained from the second and third closest

weather station. Data for lake inshore mean depth, conductivity, and

shoreline habitat type were obtained from Austen et al. 1993. Data for

the proportion of lake in the euphotic zone were obtained from Austen

(personal communication).

2.4,2. Anthropogenic Data

Any intervention (management practices discussed in Section 2.2.2) to

lakes is reported by district biologists. The reports follow a standard

format dependent on the kind of intervention and are archived by year
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Sport fishery data are archived in the 26 IDNR fisheries district

offices located throughout the state and are stored, in the IDNR

Fisheries Analysis System (FAS) database (Austen et al. 1993; Bayley and

Austen 1989). The FAS database system includes data on management

practices, fish sampling, and length-frequency information since 1985,

whereas the IDNR district offices archive recent as well as historical

data. Historical data were collected from IDNR district offices and

appended to the existing FAS database, generating a source database for

this work. One hundred and eighty seven lakes are stored in the source

database and 42 lakes have historical information starting as early as

the 1960s.

Forty two lakes in Illinois with data since 1960 were used (Figure 11;

Table 3). Data pertaining to the environmental and anthropogenic

predictors and the response variable were obtained only for those lakes

with management and sampling information dating back at least to the

mid-1970s and with at least yearly sampling frequency (Table 3). Lakes

in Table 3 were chosen because regular annual sampling at those lakes

provided more continuous and extensive historical data than sporadically

managed and sampled lakes. Only lakes at which a management practice was

conducted were selected to investigate the effects of that practice.

Fall samples were collected from years and lakes without management in

analyses incorporating natural effects only.

2.5. General Analytical Procedures

2.5.1. Introduction

General linear models were used to investigate the effects of the

predictors and their first-order interactions on each response variable.

Higher order interactions were excluded in the interest of result

interpretability. Interactions were investigated because loss of

information or loss of statistical power may occur (Zar 1996) in

addition to misinterpretations of main effects if only main effects are
considered.

2.5.2. Regression Model Assumptions

2.5.2.1. Autocorrelation

Serial autocorrelation is a concern when analyzing fisheries data

(McAllister and Peterman 1992). High or low abundance in one year may
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persist in subsequent years, making regression results questionable due

to an underestimation of residual variance (Green 1987) or an

overestimate of the effective degrees of freedom. Data were tested for

autocorrelation to investigate violations of independence and to

determine where corrections for independence were necessary.

The effects of autocorrelation were tested separately for each lake that

provided at least three consecutive data points separated by as many

years as the lag being tested. Time-lagged regression was used to test

the degree to which previous years (predictor) affected an observation

of the age-1 and adult response variable. The age-2 response variable

was not tested for autocorrelation because it did not provide enough

data to warrant analysis. Each response variable was tested

independently. The datum observed for the response variable in one year

was regressed against the datum from a previous year. To avoid treatment

confounding, only years were used in which none of the management

practices considered herein (Section 2.2.2) was conducted. A one-year

lag regression was initially tested (current year regressed against the

previous year), followed by a two-year lag regression if the one-year

lag test was statistically significant. The time lags between the

observations of the response variable were increased until the effects

for autocorrelation were no longer present.

The results of the serial autocorrelation showed violation of

independence for two out of the 38 lakes tested for the age-1 response

variable (Table 4). Both lakes were corrected for autocorrelation after

introducing a time lag of two years (Table 4). The adult response

variable showed four lakes out of 31 to violate independence. Two lakes

were corrected for independence after introducing a time lag of two

years and the other two after a time lag of three years (Table 5).

2.5.2.2. Multicollinearity

Multicollinearity may decrease the reliability of regression models and

bias the assessment of model predictors (Pedhazur 1982; Cohen and Cohen

1983). Furthermore, multicollinearity may cause instability in parameter

estimates, limiting the explanatory power of regression models (Stevens

1992; Phillipi 1993).

The effects of multicollinearity were examined by constructing

correlation matrices and by determining the variance inflation factor

(VIF; Weisberg 1985; Stevens 1992). The VIF provides a measure of the
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stability of model parameters by estimating the degree of

intercorrelation among the predictors in the model. VIF values larger

than 10 are taken as evidence of multicollinearity among predictors

(Chatterjee and Price 1991).

The degree of association between pairs of predictors was determined

using Pearson's r. The VIF was estimated in order to identify

multicollinearity which may go undetected by relying on pairwise

correlations only. The estimates of multicollinearity and pairwise

correlations among the predictors are shown in Table 6.

2.5.3. Delayed Effects of the Predictors

Three delay lags based on delayed treatment effects were used to measure

the effects of the predictors on the response variable. This was done

because the predictor variables were hypothesized to affect the response

later. Even though the predictors have a potential direct effect on

fish, the effect on the response variable may not be immediate. An

example is age-0 fish stocking in Illinois. Stocking as a predictor will

not be detected immediately if a response variable based on age-1 fish

in that year is used, even though it has an immediate effect on age-0

fish (an increase in age-0 fish).

A zero delay (lag 0) was defined for predictors potentially affecting

fish during the same year a management practice was implemented or a

datum for an environmental predictor observed. A one-year delay (lag -1)

and a two-year delay (lag -2) were used for predictors affecting the

response one and two years, respectively, after being implemented or

observed. As an example for a lag -2, lake rehabilitation is done during

the fall by completely draining the lake and leaving it without water

until the next spring. Stocking of age-0 fish is done during the spring

following rehabilitation. A potential increase of age-1 fish following

lake rehabilitation, therefore, will only be detected in the second year

after lake draining.

The main reason for not considering longer lags was the lack of any

potential mechanism justifying lags over two years. It makes intuitive

sense to postulate that the effects of the predictors on fish will be

age or time dependent, as discussed for stocking and lake rehabilitation

above, and immediately reflected on fish of certain ages. There is no

evidence, however, that the effects will be latent and reflected at a

later time only.
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2.5.4. Regression Model Selection

Analyses were conducted on groups of lakes (multiple-lake) and

separately for each lake (lake-specific). Multiple-lake analyses

provided an estimate of treatment effect of a wider scope of inference,

sometimes statewide. Lake-specific analyses consisted of estimating

treatment effects specific for each lake. Power analysis for both,

multiple- and lake-specific analyses was conducted using Fisher z

transformation (Zar 1996), and an r2 of zero as the null hypothesis and

the observed r2 as the alternative hypothesis.

2.5.4.1. Multiple-Lake Analyses

The variable selection criterion used to decide which interaction terms

to retain was the same for each of the three treatment delayed effects

above. The criterion was based on Residual Sums of Squares (RSS) tests

for each coefficient.

Each of the three treatment delays was tested independently. The

interaction terms for which the RSS analysis yielded non-significant

results were individually excluded from analysis, starting with the term

with the highest probability value associated with the RSS test (which

contributed the least to the overall significance of the multiple

regression model). Main effects were always kept in the model when

examining the effects of interactions. The main effects were dropped if

not significant and not part of any significant interaction term. Each

time an interaction term was dropped, the RSS F-value for each of the

remaining predictors was recalculated. This was repeated until the

retained interaction terms had probability values of less than 0.05 or

until all of the interaction terms were dropped. The anthropogenic

predictor was never dropped from the model to allow for estimation of

the efficacy of management practices. Multiple-lake analyses yielded a

model for the effects the management practice being examined accounting
for natural factors for each of the response variables defined in this

dissertation (Section 2.2).

2.5.4.2. Lake-Specific Analyses

Following significant multiple-lake analysis, a lake-specific regression

analysis was conducted for predictors significantly affecting the

response variable. Only significant predictors were used because of the
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low number of observations within each lake would not allow for analyses

of all predictors (low degrees of freedom). Because of the low number of

observations for each lake, a more relaxed alpha level of significance

of 0.1 was used for lake-specific tests.
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LAKE 1985 86 87 88 89 90 91

ARGYLE LAKE 96 99

AUGUSTA LAKE 100 100

CARTHAGE LAKE 100

DAWSON LAKE 98 97

DEFIANCE LAKE 50
HORTON LAKE 100 100 100 100 100 100 100
JONES STATE LAKE 100 100
LAKE CARLTON 100

LAKE LE-AQUA-NA 100 100 100 100
LAKE MURPHYSBORO 100 100
LAKE SANGCHRIS 100 97 99 100 97 98
LAKE STOREY 100
LINCOLN TRAIL LAKE 96 91 92 94 96 98 95

MCCULLOM LAKE 100 100 100 100 84

MILL CREEK LAKE 95 98 97 92 96 99 99

PIERCE LAKE 80 80 100 100 100

RAMSEY LAKE 97 93 81 100 100 100

RED HILLS 89 100

WELDON SPRINGS 98 97 92 92 96 99

WOLF LAKE 100 100 100 100 100 100

Table I. Percent of largemouth bass caught with electrofishing gear
during fall samples.
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LAXU
APPLE CANYON LAIX

RM
VO
ST
MW
RH
R4
RS
RE

LAKX LX-AQUA-NA
RM
VO
ST
ML
RH
R4
RS
Rs

RM
VO
BT
ML
RB
R4
R4
RS

RMST

RH

RS
RS

LAUE CARLTON
RM
VO
ET

RN
R4
R5
RS

RM
VO
NT

RN
R4
RS
RN

AR-nj LAIX
RM
VO
BT
ML
RH
R4
R5
R8

GLADNT NM LAXU
RM
VO
8T
ML
RN
R4
RS
R8

DISTRICT 1960 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
1

RN

NT

T
MN MN MN

RH

BT

ST

RH

RM RM

ST

VO VO VO V V VO
ST 8T

VO VO

RI R4 RI RI RI RI R4 RI R4 R4 RI RI R4 R4 RI R4 Rm

TOOTO TO VO VTVO VTOVO VOTO
BT ST NT BT

wM ww M N MN MN M
RH

R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4

RN RMRM RN RM RM RMNR RM
TO
8T

WN MN MN

WMN M

Wm
RR

MN

ST

RH

ST NT

Fish removal practices
Aquatic vegetation controls
Largemouth bass stocking
Water level maniulations
Lake rehabilitation events
Fishing regulation changes from
350 mm minimum length limit
Fishing regulation changes from
375 mm minimum length limit
Fishing regulation changes from
300-375 mm slot length limit

the Statewide 300 mm minimum length limit

the Statewide 300 mm minimum length limit

the Statewide 300 mm minimum length limit

Table 2. Selection of management practices by lake. Example of coding
system interpretation: Apple Canyon Lake is an Illinois Department of
Natural Resources lake located in District 1 and had fish RM oval
practices in 1985, water level manipulation in 1984 and 1985, and
largemouth bass ST cking in 1970.
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DISTRICT 1960 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 61 82 83 84 85 56 87 89 90 91 12
4

RU
va

WK WRUm
RE

MM WNM MmMX M M WNMMX MMMx "mM Mm

RU RU RU RU RU RU 15

m M

LAKE
LIEU ST RUT

RN
va
BT
ML
RU
R4

RS

RK

Va
ST
"L
RU

RU
D3VIANAU LAI

Va
ST
ML
RU

R5
RS

UCCULLOM lamN
RM

ST
ML
RU
14
15
RS

LAIN OF TIN WOODS
RU
va
ST
WL
RE
R4
R5
RU

MULDON SPRINGS
RU
Ta
ST
ML
RN
R4
15
RU

VOLV LAMN
RU
Ta
ST
VL
RU
R4
RS
RU

BILOAM SPRINGS
RU
Ta
ST
ML
RU
R4
R5
RR

mX

R" Ru R4 14 14 1 14 "1 14 "4 1 14"

ST

RU
"m

ST ST ST

R5 RS R5 RS RS KR KS

ST

RU

"m

RS KS RS KS K5 RS RS K K5 R KSS KS

RU
Va TOVa va

MM MM

TO TO TO To

UK WN

RU RU
TG TO TO Va

RS RS R5 15KSK RS RS RS KSK RS R KS

ST

10

TO vT

RU

TO TO

RU

Ta

14 R4 14 14 14 14 14

ST

RU RU RU RU RU RU

Fish removal practices
Aquatic vegetation controls
Largemouth bass stocking
Water level maniulations
Lake rehabilitation events
Fishing reguilation changes from
350 ima minimum length limit
Fishing regulation changes from
375 zmu minimum length limit
Fishing regulation changes from
300-375 imm slot length limit

the Statewide 300 rma minimum length limit

the Statewide 300 nma min~imum length limit

the Statewide 300 imm minimu length limit

Table 2. (Continued).
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LA=N
WMINnWRO- KING LAUR#1

MNM

R4
R5
RS

NOTN=LLAIN
RM
NM
ST
ML
RN
R4

RS
MAALUT POIT LAMN

NM

NM

R4

ST
ML

RN
R4
RS
RS

DAMSON LJIN
NM
NM
ST
ML
NM
R4
RS
R8

LINCOLN TRAIL LAIN
NM
NM
ST
ML
NM
R4
R5
As

MILL CRANK LAIN
NM

ST
ML

R4
Rs
35

AUGUSTA LAIN
NM

ST
ML
NM
R4

R5

CAATNAagNLAIN
NM
NM
ST
ML
NM
R4
R5
RS

DISTRICTT1960 61 562 6364655 46667 69869 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 IS 84 87 IS I9t90#91 92
10

WNW VW W

12
NM

12
NN RM

"m

13

ST

14

NM VOa N

NM

RK RVQ vava NMa NMv

RNM MNM

UK mmWNM NMWNM

NM NM NM

WN vTOWN

ST

14

15

WN

va v
NM NM W

RM RM RM RM RM

NM NMNMKM NU N
NM

Fish removal practices
Aquatic vegetation controls
Largemouth bass stocking
Water level maniulations
Lake rehabilitation events
Fishing regulation changes from
350 mn minimum length limit
Fishing regulation changes from
375 mm minimum length limit
Fishing regulation changes from
300-375 nm slot length limit

the Statewide 300 mn minimumn length limit

the Statewide 300 nun minimum length limit

the Statewide 300 num minimum length limit

Table 2. (Continued).
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DISTRICT 1960 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 33 39 90 91 92
15

RH
WN NH

ST
NH
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NORTON LARD

RH

ST
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RS
RM

PZTT3VZULD LAMD
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RB
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RH

RH

ST
WN

RH RH RH

R5 R5 RS RS R5 Rs
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RH

R4 R4 R4

Fish removal practices
Aquatic vegetation controls
Largemouth bass stocking
Water level maniulations
Lake rehabilitation events
Fishing regulation changes from
350 mm minimum length limit
Fishing regulation changes from
375 mm minimum length limit
Fishing regulation changes from
300-375 mu slot length limit

the Statewide 300 ma minimum length limit

the Statewide 300 nmmminimum length limit

the Statewide 300 nmmminimaum length limit

Table 2. (Continued).
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Fish removal practices
Aquatic vegetation controls
Largemouth bass stocking
Water level maniulations
Lake rehabilitation events
Fishing regulation changes from
350 mm minimum length limit
Fishing regulation changes from
375 mm minimum length limit
Fishing regulation changes from
300-375 mm slot length limit

the Statewide 300 mm minimum length limit

the Statewide 300 nm minimum length limit

the Statewide 300 nm minimum length limit

Table 2. (Continued).
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DISTRICT 1960 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90'91 92
32

ST ST ST ST ST

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

32

ST ET ST ST ST ST

4 4R4 R4 R4 14 4 4 R4 4

Key:
RM - Fish removal practices
VG - Aquatic vegetation controls
ST - Largemouth bass stocking
WM - Water level maniulations
RH - Lake rehabilitation events
R4 - Fishing regulation changes from the
to a 350 mm minimum length limit
R5 - Fishing regulation changes from the
to a 375 mm minimum length limit
RS - Fishing regulation changes from the
limit to a 300-375 mm slot length limit

Statewide 300 mm minimum length limit

Statewide 300 mm minimum length limit

Statewide 300 nmm minimum length

Table 2. (Concluded).
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LAKE Results (one-year lag) Correction

(rW slope p-value df) (r2  
slope p-value df)

ANDERSON LAKE 0.01 +0.08 0.7401 13

APPLE CANYON LAKE 0.03 +0.15 0.6603 08

ARGYLE LAKE <0.01 +0.01 0.9635 15

BALDWIN LAKE 0.34 +0.59 0.0175 14 0.05 +0.17 0.4454 13

BEAVER DAM LAKE 0.15 -0.44 0.7450 01

CARLYLE LAKE 0.18 +0.40 0.0558 19

CARTHAGE LAKE 0.01 -0.10 0.8365 05

DAWSON LAKE 0.05 +0.23 0.6814 04

DEFIANCE LAKE 0.01 +0.09 0.7337 15

DOLAN STATE LAKE 0.07 -0.28 0.4972 07

FORBES LAKE 0.13 +0.43 0.1984 12

GLADSTONE LAKE 0.22 +0.45 0.0376 18 0.05 +0.22 0.4466 11

HOMER LAKE 0.32 -0.10 0.4328 02

HORTON LAKE 0.07 +0.29 0.3182 14

JONES STATE LAKE 0.07 -0.21 0.4169 10

LAKE CARLTON 0.83 +2.39 0.2749 01

LAKE LE-AQUA-NA <0.01 -0.01 0.9932 01

LAKE MURPHYSBORO 0.24 -0.46 0.3263 04

LAKE OF THE WOODS 0.16 -0.50 0.3237 06

LAKE SANGCHRIS 0.24 +0.58 0.0552 14

LAKE SARA 0.01 -0.07 0.9411 01

LAKE SHELBYVILLE 0.01 +0.26 0.3265 12
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LINCOLN TRAIL LAKE 0.17 -0.40 0.4209 04

MCCULLOM LAKE <0.01 +0.02 0.9488 10

MILL CREEK LAKE <0.01 +0.02 0.9256 08

PITTSFIELD LAKE 0.11 +0.32 0.2048 14

RANDOLPH COUNTY LAKE <0.01 +0.09 0.7736 09

RED HILLS 0.21 -0.71 0.6953 01

REND LAKE 0.45 +0.20 0.4665 12

SAUK TRAIL 0.77 +0.25 0.8213 01

SCHUY-RUSH LAKE <0.01 +0.03 0.9319 02

SHABBONA LAKE 0.47 -0.70 0.2003 03

SILOAM SPRINGS <0.01 +0.06 0.8483 12

WALNUT POINT LAKE 0.40 +0.05 0.1278 14

WASHINGTON COUNTY LAKE 0.21 +0.45 0.0778 14

WEINBURG - KING LAKE #1 0.21 -0.40 0.6975 01

WELDON SPRINGS <0.01 -0.01 0.8976 05

WOLF LAKE 0.12 +0.03 0.1149 20

Table 4. Regression results for lake serial autocorrelation for the age-
1 largemouth bass response variable. First value - r-square, second
value - slope coefficient, third value - probability -value, fourth
value - degrees of freedom. Values in the correction column are only for
lakes with statistically significant one-year lag autocorrelations.
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SHABBONA LAKE 0.18 +0.20 0.5793 02
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LAKE Results (one-year lag) Correction

(r2 slope p-value df) (r slope p-value df)

ARGYLE LAKE 0.01 +0.14 0.6576 12

BEAVER DAM LAKE 0,26 -0.50 0.6628 01

CARLYLE LAKE 0.22 +0.33 0.0803 13

DAWSON LAKE 0.04 +0,18 0.4464 15

DEFIANCE LAKE 0.01 -0.05 0.8544 06

DOLAN STATE LAKE 0.01 -0.12 0.5766 19

FORBES LAKE 0.57 +0.79 0.0183 07 0.21 +0.66 0.6954 01*

HOMER LAKE 0.74 -1.87 0.1407 02

JONES STATE LAKE <0.01 -0.01 0.9667 19

LAKE CARLTON 0.56 +0.67 0.1486 03

LAKE LE-AQUA-NA 0.01 +0.11 0.7512 08

LAKE MURPHYSBORO 0.01 +0.07 0.7412 15

LAKE OF THE WOODS 0.17 -0.45 0.4231 04

LAKE SANGCHRIS 0.02 +0.13 0.7474 07

LAKE SHELBYVILLE 0.54 +0.44 0.0958 04

LAKE STOREY 0.41 +0,38 0.0336 09 0.09 +0.14 0,3645 09

MILL CREEK LAKE 0.51 -0.60 0.2848 02

PIERCE LAKE 0.25 +0.43 0.5054 02

RAMSEY LAKE 0.13 -0.47 0.3818 06

RANDOLPH COUNTY LAKE 0.07 +0.26 0.4301 09

RED HILLS 0.05 +0.24 0.3730 15

REND LAKE 0.34 +0.34 0.0459 10 0.02 -0.06 0.7150 09

SAtYR TRAIL <0.01 +0.04 0.8993 10
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SILOAM SPRINGS <0.01 +0.08 0.7430 18

WALNUT POINT LAKE 0.24 +0.46 0.0864 11

WASHINGTON COUNTY LAKE 0.03 +0.16 0.5110 16

WELDON SPRINGS 0.38 +0.63 0.0051 17

WOLF LAKE 0.02 -0.12 0.6189 14 0.16 +0.34 0.1118 15*

Table 5. Regression results for lake serial autocorrelation for the
adult largemouth bass response variable. First value - r-square, second
value - slope coefficient, third value - probability-value, fourth value
- degrees of freedom. Values in the correction column are only for lakes
with statistically significant one-year lag autocorrelations. Asterisks
are indications for lakes needing three years in between observations
for correction of effects of autocorrelation.
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PREDICTOR X STD Min Max Skew Kurt VIF

ENVIRONMENTAL

PRECIPITATION PREDICTOR* 0.07 0.20 0.0 1.79 6.9 57.8 1.4
GROWING-DEGREE-DAY ('C) 3423 451 1994 4671 -0.2 -0.2 1.7
COOLING DEGREE DAY (°C) 616 324 23 1827 0.8 0.7 2.1
SNOW DEPTH (millimeters) 37.2 43.2 0.9 439.3 3.5 18.6 1.1

LAKE AVERAGE CATCH PER EFFORT (fish/hour) 3.3 0.3 2.6 4.10 -0.6 0.4 1.3
LAKE AVERAGE GROWING-DEGREE-DAYS 3422 368 2694 3984 -0.5 -0.6 1.5
VOLUME OF LAKE IN EUPHOTIC ZONE (6) 0.39 0.26 0.01 0.95 0.45 -0.69 1.2
LAKE CONDUCTIVITY (mohs/cm) 326.6 110.9 125 547 0.5 -0.6 1.4

LAKE INSHORE MEAN DEPTH (meters) 2.1 0.9 0.6 4.3 0.8 <0.1 1.3
LAKE HABITAT TYPE (hard cover rating) 1.1 0.5 <0.1 2.8 1.3 2.8 1.3

ANTHROPOGENIC

Continuous variables

LARGEMOUTH BASS STOCKING EVENTS (fish/hectares) 7.6 58.5 0.0 1110 11.9 173.0 1.0

WATER LEVEL MANIPULATIONS (centimeters) 7.8 38.8 0.0 457.2 6.7 51.1 1.0

Dichotomous variables

FISH REMOVAL PRACTICE 0.0 1.0 4.0 14.1 1.0
AQUATIC VEGETATION CONTROL 0.0 1.0 2.7 5.5 1.0

LAKE TOTAL REHABILITATION 0.0 1.0 8.7 74.3 1.0

350 mm MINIMUM LARGEMOUTH BASS LENGTH REGULATION 0.0 1.0 1.9 1.6 1.1

375 mm MINIMUM LARGEMOUTH BASS LENGTH REGULATION 0.0 1.0 4.1 14.9 1.0
300-375 mm LARGEMOUTH BASS SLOT LENGTH REGULATION 0.0 1.0 4.6 18.8 1.0

Pearson Product-Moment for Pair-Wise Correlations
(* - significant at 0.05 alpha level)
(environmental predictors) (environmental predictors for the static model)

PPT GDE CDE SND GDE CON HAB IMD EUP
PPT 1 GDE 1
GDE -0.I* 1 CON -0.7* 1
CDE -0.1* -0.5* 1 HAB 0.1 trace 1
SND trace -0.3* 0.6* 1 IMD 0.4* -0.4 0.3 1

EUP -0.3 0.3 -0.1 -0.2 1
Key:
* - [ (precipitation*watershed area)*(1+percent uncovered land) ] / (lake volume*volume
development index)
X - Mean
STD - Standard deviation
Max - Maximum value
Min - Minimum value
Skew- Skewness
Kurt- Kurtosis
VIF - Variance inflation factor
PPT - Precipitation predictor
GDE - Growing-degree-days
CDE - Cooling degree days
SND - Snow depth
GDE - Average growing-degree-days (*)
CON - Average conductivity(*)
HAB - Inshore habitat type(*)
IMD - Inshore mean depth(*)
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EUP - Volume of lake in the euphotic zone(*)

Table 6. Summary statistics and summary diagnostics for predictors for the environmental
and anthropogenic components (N = 1428; N = 28 for predictors with asterisks).
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Spawning First
Season (age-o) Summer (age-o)

Number of Eggs Prey
and Spawners Availability

Winter (age-o)

Dissolved
Oxygen
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Wind/Wave
Action Competition

Action

Second
Summer (age-i)
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Age-1
Largemouth Bass
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Predation

Figure 2. A schematic representation of potential effects on largemouth
bass influencing first year abundance.
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Figure 3. A schematic representation of potential effects influencing
recruitment at age-2 largemouth bass and largemouth bass adult abundance
(age-3+).
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R2 = 0.33
Slope = 0.69
N = 123
p-value < 0.0001

R2 = 0.21
Slope = 0.46
N= 166
p-value < 0.0001

R2 = 0.30
Slope = 1.48
N = 148
p-value < 0.0001

Precipitation (mm)

Figure 4. Relationship between mean monthly water level and monthly
precipitation for three Illinois lakes. Panel A - Lake Carlyle, Panel B
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- Rend Lake, Panel C - Lake Shelbyville, N - number of observations.
Average lake water level calculated based on observations of water
levels over years.
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Figure 5. Relationship between mean monthly water turbidity and monthly
precipitation for two Illinois lakes. Panel A - Lake Carlton, Panel B -
Shabbona Lake, N - number of observations.
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Air Temperature (°C)

Figure 6. Relationship between mean monthly air and water temperature
for nine Illinois lakes. Panel A - Lake Le-Aqua-Na, Panel B - Pierce
Lake, Panel C - Defiance Lake, Panel D - Washington County Lake, Panel
E - Red Hills, Panel F - Dolan State Lake, Panel G - Lake of the Woods,
Panel H - Schuy-Rush Lake, Panel I - Anderson Lake, N - number of
observations.
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It

Mean Depth (m)

Response variable - Inshore
R squared = 0.44
29 degrees of freedom

mean depth

Source
Regression
Residual

Variable
Constant
Mean Depth

Sum of Squares
11.09
13.88

Coefficient
0.35
0.46

df
1

29

Mean Square
11.09
0.49

s.e. of Coeff
0.36
0.10

Figure 7. Relationship between inshore mean depth and mean depth for 31
lakes in Illinois. Inshore mean depth = mean depth calculated over a
lake volume between the shore out to a distance of 15 m.
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Figure 8. Normal probability plots of the response variables. Panel A -
raw data for age-1 largemouth bass; Panel B - raw data for age-2
largemouth bass; Panel C - raw data for adult largemouth bass; Panel D -
logarithm transformed data for age-1 largemouth bass; Panel E -
logarithm transformed data for age-2 largemouth bass; Panel F -
logarithm transformed data for adult largemouth bass.
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Figure 9. Electrofishing catchability curve for largemouth bass sampled
in the lake inshore zone (from shore out to 15 meters) during the fall.
Vertical dashed lines indicate age limits for the response variables
based on state of Illinois average age at size.
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Catchability = {l/(l+exp[(-(3.469)+(O.1837*length)+(-
0. 003299*length2 )]3}))2. Coefficients obtained from Bayley, personal
ccinnnicatione
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Figure 10. Age-class size range estimation for age-1 and age-2
largemouth bass based on a maximum likelihood model (Fournier 1990) for
multiple length-frequency data analysis and on largemouth bass scale
readings. Observed data are represented by the bars and are from Lake
Le-Aqua-Na (Panel A - 1978; Panel B - 1979) for fall electrofishing.
Curves represent estimates from the likelihood model. The horizontal
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line represents scale-based length range. Panel A - Likelihood model
matches with observed data. Panel B - Likelihood model underestimates
length range based on observed scale readings.

67



Database Management and Analysis of Fisheries in illinois Lakes: Optimizin-g Fisheries Management (F-69-R Segments 10-12) Vol.2 (1999)

Le-Aqua-Na
(18 hia)

(58 ha)

Mnnuillnm

(7649hna)

68



Database Management and Analysis of Fisheries in Illinois Lakes: Optimizing Fisheries Management (F-69-R Segments 10-12) Vol.2 (1999)

Figure 11. Lake names and surface area for the 42 lakes used to
investigate environmental and anthropogenic effects on largemouth bass
abundance.
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CHAPTER 3: METHODS AND RESULTS FOR EVALUATING LAKE PRODUCTIVITY FOR

LARGEMOUTH BASS AND MANAGEMENT PRACTICES ON AGE-i LARGEMOUTH BASS

3.1. Lake Productivity for Largemouth Bass

3.1.1. Analytical Procedure

Lake-specific management practices may be justified if differences in

lake abundance for largemouth bass (Section 2.2.1.4) can be explained by

factors constant through time (such as lake morphology). Similarly, more

attention by managers may be devoted to lakes with low productivity when

management is aimed at largemouth bass. The effects of lake abiotic

characteristics on largemouth bass abundance were, therefore,

investigated to determine the effects of lakes on productivity.

The 28 lakes listed in Table 7 were used with growing-degree-days,

percent of lake volume in the euphotic zone, lake conductivity,

shoreline habitat type, and lake inshore mean depth as predictors

(Section 2.2.1.4; Figure 12). Not all lakes available for this

dissertation (Table 3) were used because data for some or all predictors

were not present in some lakes. The response variable was calculated

separately for each lake by averaging the number of largemouth bass

caught per hour in fall electrofishing samplings. Fish numbers were

corrected for catchability (Section 2.3.1). The response variable was

logarithm transformed estimated abundance of largemouth bass of ages one

and older caught per hour of fall electrofishing. Age-zero largemouth

bass were excluded due to fish being frequently ignored or overlooked by

sampling personnel. Each lake yielded one response variable. To avoid

confounding with management practices, only years with none of the

management practices used herein (Section 2.2.2) were used to derive the

response variable.

An average growing-degree-day observation from 1945 to 1996 (the period
of available climatic data) was calculated (Section 2.4.1) for each lake

in Table 7 because there was only one observation for the response

variable at each lake. Artificially heated lakes may have a growing

season independent of variations in growing-degree-days. Those lakes

have been shown to enhance growth rates of largemouth bass compared to

naturally heated lakes (Galloway and Kilambi 1988; Perry and Tranquilli
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1984; Sule 1981). Because high temperatures may increase survival

through winter months (Toneys and Coble 1979; Gutreuter and Anderson

1985; Miranda and Hubbard 1994), lakes used for electricity power plant

cooling were excluded.

The maximum depth of macrophyte colonization was used as a proxy for

estimating the percent of lake volume in the euphotic zone. The euphotic

zone volume was obtained by first estimating the maximum depth for

macrophyte colonization according to Chambers and Kalff (1985). Maximum

depth for macrophyte colonization was calculated according to the

following formula (Chambers and Kalff 1985):

z C = [1.33*log(D)+1.4] 2, where

zc = maximum depth of macrophyte colonization (meters)

D = Secchi disk depth (meters)

Percent of. lake volume in the stratum from the surface to the maximum

depth of macrophyte colonization was calculated based on plots of lake

depth on the abscissa versus lake volume enclosed in the area between

the shoreline and that depth in the ordinate. A separate plot was used

for each lake. Plots for lakes were obtained from Austen (personal

communication). Figure 13 shows an example of estimation of percent of

lake volume in the euphotic zone for Lake Carlton.

Lake inshore habitat type, conductivity, and inshore mean depth were

obtained from Austen et al. (1993). Inshore habitat type was calculated

based on woody cover rating in the water along the shoreline. Cover

ratings were of 0 (no hard cover), 1 (between 1-33% hardcover), 2

(between 34-66% hardcover), and 3 (above 66% hardcover). The percentage

of shoreline covering habitat of each rating was used to estimate the

effects of inshore habitat type. The predictor for inshore habitat type

was obtained by multiplying the hard cover rating by the percent of

shoreline covering habitat of that rating to obtain a predictor weighted

for hard cover along the shoreline.

The range of the values of the response variable and the predictors used

are summarized in Table 6.
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3.1.2. Results

No trend in the residuals nor any relationship of the predictors with

the response variable were detected. The statistical power of the test

was 0.157 (Table 8). The ranges of the predictors were of 2694-3984

(growing-degree-day), 125-547 (conductivity), 0-2.8 (hard cover), 0.6-

4.3 (inshore mean depth), and 0.01-0.95 (percent lake in the euphotic

zone; Table 8).

3.2. Effects of Management Practices on Age-i Largemouth Bass.

3.2.1. Analytical Procedures

This section describes the analyses of the effects of largemouth bass

stocking, lake rehabilitation, water level manipulation, aquatic

vegetation control, and chemical fish removal on the age-i response

variable (Section 2.2.2; Figure 12). Each of the anthropogenic

predictors was analyzed separately because the same combination of

treatments rarely occurred in the same year at a lake. The source

database was filtered to extract those lakes which had received the

treatment (anthropogenic predictor) of interest. As a result, some lakes

were excluded from analyses of certain anthropogenic predictors. Data

from confounding years were discarded. Confounding years were those

years when management practices other than the one being analyzed had

detectable effects on the response variable and coincided with the

practice being investigated.

Not all possible treatment lags were tested for each anthropogenic

predictor. A lag 0 (Section 2.5.3) was used for fish removal and aquatic

vegetation control to address the effects of management practices during

the year the practice was conducted. A lag -1 was used for fish removal,

aquatic vegetation control, largemouth bass stocking, water level

manipulation, and lake rehabilitation to address the effects of
management practices one year after the practice was conducted. A lag -2

was used only for lake rehabilitation to address the effects of

management practices two years after the practice was conducted.

In addition to the environmental predictors (Section 2.2.1), a predictor

representing a lake effect was used. This predictor was of logarithm
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transformed absolute abundance of largemouth bass of ages one and older

caught per hour of fall electrofishing samples during years when no

anthropogenic predictors were implemented (response variable for the

lake productivity model, Section 2.2.1.4). The lake-effect predictor was

derived to investigate possible differences in treatment response among

lakes. No confounding between the lake effect predictor and potential

treatment effects was present because only control observations were

used to derive the predictor. Except for lake rehabilitation,

observations for the environmental predictors were of the year the

management practice was conducted (lag 0). For rehabilitation practices

observations for the environmental predictors were of one year following

the practice because largemouth bass was stocked during those years

(observations for the environmental predictors coincided with the year

the fish population was initiated). Spatial trends in the results were

identified by inspecting the results of analyses for the anthropogenic

predictor superimposed on a figure of the state of Illinois. Spatial

trends were only investigated when the lake effect was significant.

The analytical procedure on the lag 0, lag -1, and lag -2 delays
incorporating all lakes which received the treatment of interest was as

discussed in Section 2.5.

3.2.2. Results

The values of regression slopes from dichotomous predictors represent

changes from control years (coded as zero) to treatment years (coded as

one). The values reported are of logarithm of fish abundance. The

intercept value represents the predicted value for control years and the

slope represents the predicted value for treatment years. The slope,

therefore, represents the change of fish abundance after treatment. An

example: if the intercept is five and the slope one, the total change

(increase) following treatment years is of 255 fish per hour (e6 - e5 =

403 - 148; where e = 2.718).

3.2.2.1. Stocking

No detectable effects of largemouth bass stocking were found nor any

trend in the residuals observed. The statistical power of the test was

larger than 0.99 (Table 9, items 4 and 5).
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3.2.2.2. Lake Rehabilitation

The precipitation comnpound variable was significant (slope = -11.15; p-

0.0035) when analyzed in conjunction with lake rehabilitation lag -1

only. Significance was found for rehabilitation practices for both., lag

-1 and lag -2 treatments. Slopes of -1.48 (p =0.0009) for the lag -1

and of 1.97 (p < 0.0001) for the lag -2 in the regression models (r-

square = 0.17, power > 0.99 for both, the lag -1 and lag -2 treatments)

were observed (Tables 10 and 11, item 4). No trends in the residuals

were found for either treatment lags (Tables 10 and 11, item 5). Three

lakes with negative slopes out of 12 for the lag -1 and two with

positive slopes out of 13 for the lag -2 delay treatments were found

significant after lake-specific regression analysis (Tables 10 and 11,

item 6). No geogra phical patterns in the regression slopes following

treatments were observed for either treatment lag (Figures 14 and 15).

3.2.2.3. Water Level Manipulation

No detectable effects of lake water level manipulation were found nor

any trend in the residuals observed. The statistical power of the test

was larger than 0.99 (Table 12, items 4 and 5).

3.2.2,4. Aquatic Vegetation Treatments

Significance was found for aquatic vegetation lag 0 treatment only. A

slope of 0.55 (p= 0.0019) in the regression model (r-square,= 0.07) was

observed. The statistical power of the test for the lag 0 treatment was

larger than 0.99 and for the lag -1 treatment was of 0.548 (Tab les 12

and 13, item 4 and 5). No trends in the residuals were found for either

treatment lag (Tables 13 and 14, item 5). Lake-specific regression

analysis showed two lakes out of 20 with significant positive slopes

(Table 13, item 6). No geographical patter ns in the regression slopes

following aquatic vegetation lag 0 treatments were observed (Figure 16).

3.2.2.6. Fish Removal
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No detectable effects of fish removal practices were found nor any trend

in the residuals observed. The statistical power of the test for both

treatment lags was larger than 0.99 (Table 15 and 16, items 4 and 5).
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1. Key:

DEG
CON
HAB
INN
EUP

Average growing-degree-days (°C)
Average conductivity (mohs)
Shoreline habitat type
Inshore mean depth (meters)
Percent of lake volume in euphotic zone.

2. Model tested:

Average Ln(age-1 and older largemouth bass) = DEG + CON + HAB + IMN +
EUP + all first order interactions + error.

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis
Response 3.33 0.31 2.58 4.10 -0.06 0.37

DEG 3422.43 368.11 2694.05 3983.98 -0.52 -0.57

CON 326.57 110.88 125.00 547.00 0.48 -0.57
HAB 1.05 0.54 0.04 2.81 1.25 2.76
IMN 2.05 0.93 0.60 4.25 0.80 0.01

EUP 0.39 0.26 0.01 0.95 0.45 -0.69

4. Results:

Response variable: Average Ln(age-1
fall electrofishing sampling.

and older largemouth bass) based on

R squared = 0.09
22 degrees of freedom
Power = 0.157

Source
Regression
Residual

Variable
Constant
DEG
CON
HAB
IMN
EUP

Sum of Squares
0.23
2.44

Coefficient
3.44

<0.01
<0.01
<0.15
-0.04
<0.01

df
5

22

Mean Square
0.05
0.11

s.e. of Coeff
1.01

<0.01
<0.01
0.13
0.08
0.27

Table 8. Results for the static model for largemouth bass index of
abundance for 28 lakes (absolute number of age-1 and older fish caught
per hour of electrofishing sampling during years when no anthropogenic

87

F-ratio
0.407

t-ratio
3.42

-0.27
0.19
1.12

-0.54
0.01

p-value
0.0025
0.7922
0.8497
0.2729
0.5943
0.9907
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predictors were implemented) as a function of lake abiotic
characteristics (Section 3.1.2). (Continued).
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5. Residual plot:
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Table 8. (Concluded).
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [(precipitation*watershed area) *(1+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days (°C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)
STO - Predictor for largemouth bass stocking (fish/hectare)

2. Model tested:

Ln(Age-1) = ACP + PPT + GDD + CDD + SND + STO + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis

Response 4.94 1.59 0.00 8.78 -0.61 1,00
ACP 3.18 0.46 2.46 4.40 0.39 -0.09

PPT 0.04 0.05 <0.01 0.25 1.95 3.78

GDD 3462.67 440.85 1994.01 4468.04 -0.55 0.05

CDD 638.39 336.22 76.98 1750.00 0.79 0.45

SND 44.19 55.93 0.85 439.34 3.39 15.93

STO 20.47 92.38 0.00 1110.42 7.38 69.42

4. Results for the anthropogenic and
predictors:

significant environmental

R squared = 0.20
307 degrees of freedom
Power > 0.99

Source
Regression
Residual

Variable
Constant
ACP
STO

Sum of Squares
157.01
627.03

Coefficient
0.60
1.23

<0.01

df
2

307

Mean Square
78.51
2.04

s.e. of Coeff
0.52
0.15

<0.01

Table 9. Results for largemouth bass
regression analysis on the Ln(Age-1)
3.2.2.1). (Continued).

stocking following multiple
response variable (Section

91

F-ratio
38.4

t-ratio
1.15
8.31
1.57

p-value
0.2513

<0.0001
0.1171
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5. Residual plot:
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Table 9. (Concluded).
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [ (precipitation*watershed area)* (1+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days ( 0C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)
REH - Predictor for lake rehabilitation (dichotomous)

2. Model tested:

Ln(Age-1) = ACP + PPT + GDD + CDD + SND + REH + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis
Response 5.53 1.71 0.00 8.95 -0.99 1.78

ACP 3.48 0.33 3.02 4.10 0.33 -0.60
PPT 0.04 0.03 <0.01 0.23 2.18 7.78
GDD 3372.17 422.48 2205.98 4411.00 0.06 -0.45

CDD 615.60 308.83 91.00 1827.03 0.93 1.13
SND 41.57 44.23 1.27 265.89 2.35 6.36

REH 0.08 0.27 0.00 1.00 3.11 7.66

4. Results for the anthropogenic and
predictors:

significant environmental

R squared = 0.17
172 degrees of freedom
Power > 0.99

Source
Regression
Residual

Variable
Constant
ACP
PPT
REH

Sum of Squares
86.80

424.28

Coefficient
0.89
1.48

-11.15
-1.48

df Mean
3

172

s.e. of Coeff
1.24
0.36
3.77
0.44

95

Square
28.93
2.47

F-ratio
11.7

t-ratio
0.72
4.15

-2.96
-3.37

p-value
0.4739

<0.0001
0.0035
0.0009
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Table 10. Results for lake rehabilitation (Lag -1 treatment) following
regression analyses on the Ln(Age-1) response variable (Section
3.2.2.2). (Continued).
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5. Residual plot:

-4

t. .

prediottd

6. Lake-specific results (Ln(Age-l) = intercept + REH + error):

LAE N R- INTERCEP SLOPE SLOPE P-VALUE POWER
SQUARE T (0.1)

SAUK TRAIL 10 0.61 6.11 -3.98 0.0080 0.91

LAKE STOREY 9 0.49 6.56 -3.89 0.0357 0.74

DAWSON LAKE 17 0.34 6.33 -2.91 0.0132 0.83

LAKE LE-AQUA-NA 14 0.12 5.28 -2.33 0.2248 0.35

GLADSTONE LAKE 14 0.17 5.78 -1.88 0.1449 0.45

RED HILLS 13 0.10 5.66 -1.52 0.2960 0.29

RAMSEY LAKE 9 0.03 6.04 -0.59 0.6434 0.13

ARGYLE LAKE 23 <0.01 6.37 -0.09 0.9419 0.13

WASHINGTON COUNTY LAKE 21 0.01 5.27 0.37 0.7263 0.13

HORTON LAKE 18 0.01 5.81 0.68 0.6651 0.13

WALNUT POINT LAKE 14 0.03 5.35 0.98 0.5799 0.16

CARTHAGE LAKE 14 0.02 3.39 1.04 0.6496 0.14
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Table 10. (Concluded).
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [ (precipitation*watershed area)*(1+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days (°C)
CDD - Cooling degree days ( 0C)
SND - Snow depth (millimeters)
REH - Predictor for lake rehabilitation (dichotomous)

2. Model tested:

Ln(Age-1) = ACP + PPT + GDD + CDD + SND + REH + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis

Response 5.41 1.88 0.00 8.95 -0.94 1.30

ACP 3.44 0.33 3.02 4.10 0.56 -0.52

PPT 0.03 0.03 <0.01 0.23 2.18 8.00

GDD 3312.74 487.32 1994.01 4411.00 -0.17 -0.46

CDD 670.52 353.27 91.00 1819.00 0.81 0.37

SND 45.15 47.72 1.93 312.35 2.37 7.09

REH 0.08 0.27 0.00 1.00 3.21 8.30

4. Results for the anthropogenic and
predictors:

significant environmental

R squared = 0.17
182 degrees of freedom
Power > 0.99

Source
Regression
Residual

Variable
Constant
ACP
REH

Sum of Squares
109.11
538.13

Coefficient
-0.57
1.69
1.97

df
2

182

Mean Square
54.56
2.96

s.e. of Coeff
1.32
0.38
0.48

99

F-ratio
18.5

t-ratio
-0.43
4.44
4.11

p-value
0.6675

<0.0001
<0.0001
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Table 11. Results for lake rehabilitation (Lag -2 treatment) following
regression analyses on the Ln(Age-1) response variable (Section
3.2.2.2). (Continued).
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6. Lake-specific results (Ln(Age-1)= intercept + REH + error):

LAKE N R- INTERCEP SLOPE SLOPE P-VALUE POWER
I _ _ _I__ _I_ _SQUARE T I _ I_1_(0.1)

ARGYLE LAKE 22 0.00 6.24 0.28 0.8188 0.13

HORTON LAKE 17 0.00 5.89 0.31 0.8539 0.12

WASHINGTON COUNTY LAKE 21 0.04 5.25 0.90 0.4106 0.23

SAUK TRAIL 10 0.23 5.84 1.39 0.1558 0.43

LAKE LE-AQUA-N& 12 0.09 4.92 1.55 0.3411 0.25

RED HILLS 12 0.08 5.77 1.67 0.3748 0.24

LAKE NURPHYSBORO 11 0.25 5.37 1.91 0.1137 0.50

RAMSEY LAKE 8 0.49 5.58 2.03 0.0524 0.68

DAWSON LAKE 16 0.12 6.09 2.12 0.1851 0.38
LAKE STOREY 9 0.30 6.60 2.35 0.1249 0.49

ECCULLON LAKE 19 0.12 3.02 3.30 0.1517 0.44

WALNUT POINT LAKE 14 0.26 5.22 3.56 0.0599 0.62

CARTHAGE LAKE 14 0.21 3.51 4.32 0.1038 10.53
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Table 11. (Concluded).
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - (precipitation*watershed area) *(1+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days (oC)
CDD - Cooling degree days (OC)
SND - Snow depth (millimeters)
WLM - Predictor for water level manipulation (centimeters)

2. Model tested:

Ln(Age-1) = ACP + PPT + GDD + CDD + SND + WLM + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis
Response 5.19 1.63 0.00 8.83 -1.02 1.68

ACP 3.38 0.36 2.66 4.44 0.66 0.89
PPT 0.06 0.17 <0.01 1.79 6.85 51.98
GDD 3454.88 465.26 1994.01 4671.04 -0.23 0.05
CDD 630.93 332.97 32.00 1827.03 0.80 0.48

SND 40.21 47.67 1.17 370.96 2.86 11.03
WLM 20.75 65.07 0.00 457.2 3.99 16.56

4. Results for the anthropogenic and significant
predictors:

R squared = 0.14
407 degrees of freedom

environmental

Source
Regression
Residual

Variable
Constant
ACP
PPT
WLM

Sum of Squares
154.65
931.92

Coefficient
-0.91
1.81

-1.03
<0.01

df
3

407

Mean Square
51.55
2.29

s.e. of Coeff
0.79
0.24

0.496
<0.01

Table 12. Results for lake water level manipulation (Lag -1 treatment)
following multiple regression analysis on the Ln(Age-1) response
variable (Section 3.2.2.3). (Continued).
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F-ratio
22.5

t-ratio
-1.15
7.65
-2.08
1.60

p-value
0.2509

<0.0001
0.0378
0.1098
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5. Residual plot:
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Table 12. (Concluded).
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1. Key:

ACP - Average Ln(age-I and older largemouth bass)
PPT - [(precipitation*watershed area)* (1+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days ( 0C)
CDD - Cooling degree days (OC)
SND - Snow depth (millimeters)
VEG - Predictor for aquatic vegetation control (dichotomous)

2. Model tested:

Ln(Age-1) = ACP + PPT + GDD + CDD + SND + VEG + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosi

Response 5.62 1.55 0.00 8.83 -0.84 1.66
ACP 3.49 0.37 2.93 4.44 1.23 1.36
PPTI 0.08 0.22 <0.01 1.79 5.08 27.98
GDD 3480.48 370.42 2524.02 4671.04 0.08 0.23
CDD 592.59 336.02 32.00 1756.01 1.03 0.95
SND 37.08 47.22 1.68 439.34 4.23 26.16
VEG 0.41 0.49 0.00 1.00 0.37 -1.86

4. Results for the anthropogenic and significant environmental
predictors:

R squared = 0.07
295 degrees of freedom
Power > 0.99

Source
Regression
Residual

Variable
Constant
ACP
VEG

Sum of Squares
51.20

659.98

Coefficient
2.38
0.77
0.55

df Mean
2

295

s.e. of Coeff
0.90
0.23
0.18

square
25.60
2.24
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F-ratio
11.4

t-ratio
2.65
3.37
3.13

p-value
0.0085
0.0008
0.0019
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Table 13. Results for aquatic vegetation control (Lag 0 treatment)
following regression analyses on the Ln(Age-1) response variable
(Section 3.2.2.4). (Continued).

107



Database Management and Analysis of Fisheries in Illinois Lakes: Optimizing Fisheries Management (F-69-R Segments 10-12) Vol.2 (1999)

5. Residual plot:
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Table 13. (Continued).
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6. Lake-specific results (Ln(Age-1) = intercept + VEG + error):

LAKE N R-SQUARE INTERCEP SLOPE SLOPE P-VALUE POWE
T R

(0.1

RANDOLPH COUNTY LAKE 16 0.06 5.71 -1.07 0.3668 0.2
4

ARGYLE LAKE 16 0.03 6.31 -0.87 0.5349 0.1
7

SAUK TRAIL 16 0.11 6.22 -0.76 0.2098 0.3
6

LAKE STOREY 7 0.03 6.32 -0.56 0.7074 0.1
2

JONES STATE LAKE 10 0.01 5.19 -0.37 0.7683 0.1
1

RAMSEY LAKE 15 0.00 5.78 -0.20 0.8107 0.1
10

LINCOLN TRAIL LAKE 22 0.00 5.78 -0.02 0.9725 0.1
1

SHABBONA LAKE 7 0.02 6.01 0.23 0.7761 0.1
2

WELDON SPRINGS 22 0.02 5.45 0.35 0.4874 0.1
7

AUGUSTA LAKE 16 0.00 4.46 0.40 0.8238 0.1
0

LAKE CARLTON 15 0.04 6.03 0.49 0.5043 0.1
9

LAKE MURPHYSBORO 18 0.04 4.55 0.61 0.4364 0.2

BEAVER DAM LAKE 9 0.03 5.22 0.64 0.6345 0.1
3

DAWSON LAKE 20 0.05 5.78 0.68 0.3582 0.2

WALNUT POINT LAKE 19 0.10 5.29 0.96 0.1902 0.3
,_____. .. 8____________________________8

WEINBURG - KING LAKE #1 13 0.06 5.96 1.30 0.4030 0.2

SILOAM SPRINGS 18 0.10 4.88 1.39 0.1988 0.3
7

DOLAN STATE LAKE 9 0.15 4.13 1.59 0.3014 0.2
8

RED HILLS 21 0.29 4.58 1.83 0.0122 0.8

LAKE LE-AQUA-NA 9 0.44 4.16 3.00 0.0508 0.6

___________________________ _________________________________________________Q8
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Table 13. (Concluded).
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [(precipitation*watershed area)*(1+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days (°C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)
VEG - Predictor for aquatic vegetation control (dichotomous)

2. Model tested:

Ln(Age-1) = ACP + PPT + GDD + CDD + SND + VEG + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis
Response 5.62 1.48 0.00 8.83 -0.85 1.78
ACP 3.50 0.37 2.93 4.44 1.23 1.30
PPT 0.08 0.22 <0.01 1.79 5.10 28.21
GDD 3476.43 361.43 2524.02 4515.00 0.15 0.25
CDD 587.20 343.13 32.00 1756.01 1.05 0.86
SND 37.93 52.19 1.17 439.34 3.91 20.28
VEG 0.41 0.49 0.00 1.00 0.38 -1.85

4. Results for the anthropogenic
predictors:

and significant environmental

R squared = 0.03
295 degrees of freedom
Power = 0.768

Source
Regression
Residual

Variable
Constant
ACP
VEG

Sum of Squares
19.80

629.06

Coefficient
3.33
0.63
0.20

df Mean S
2

295

s.e. of Coeff
0.81
0.23
0.17

gquare
9.90
2.13

112

F-ratio
4.64

t-ratio
4.14
2.75
1.16

p-value
<0.0001
0.0063
0.2452
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Table 14. Results for aquatic vegetation control (Lag -1 treatment)
following multiple regression analysis on the Ln(Age-1) response
variable (Section 3.2.2.4). (Continued).
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5. Residual plot:
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Table 14. (Concluded).
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [(precipitation*watershed area)*(l+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days (°C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)
REM - Predictor for fish removal (dichotomous)

2. Model tested:

Ln(Age-1) = ACP + PPT + GDD + CDD + SND + REM + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis
Response 5.21 1.43 0.00 8.41 -0.73 1.40
ACP 3.28 0.30 2.58 4.04 -0.15 0.08
PPT 0.04 0.07 <0.01 0.48 3.58 13.73
GDD 3412.27 467.85 1994.01 4671.04 -0.03 0.00
CDD 594.80 352.02 32.00 1762.98 1.06 0.76
SND 40.29 49.59 1.32 370.96 3.24 14.71
REM 0.20 0.40 0.00 1.00 1.49 0.22

4. Results for the anthropogenic and
predictors:

significant environmental

R squared = 0.09
323 degrees of freedom
Power > 0.99

Source
Regression
Residual

Variable
Constant
ACP
REM

Sum of Squares
58.71

595.99

Coefficient
1.33
1.03
0.13

df
2

323

Mean Square
29.36
1.85

s.e. of Coeff
0.70
0.18
0.19

Table 15. Results for fish removal practices (Lag 0 treatment) following
multiple regression analysis on the Ln(Age-1) response variable (Section
3.2.2.5). (Continued).
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F-ratio
15.9

t-ratio
1.90
5.59
0.70

p-value
0.0577

<0.0001
0.4837
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5. Residual plot:
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [ (precipitation*watershed area)* (1+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days (*C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)
REM - Predictor for fish removal (dichotomous)

2. Model tested:

Ln(Age-1) = ACP + PPT + GDD + CDD + SND + REM + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis
Response 5.21 1.44 0.00 8.57 -0.91 1.72

ACP 3.28 0.31 2.58 4.04 -0.11 -0.01
PPT 0.04 0.07 <0.01 0.48 3.52 13.21

GDD 3421.26 481.49 1994.01 4671.04 -0.05 -0.09
CDD 607.96 355.74 43.99 1762.98 1.03 0.70

SND 41.23 51.72 1.32 370.96 3.11 13.28
REM 0.20 0.40 0.00 1.00 1.50 0.26

4. Results for the anthropogenic and
predictors:

significant environmental

R squared = 0.13
323 degrees of freedom
Power > 0.99

Source
Regression
Residual

Variable
Constant
ACP
REM

Sum of Squares
88.69

585.65

Coefficient
-0.36
1.69
0.14

df
2

323

Mean Square
44.35
1.81

s.e. of Coeff
0.80
0.24
0.19
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F-ratio
24.5

t-ratio
-0.45
6.95
0.74

p-value
0.6561

<0.0001
0.4576
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Table 16. Results for fish removal practices (Lag -1 treatment)
following regression analyses on the Ln(Age-1) response variable
(Section 3.2.2.5). (Continued).
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5. Residual plot:

.3

* . 3
* . ..

5.25

predicted

Table 16. (Concluded).
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Za = [1.33*Ln(1.636)+1.4] 2 (maximum

colonization)

Z5 = 4.22 m

depth of aquatic vegetation

Proportion of lake in the euphotic zone = 0.71

Figure 13. An example of plot relating depth and lake volume in the

euphotic zone between the surface and that depth. Data for Lake Carlton.
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(18 ha)

Arg
(39

Horton
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Carthag
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Figure 14. Lake-specific regression slopes and percent increase after

treatment of the Ln(Age-1) response variable after rehabilitation

practices (lag -1 treatments) . Signs indicate direction of changes.
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Le-Aqua-Na
(18 ha)
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Figure 15. Lake-specific regression slopes and percent increase after

treatment of the Ln(Age-l) response variable after rehabilitation

practices (lag -2 treatments). Signs indicate direction of changes (all

positive).
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Le-Aqua-Na
(18 ha)

Carlton
(31 ha)

Sauk

Argyle
(39 ha)

(2 ha)

Siloam
(24 ha)

Shabbona
(129 ha)

Dawson
- (64 ha)

Walnut
(24 ha)

(23 ha)

Randolph
(26 ha)

Murphysboro
(58 ha)

\/ Lincoln Trail
(57 ha)

ed Hills
(16 ha)

Dolan
(28 ha)

(39 ha)
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Figure 16. Lake-specific regression slopes and percent increase after

treatment of the Ln(Age-l) response variable after aquatic vegetation

controls (lag 0 treatments). Signs indicate direction of changes.
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CHAPTER 4: METHODS AND RESULTS FOR EVALUATING RECRUITMENT AT AGE-2

LARGEMOUTH BASS AND CHANGES IN LENGTH LIMITS ON ADULT LARGEMOUTH BASS

4.1. Recruitment at Age-2 as a Function of Environmental Factors

4.1.1. Analytical Procedures

The lake-effect and environmental predictors (Section 3.2.1), and the

analytical procedures described in Section 2.5 (general linear models)

were used to investigate effects on the age-2 response variable (Section

2.3). Age-1 largemouth bass was used as an additional predictor to

estimate the effect of age-i abundance on recruitment at age-2. The age-

1 predictor was the same as the age-I response variable (Section 2.3;

Figure 12). Recruitment was assessed using control years to avoid

confounding of potential biological or environmental effects with

management practices. The environmental predictors were lagged by one

year with respect to the response variable to correspond to the period

between age-1 and age-2.

The effects on natural mortality of the environmental variables used for

investigating recruitment were also investigated. The logarithm of the

ratio between the abundance of age-2 and age-1 fish was used as the

response variable expressing mortality between the age-1 and age-2

period (Hilborn and Walters 1992). Because fishing mortality of age-2

and younger fish is minimum (Miller 1984; Summers 1990; Gabelhouse 1994;

Howells et al. 1995; Martin 1995), if existent, the response variable

represents natural mortality. The age-1 predictor was not used when

investigating mortality.

4.1.2. Results

The abundance of age-2 was significantly correlated with the abundance

of age-1. A slope in the regression model (r-square = 0.44; power =

0.996) of 0.35 (p = 0.0004) was observed. No relationship between any

environmental predictor and age-2 fish abundance (Table 17, item 4.1)

nor any trend in the residuals (Table 17, item 5.1) were detected.

Similarly, natural mortality was not dependent on any of the

environmental variables tested (Table 17, item 4.2) nor any trend in the
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residuals were detected (Table 17, item 5.2). Natural mortality was,

however, density-dependent (Table 17,, item 4 * 2).

4.2. Effects of Changes in Length Limits

All anthropogenic predictors were dichotomous, coded as zero or one. The

intercept value represents the predicted value for control years and the

slope represents the predicted value for treatment years. The slope,

therefore, represents the change of fish abundance after treatment

(Section 3.2.2).

4.2.1. Analytical Procedures

changes in fish length limits were investigated using the adult-fish

response variable. Each of the length limit predictor was analyzed

separately. The source database was filtered in the same manner and

confounding years treated as described in Section 3.2.1. only lake

rehabilitation was used as a confounding treatment on the response

variable because it involves a total lake renovation, which may also

affect adult size fish. The same predictors referred to in Section 3.2.1

(environmental predictors and the predictor for lake-effect) and

analytical procedures described in Section 2.5 (general linear models)

were used (Figu1re 12). Lag 0 treatments were used for all changes in

length limit because harvest potentially produces an izmmediate effect on

adult fish abundance. Spatial trends in the results were identified as

described in Section 3.2.1.

The number of years needed to detect an effect on the respon se variable

following changes in fish length limits was estimated for length limit.

treatments only because length limits are in effect during a sequience of

years. Lakes wh ere length limit changes occurred consisted of a pre-

(300 mm length limit in effect) and post- (when any other length limit

described in Section 2.2.2.4 was in effect) treatment. A regression of

codctd seprteyfo a ch2lake. ReresioaalyeswerIcndute
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each addition of post-treatment observations, a new regression was

calculated and the slope with its significance value recorded. The

resulting trend in significance values was an indication of the length

in time needed for detection of effects, if any, of changes in length

limit. An alpha level of significance of 0.1 was chosen due to the low

number of observations associated with each lake (Section 2.5.4.2).

Similarly, only significant predictors from the multiple-lake model were

considered to allow for enough degrees of freedom.

4.2.2. Results

4.2.2.1. Change to a 350 mun Minimum Length

A slope of 0.59 (p < 0.0002) in the regression model (r-square - 0.057;

power = 0.989) was observed (Table 18, item 4). No trends in the

residuals were found (Table 18, item 5). Nine lakes with a positive

slope and one with a negative slope out of eighteen were found

significant after lake-specific regression analysis (Table 18, item 6).

No geographical patterns in the regression slopes following treatments

were observed (Figure 17). The time period necessary to detect an effect

following treatment ranged from zero to six years (Table 19).

4.2.2.2. Change to a 375 mm Minimum Length

Significance was found for changes to a 375 mm minimum length limit. A

slope of 0.99 (p = 0.0005) in the regression model (r-square = 0.114;

power = 0.888) was observed (Table 20, item 4). No trends in the

residuals were found (Table 20, item 5). Two lakes with a positive slope

out of seven (all positive) were found significant after lake-specific

regression analysis (Table 20, item 6). No geographical patterns in the

regression slopes following treatments were observed (Figure 18). The

time period necessary to detect and effect following treatment ranged

from zero to four years (Table 21).

4.2.2.3. Change to a 300 to 375 nun Exclusive Slot Length

Significance was found for changes to a 300 to 375 nun slot length limit.
A slope of 1.49 (p < 0.0001) in the regression model (r-squaare = 0.38;
power > 0.99) was observed (Table 22, item 4). No trends in the
residuals were found (Table 22, item 5). Four out of six lakes (all
positive) had significant positive slopes after lake-specific regression
analysis (Table 22, item 6). No geographical patterns in the regression
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slopes following treatments were observed (Figure 19). The time period
necessary to detect and effect following treatment ranged from three to-
ten years (Table 23).
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1. Key:

PPT - [(precipitation*watershed area) * (1+percent uncovered land)] / (lake
volume*volume development index)
GDD - Growing-degree-days (°C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)

2. Models tested:

Model 1: Ln(Age-2) = Ln(Age-1) + PPT + GDD +
interactions + error

Model 2: Ln(Age-2 / Age-1) = PPT + GDD + CDD
interactions + error

CDD + SND + first order

+ SND + first order

3. Summary statistics for response variables and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis
Ln(AGE 2/AGE 1) 0.12 1.01 -3.98 2.77 -0.91 4.07
Ln(AGE 2) 4.45 1,11 0.00 6.68 -1.13 3.14
Ln(AGE 1) 4.47 1.40 0.00 8.16 -0.01 1.03
PPT 0.04 0.06 <0.01 0.35 3.32 13.18

GDD 3457.90 489.16 2286.97 4339.03 -0.64 -0.14
CDD 552.79 378.24 43.99 1750.00 1.52 2.26
SND 36.65 80.03 1.42 439.34 4.01 15.80

4. Results:

4.1. Model 1:

R squared = 0.39
52 degrees of freedom
Power = 0.996

Source
Regression
Residual

Variable
Constant
Ln(AGE 1)
ACP
PPT
GDD
CDD
SND

Sum of Squares
28.97
44.77

Coefficient
1.21
0.34
0.31

-3.26
<0.01
<0.01
<0.01

df Mean A
6

52

s.e. of Coeff
2.18
0.09
0.36
2.17

<0.01
<0.01
<0.01
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Square
4.83
0.86

F-ratio
5.61

t-ratio
0.56
4.00
0.89

-1.50
0.89

-0.79
-0.52

p-value
0.5818
0.0002
0.3789
0.1395
0.3784
0.4350
0.6074
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Table 17. Results for recruitment at age 2 and natural mortality of
largemouth bass as a function of environmental variables (Section
4.1.2). (Continued).
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Scatter plot of Ln(age-2) versus Ln(age-1):

0.

<

Ln(Age-1)

4.2. Model 2:

R squared = 0.15
53 degrees of freedom
Power = 0.568

Source
Regression
Residual

Variable
Constant
ACP
PPT
GDD
CDD
SND

Sum of Squares
11.75
67.52

Coefficient
-3.21
0.07
0.52

<0.01
<0.01
<0.01

df Mean
5
53

s.e. of Coeff
2.64
0.41
2.63

<0.01
<0.01
<0.01

Results without non-significant predictors:

R squared = 0.25

Source Sum of Squares
Regression 18.46
Residual 55.28

Variable Coefficient
Constant 2.80
Ln(AGE 1) 0.37

df Mean Square
1 18.46

57 0.97

s.e. of Coeff t
0.42
0.08

Natural Mortality (Ln(age-2/age-l)) = 2.80 - 0.63*Ln(age-1)

Table 17. (Continued).
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Square
2.35
1.27

F-ratio
1.84

t-ratio
-1.22
0.18
0.20
1.94

-0.20
0.33

p-value
0.2288
0.8618
0.8452
0.0579
0.8401
0.7465

F-ratio
19

-ratio
6.68
4.36

p-value
<0.0001
<0.0001
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Table 17. (Concluded).
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [ (precipitation*watershed area)* (1+percent uncovered land)/(lake
volume*volume development index)
GDD - Growing-degree-days (°C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)
L35 - Length limit change to 350 nm (dichotomous)

2. Model tested:

Ln(Adult) = ACP + PPT + GDD + CDD + SND + L35 + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis

Response 5.06 1.49 0.00 8.04 -1.17 2.25

ACP 3.20 0.43 2.46 4.40 0.83 1.53
PPT 0.06 0.08 <0.01 0.48 2.43 7.18

GDD 3473.15 527.25 1994.01 4671.04 -0.20 -0.63
CDD 655.75 384.95 76.98 1827.03 0.91 0.31
SND 42.65 54.85 1.32 439.34 3.51 16.93

L35 0.38 0.48 0.00 1.00 0.51 -1.74

4. Results for the anthropogenic and
predictors:

significant environmental

R squared = 0.04
360 degrees of freedom

Source
Regression
Residual

Variable
Constant
L35

Sum of Squares
29.68

772.75

Coefficient
4.83
0.59

df
1

360

Mean Square
29.68
2.15

s.e. of Coeff
0.10
0.16

Table 18. Results for a change to 350 mm minimum length limit for
largemouth bass following regression analyses on the Ln(Adult) response
variable (Section 4.2.2.1). (Continued).
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F-ratio
13.8

t-ratio
49.6
3.72

p-value
<0.0001
0.0002
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5. Residual plot:

9

d

-4.

4.95 5.10 5.25 5.40

predioted

6. Lake-specific results (Log(Adult) = intercept + L35 + error):

LAKE N R- INTERCEP SLOPE SLOPE P-VALUE POWER
SQUARE T ( 0. 1)

LAKE CARLTON 22 0.33 3.65 2.00 0.0053 0.90
JONES STATE LAKE 26 0.25 3.74 1.92 0.0095 0.85

LAKE SHELBYVILLE 19 0.33 4.23 1.36 0.0100 0.86

DOLAN STATE LAKE 25 0.19 5.37 1.56 0.0302 0.73

WASHINGTON COUNTY LAKE 23 0.19 6.12 1.27 0.0355 0.69

CARLYLE LAKE 24 0.18 5.40 0.61 0.0403 0.69

LAKE LE-AQUA-NA 25 0.16 4.25 1.38 0.0472 0.65

RANDOLPH COUNTY LAKE 20 0.18 4.58 -1.20 0.0591 0.61

FORBES LAKE 6 0.55 4.89 2.01 0.0896 0.60

SAUK TRAIL 29 0.10 5.59 0.54 0.0993 0.52

PIERCE LAKE 17 0.12 3.38 0.97 0.1806 0.40

REND LAKE 11 0.19 5.80 0.70 0.1863 0.40

HOMER LAKE 11 0.17 4.62 0.87 0.2095 0.37

WALNUT POINT LAKE 23 0.07 4.35 0.91 0.2293 0.34

DEFIANCE LAKE 22 0.06 4.94 -0.84 0.2660 0.30

SHABBONA LAKE 11 0.10 5.28 0.70 0.3367 0.25
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RAMSEY LAKE 122 0.04 5.53 -0.71 0.3901 0.23
WOLF LAKE I 26 0.01 4.22 0.34 0.6342 0.14

Table 18. (Concluded).

145



'.4

%0

40

%D

C0

4c

C;

0

r4

C.,
0h
40
to

C;,

C40
%o

r-1-0"
C14

04

0

C.4

',4

'-4

cl

C4

C;,

In
in

fq
r4
C14

0h
0n
CI
M0
'.4

0w
0o

in

at

40

ClC
0f
%D

L)

C4

C;

'.4
In
C14

4ý

04

C.,

at
A

r"Mý"r"o-ol r-o-ml"---I-"--T

at

to

0

40

I.,

at

0w

w)
C;

U)

'.4

Ch

04.

v4

'4k

14

'.4

0%

40

'.4

40
%o

1.4

04

U)

V4

r;

04

C.,

C.,
I.

--"I
fn
in

0

C;
C14
0n

0

'4ý

C'

C4

0

04

0
0

'.D4

r4

CIO

C;
0n
M
WO

0n
M

'.4
4;
04
0*

%0
0

C.,

V4

In

V.4

%0
U)

'.4

U)

T.4

'.4

014

'.4

40

r4

'4

0

M

14

0i
a%,

'4

C4

In

40

C;

94
44
04

""M7

Ci

44

C4
a
C;

0l
cc

M4
0n
In

PC

M"M7

0
'4

in

C;
I

In
a

4ý

C1
cc

40

I

T.4

V4

C14
In

w4

I
A'hi

m

4ý
In

In

Mýl
in

C4

C;

ok

so

qf

%D

MMOMMTT- I

31
A

in

Ch
04

94
'4

.4

4ý

'a

0
"s

C;

94

I ---.i I--..iL...-j LýLýLý Lý Jý~ Lý 6mwý



i I'U

'T4
at

In

'4ý

to

fn

0;

3'b
ID
0
'.4

0

3%

0

3')

0

N
N
(I)

0

3')

3%

0

in

In

0w

C1

3%

0;

3%

cc

04

3%

04

In

0

'.4

10

10

In

3%

in
4n

tn

0

C14

In
In

0

in

04

0h

40%

In
in

Ný

Oh

in

en

C;

COh

OD
ri

3%
3%

%0

co

%0
Oh
M

I0)

0.4

1.4

'.4

14

W4

I0
In
in
0

0

N

3.)

0

0

'.4
43)
0
0

0

U)

'.4

0

(N

C

2

C

C

4-
C

(V
C

C

(V

C

2
(V
C
(V

(V
£
(V
(V

C

enI

in

'44

0;

C14.~0

44 pt t4
to a0 -H %-

C; 010 0 i4

Id 0 b) 13
44ri r-I

Oh0

4; 44 0
%D 0 0 0 or
In u-I U
co 0 44 -r

74 Id u-4ur-4 -10
to4 f 0 1 -H

o ImPA 4)3

14% 0 A0 t

0o 0.4 -4 $4

$4 r-I J3144

i4.) $4
r-1 44 00
:3 0 44A

.c0 00

0t4.14 0

0 0Q 04

44.14A$ CO
0 q0Q.94

V A

4)4)m

4) A wb1

'4) 04)to
-14 $4 -A

v-I 0Ok

S44

.14 b) U0 M0
I0 W$-A V

OH 44

$4 90 0

~0 to00
44 00.14

00 ir4id£e$



Database Management and Analysis of Fisheries in Illinois Lakes: Optimizing Fisheries Management (F-69-R Segments 10-12) Vol.2 (1999)

1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [(precipitation*watershed area) *(l+percent uncovered land)]/(lake
volume*volume development index)
GDD - Growing-degree-days (°C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)
L37 - Length limit change to 375 mm (dichotomous)

2. Model tested:

Ln(Adult) = ACP + PPT + GDD +
+ error

CDD + SND + L37 + first order interactions

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis
Response 5.50 1,38 0.00 8.00 -1.30 2.87

ACP 3.40 0.26 2.95 3.80 -0.14 -0.98
PPT 0.03 0.22 <0.01 0.12 1.46 1.89
GDD 3403.75 449.95 1994.01 4175.03 -0.84 0.49
CDD 561.84 362.36 32.00 1750.00 1.00 0.39

SND 39.41 50.87 1.17 370.96 3.27 15.35

L37 0.26 0.44 0.00 1.00 1.08 -0.84

4. Results for the anthropogenic and significant
predictors:

R squared = 0.10
116 degrees of freedom
Power = 0.888

environmental

Source
Regression
Residual

Sum of Squares
22.48

201.50

df
1

116

Mean Square
22.48
1.74

Coefficient
5.24
0.99

s.e. of Coeff
0.14
0.28

Table 20. Multiple-lake and lake-specific results for a change to 375 mm
minimum length limit for largemouth bass following regression analyses
on the Ln(Adult) response variable (Section 4.2.2.2). (Continued).
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Variable
Constant
L37

F-ratio
12.9

t-ratio
37.1
3.6

p-value
<0.0001
0.0005
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5. Residual plot:

a

d

-2

-4

5.25 5.580 5.75

predicted

6.08

6. Lake-specific results (Log(Adult) = intercept + L37 + error):

LAKE N R- INTERCEP SLOPE SLOPE P-VALUE POWN
SQUARE T R

(0.1

MCCULLOM LAKE 20 0.26 3.62 1.96 0.0229 0.77
LAKE OF THE 17 0.28 4.70 1.58 0.0306 0.7
WOODS 4

BEAVER DAM LAKE 6 0.49 5.43 1.07 0.1214 0.5
3

RED HILLS 26 0.09 5.57 1.19 0.1473 0.4
5

WELDON SPRINGS 11 0.21 5.75 0.60 0.1535 0.4
3

LAKE SARA 14 0.16 6.12 0.64 0.1619 0.4
3

LAKE MURPHYSBORO 24 0.00 5.63 0.15 0.7465 0.1
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Table 20. (Concluded).
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1. Key:

ACP - Average Ln(age-1 and older largemouth bass)
PPT - [(precipitation*watershed area)*(1+percent uncovered land)]/(lake
volume*volume development index)
ODD - Growing-degree-days (°C)
CDD - Cooling degree days (°C)
SND - Snow depth (millimeters)
LSL - Length limit change to a 300-375 mm slot limit (dichotomous)

2. Model tested:

Ln(Adult) = ACP + PPT + GDD + CDD + SND + LSL + first order interactions
+ error

3. Summary statistics for the response variable and predictors:

Variable Mean StdDev Min Max Skewness Kurtosis

Response 4.63 1.65 0.00 7.59 -0.91 0.91

ACP 3.54 0.19 3.26 4.04 0.90 1.51

PPT 0.03 0.02 <0.01 0.08 1.08 0.78

GDD 3349.76 325.69 2623.97 4494.02 0.54 0.33

CDD 613.46 261.15 79.97 1520.02 0.81 1.24

SND 40.74 41.27 1.42 265.89 2.75 9.41
LSL 0.31 0.46 0.00 1.00 0.84 -1.29

4. Results for the anthropogenic and significant environmental
predictors:

R squared = 0.38
118 degrees of freedom
Power > 0.99

Source
Regression
Residual

Variable
Constant
ACP
LSL

Sum of Squares
125.62
201.48

Coefficient
-8.31
3.53
1.49

df
2

118

Mean Square
62.81
1.71

s.e. of Coeff
2.18
0.62
0.26

Table 22. Results for a change to a 300-375 mm slot length limit for
largemouth bass following regression analyses on the Ln(Adult) response
variable (Section 4.2.2.3). (Continued).
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F-ratio
36.8

t-ratio
-3.81
5.72
5.74

p-value
0.0002

<0.0001
<0.0001
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5. Residual plot:

1.5

a A

S
s

d

s-1.5
s

-3.9

predicted

6. Lake-specific results (Ln(Adult) = intercept + LSL + error):

LAKE N R- INTERCEPT SLOPE SLOPE P-VALUE POWER
________SQUARE ______ ( 0.1)

GLADSTONE LAKE 24 0.35 4.32 1.49 0.0023 0.94

MILL CREEK LAKE 11 0.52 3.27 2.52 0.0120 0.86

ARGYLE LAKE 30 0.20 4.31 1.41 0.0132 0.82

DAWSON LAKE 24 0.18 4.20 1.57 0.0376 0.69

LAKE STOREY 10 0.10 6.29 0.44 0.3672 0.24

SILOAM SPRINGS 22 0.02 3.14 0.99 0.5062 0.17
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Table 22. (Concluded).
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Figure 17. Lake-specific regression slopes and percent increase after

treatment of the Ln(Adult) response variable after changes from a 300 mm

to a 350 mm minimum length limit. Signs indicate direction of changes.
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Figure 18. Lake-specific regression slopes and percent increase after

treatment of the Ln(Adult) response variable after changes from a 300 mm

to a 375 nmm minimum length limit. Signs indicate direction of changes.
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Figure 19. Lake-specific regression slopes and percent increase after

treatment of the Ln(Adult) response variable after changes from a 300 mm

minimum length to a 300-375 mm slot limit. Signs indicate direction of

changes.
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CHAPTER 5: DISCUSSION

This chapter includes the discussion of the effects of the environmental

and anthropogenic predictors on the response variables tested in

Chapters 3 and 4 (Figure 20), and the recommendations for future

research for sport fisheries management.

5.1. Environmental Effects

There was little evidence of an effect on largemouth bass abundance of

the environmental factors tested. The null results are an indication of

either untested environmental factors playing a role in determining

largemouth bass abundance or the absence of a single or few important

factors operating at all times as major determinants of fish population

fluctuations in abundance.

5.1.1. Precipitation

There was supporting evidence in this work that increases in

precipitation resulted in increases of water level and turbidity, but no

supporting evidence that those factors affected largemouth bass

abundance. The compound variable including precipitation did not explain

changes in the response variable. The potential effects of soil type,

land use practices, and the duration of water level changes were

probably too small to be detected with the data in this work. In many

analyses the predictor incorporating precipitation was not

representative of the total possible values after lake selection for the

anthropogenic predictors. This might have affected the results because

the effects of extreme values for the predictor could not be estimated.

High precipitation events are usually preceded or followed by strong

winds (Coles 1970), which may increase water turbidity in lakes. A low

nesting success and low egg survival has been associated with high

turbidity and strong wind erosion (Kramer and Smith 1962; Cross 1967;

Eipper 1975). Nest success and egg survival, however, may not translate

into an increase in young fish abundance. The potential effects of lake

turbidity due to precipitation events will be long term (>1 year) only

if there is a cascading effect from nest success, to egg, to young fish,
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and finally to age-1 abundance. Even though most of the results herein

suggest no long term effects of precipitation on fish, short term

effects on young fish should not be ruled out (Werner et al. 1977;

Martin et al. 1981; Jackson et al. 1982).

5.1.2. Growing-degree-days

The expected effect of growing-degree-days was of an increase in

survival of largemouth bass with an increase in temperature experienced

by fish. This was not observed after any analyses. The results suggest

that growing-degree-days either does not affect growth or that

differences in growth among young largemouth bass due to total

temperature experienced are too small to influence survival (therefore

abundance) to an extent to be detected by electrofishing samples.

Studies addressing the effects of temperature on fish abundance are more

common than studies on the effects of growing-degree-days, possibly

because the effects of growing season are not as immediately apparent as

extremes in temperature. Studies of the effects of growing-degree-days

and temperature on fish are usually short term (Hall and Ehlinger 1989;

Fox and Keast 1990, 1991) or done on few systems (lakes or streams)

(Moore 1942; Larimore et al. 1959; Johnson 1965; Hall and Ehlinger

1989). Long term studies within multiple systems are rare (Casselman and

Harvey 1975). Causation is more difficult to defend in one-system

studies and short term effects may be misleading. Studies limited to a

year are, therefore, not conclusive. Studies with at least two years,

preferably done in more than one system, may start to give some insight

into temperature-related effects on fish.

Beamesderfer and North (1995) in a large-scale study of some

environmental factors on growth and mortality rates of largemouth bass

found air temperature, latitude, and growing-degree-days to correlate

with fish mortality rates. Average regional values for the environmental

predictors were used, making it impossible to attribute the correlations

to fluctuations in weather. Fahy (1980) reported length of growing

season to be most important in determining growth of sea trout during

the first year. Growth in later years was less susceptible to changes in

length of growing season, suggesting a short-term, non-persisting

effect. The effects of growing-degree-days on fish may go undetected in
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long term studies due probably to density-dependent compensatory

mechanisms operating on fish populations.

Temperature may also influence feeding behavior of fish. Shift to a

piscivorous diet of largemouth bass has been correlated with growth

(Summerfelt 1975; Coutant and Angelis 1983; Olson 1996) and growth with

survival through the first winter (Eipper 1975; Coutant and Angelis

1983; Gutreuter and Anderson 1985). Olson (1996) observed average

temperature in the summer to positively influence shift to piscivory of

largemouth bass. Cooler temperatures throughout summer months produced a

delay in spawning and a decrease in growth. The shift to piscivory was

strongly related to size of largemouth bass. Smaller fish persisted on a

diet consisting of macrobenthic organisms, which was the attributed

cause of the observed slow growth (Olson 1996).

Physiological and feeding responses to temperature may be more complex

and subtle than electrofishing data can detect. Investigating the

effects of temperature or temperature experienced on a single species

may further add to the difficulties because potential effects may be

closely linked to or even masked by the availability and quality of prey

(Olson 1996).

5.1.3. Cooling Degree Days and Snow Depth

No decreases in largemouth bass abundance were observed following cold

years or years with high snow cover. Results for cooling degree days and

snow depth suggest little or no effect on largemouth bass overwinter

mortality. The power of tests involving cooling degree days and snow

cover amount was high, lending further support to the above conclusion.

The adaptation of largemouth bass to winter conditions may have

accounted for a lack of effect of snow depth. Largemouth bass oxygen

requirements decrease with a decrease in water temperature due to a

lowering in metabolism. A reduction of metabolism may reduce largemouth

bass overwinter mortality, which may have accounted for the results.

Mortality of fish due to low dissolved oxygen have mostly been reported

for small, shallow (<1 m) eutrophic lakes, with rich vegetative cover

(Cooper and Washburn 1949; Casselman and Harvey 1975; Magnuson et al.

1985). Lakes in Illinois, although eutrophic, are usually deeper,

possibly making areas with oxygen too low for fish survival rare. An
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exception is Timber Lake, a small lake (12 hectares) in central Illinois

that has suffered complete largemouth bass mortality (Bayley, personal

communication). Laboratory experiments suggest largemouth bass to be

adapted to the low temperature regimes prevalent during winter months in

Illinois lakes (Guest 1982; Coutant 1975). Direct effects of low

temperature on largemouth bass populations are, therefore, probably

negligible, if at all present.

5.1.4. Lake Largemouth Bass Index of Abundance

The majority of the results in this dissertation were indicative of

differences in largemouth bass abundance among lakes. Growing-degree-

days, percent of lake volume in the euphotic zone, lake conductivity,

shoreline habitat type, and lake inshore mean depth, however, did not

explain those differences and the importance of abiotic factors

determining largemouth bass productivity in Illinois lakes remains

unanswered, but nontheless is shown here to be secondary to several

management effects.

Studies have had inconsistent success detecting environmental effects on

lake productivity (Prepas 1983; Kerr and Ryder 1988; Downing et al 1990;

Downing and Plante 1993). A primary example of a model relating abiotic

factors to fish yield in lakes is the morphoedaphic index (Ryder 1965,

1982; Ryder et al. 1974). The model has been applied with good success

to a variety of lakes possibly because estimates of yield of a

combination of many species were made. If year to year fluctuations of

the abundance of aggregate species tend to fluctuate less than that of

single species (Kerr and Ryder 1988), the use of indices for single

species will yield poorer predictions. Predicting a single species such

as largemouth bass, therefore, is more difficult with abiotic factors

alone.

Another factor potentially influencing the poor predictive ability

observed herein is the narrow spatial range of lakes compared to that of
lakes in most other studies on fish production. Oglesby (1977) found

phytoplankton standing crop (range of 12 - 3986 gC/m 2 /year) to correlate

with fish yield (range of 0.0033 - 16.1 gC/m 2 /year) in 19 lakes located

from the equator to north temperate latitudes. Downing and Plante (1993)

in a study of factors affecting production of fish in 38 lakes worldwide

found air temperature (mean annual temperature range between -9 and 25

168



Database Management and Analysis of Fisheries in Illinois Lakes: Optimizing Fisheries Management (F-69-R Segments 10-12) Vol.2 (1999)

*C) and lake trophic status (measured as algal production and total

phosphorous; 0.7 - 881 gC/m 2 and 3 - 9850 mg/L range, respectively) to

correlate with fish production. Downing et al. (1990) found fish

production to correlate with phytoplankton production and total

phosphorous in 20 lakes worldwide. Similarly, Schlesinger and Regier

(1982) have observed mean annual air temperature to explain over 70% of

maximum sustainable yield of commercial species from 123 natural lakes

between 620N and 150S, again suggesting spatial scale to largely

determine potential for detecting high effects. Temperature and factors

related to primary production seem to be more strongly correlated with

lake productivity. The largest distance between lakes in this

dissertation was less than 400 kilometers with small differences in

elevation, which is negligible compared to lakes situated on different

hemispheres and continents. The range of the predictor for growing-

degree-days was probably too narrow to detect any trend in productivity

for largemouth bass. Additionally, surrogate variables were .used to

address primary production (such as percent of area in the euphotic zone

and conductivity), which might have lowered the predictive power of the

static model tested here.

Other abiotic factors have been observed to be correlated with fish

productivity in lakes, such as total dissolved solids (Ryder 1965;

Matuzek 1978), total phosphorous (Downing et al. 1990), and particle

size (Sheldon et al. 1972). Similarly, several biotic factors

influencing lake productivity have been explored by other researchers.

Bottom fauna (Matuzek 1978), phytoplankton (Oglesby 1977; Jones and

Hoyer 1982; Downing et al. 1990), zooplankton (Mills and Schiavone

1982), and macrobenthos (Hanson and Leggett 1982) have been observed to

correlate with fish productivity. These variables may aid in explaining

variation in largemouth bass productivity from Illinois lakes. Most of

those variables, however, are expensive to collect on a regular basis.

If differences in productivity are constant and recognized, management

for largemouth bass may still be tailored according to those

differences.

The results from the static model for lake productivity do not

necessarily support uniform management protocols, such as statewide

regulations. The differences among lakes exist, but were not explained.

The observed differences in largemouth bass abundance or any other
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target species for management may be used for devising lake-specific

management, if persistent from year to year.

5.1.5. Recruitment at Age-2 Largemouth Bass

Age-2 largemouth bass abundance only correlated with age-1 fish. The

correlation coefficient was low, but the slope not negligible, was

highly significant, and had high statistical power. These are

encouraging results, given the high variability common in the data used

for this dissertation. The results indicated that fisheries managers may

be able to use the abundance of age-1 largemouth bass to estimate the

strength of year-class entering harvestable ages. The results addressing

mortality are evidence that natural mortality is density dependent, at

least between the age-1 and age-2 period and that prediction of year-

class strength from estimates of age-1i fish is promising.

Fisheries scientist have traditionally attempted to relate young fish

abundance to year-class strength of harvestable fish (Gulland 1965;

Goodyear and Christensen 1984; Peterman et al. 1988; Myers and Cadigan

1993; Mertz and Meyers 1995), which has been recognized to be largely

unsuccessful (Goodyear and Christensen 1984; Bradford 1992; Mertz and

Meyers 1995). Some successful cases where correlations were found were

not repeated with new data obtained at later times (Saville 1959;

Baranekova 1960), suggesting some correlations to be spurious or

confounded with untested factors.

This work differed from most other works in that age-i fish abundance

was used in predicting recruitment at age-2. Most other investigators

attempted to explain recruitment using age-0 fish as explanatory

variables. The success in detecting a relationships between age-i and

age-2 largemouth bass may have stemmed from the fact that age-1 fish

fluctuations are less sensitive to biotic and abiotic factors than age-0

fish. Another possibility for the detection is that the relationship

becomes increasingly linear when older fish are used. The mechanisms

operating between age-0 and age-i fish may be more complex than current

models describe. There may be a critical time during the first year

which determines recruitment to older ages (Hjort 1926; Ricker 1954;

DeAngelis et al. 1993). Age-0 fish populations would appear to fluctuate

erratically due to the critical period, whereas age-2 and older fish
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abundance would fluctuate with respect to the abundance in the previous

year in a more linear fashion. Age-1 fish, therefore, may provide a

means to predict year-class strength of fish recruiting to harvestable

sizes and provide an additional alternative for devising management

plans, such as defining what numbers of fish are allowed to be

harvested.

5.1.6. Conclusions

Environmental effects on fish are usually detected in small, shallow

lakes or streams (Larimore et al. 1959; Tonn and Paszkowski 1986;

Crivelli and Britton 1987; Fox and Keast 1990, 1991). Shallow waters

tend to offer little regufia under extreme environmental conditions and

are more readily affected by changes in weather, making severe drought,

high temperatures, and extreme winter conditions immediately apparent.

When fish populations increase (due to more habitat or prey) as a

response to decrease due to a stressing factor in the past, however, the

effects of the stressing factor on fish will disappear at a later time

(Larimore 1959 et al.; Serns 1982; Davaine and Beal 1992).

Larimore et al. (1959) in a study of the effects of temperature on fish

in Smith's Branch, Illinois, during the years of 1951-54 reported high

mortalities during 1953, a year with exceptionally high temperatures.

However, the original species assemblage was reestablished after 1954,

suggesting the observed declines in fish to be of short duration. A

strong immediate effect on young fish may not be persistent for longer

than a season, making the temperature-related effects of little impact

on long term (>1 year) fish abundance. Non-persisting effects of

temperature on fish abundance have been reported for sea trout (Salmo

trutta) populations in the Kereguelen Islands. A correlation between

temperature and fish population density was not presistent (Davaine and

Beal 1992). Similarly, Serns (1982) found summer water temperature to be

correlated with only young smallmouth bass abundance and not persistent.

The results should be taken with caution due also to the fact that some

environmental variables tested were indirectly related to lake water

conditions. The compound variable incorporating precipitation, land use

practice, watershed area, and lake vloume was to represent a combination

of duration of water level change, and input of solids and water to

lakes. Precipitation, however, was not a direct measure of water level
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change. Either the correlation between water level and precipitation did

not hold for lakes other than the three shown in Figure 4 (Carlyle Lake,

Lake Shelbyville, and Rend Lake) or the effects as postulated in Section

2.11.1. are of short duration, if existent. Ideally, environmental

variables measured from within each lake should be chosen. The fact that

climatic information was used as a surrogate for lake conditions might

have inflated residual variance to an extent as to prevent the detection

of the predictors analyzed. The use of environmental data more closely

linked to the lakes of study would make results more believable, if not

more informative. Similarly, if biological factors were considered, the

effects of abiotic variables might have become more clear. Considering

biological factors may separate the variability due to competition and

predation to an extent to enable detection of environmental effects on

fish abundance.

Even though there is no evidence for an effect on fish abundance of the

environmental variables tested, that is not to say that data on

environmental variables are of secondary need. Environmental variables

may be useful for aspects not related to fish abundance, such as

estimation of catchability for sampling gears because catchability is a

function of environmental factors (Simpson 1978; Bayley and Austen 1987;

Reynolds 1996). Estimates of population sizes may be conpared across

systems when corrections for catchability are made. Similarly, more

accurate catchability estimates may be obtained when based on yearly

observations, instead of lake averages, of some abiotic factors. More

accurate correction factors for catchability may increase the

sensitivity of electrofishing sampling data, which may lead to more

detecting power of the effects of environmental factors.

5.2. Anthropogenic Effects

5.2.1. Largemouth Bass Stocking

The survival of stocked largemouth bass may be a function of

environmental factors prevailing during stocking and during the first

winter following stocking events. Largemouth bass is a naturally

reproducing species in Illinois. Stocking is done with the intention to

increase the number of largemouth bass or to maintain a pre-existing

population size in a lake. Stocked largemouth bass is usually of young

fish. As suggested elsewhere, mortality of stocked largemouth bass is
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may never be validated and the use of public fund supporting stocking

quaestioned*

5.2.2. Lake Rehabilitation

Lake rehabilitation is the most extreme management practice done in

Illinois. A substantial and many times complete drop of water level,,

followed by chemical or physical fish removal may leave few, if any,

survivors. When the water comes to normal pool-levels, an intensive

stocking is done to restart fish populations. Due to the extreme results

and the sometimes intensive cost and labor of this practice, it is not

often done.

As would be expected, lake rehabilitation produced the highest effects

on fish abundance compared to the other management practices tested. An

increase in fish abundance following a water level reduction has also

been reported elsewhere (Hill 1980; Pierce et al. 1965). Compared to

control years, age-i largemouth bass abundance declined the year after

rehabilitation events, because mostly stocked young fish might have been

present, and increased two years after the event, possibly because of

higher survivors of fish. These results are suggestive of a decline of

largemouth bass, possibly of all sizes, during the practice of lake

rehabilitation, followed by an increase in young fish due to stocking in

the next year, which then translated to a higher number of age-i

largemouth bass two years after lake rehabilitation events.. Lake-

specific analyses for the lag -2 model showed all lakes responding to

treatment in the direction expected, lending credence to the results.

The results of the lake-specific regression slopes for both lag -1 and

lag -2 treatments indicated differences among lakes in response to

treatments. Some lakes in the lag -1 treatments showed presence of age-i

largemouth bass (evidenced by a positive slope), possibly due

eradication not being complete. Lakes where a complete eradication was

not effected did not show any different pattern of response after the
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The change in the water level of a lake is primarily done to increase

crowding of fish, which helps the elimination of excess of certain fish

through predation, temperature, and oxygen stresses. This practice is

more commonly done during the summer, but fall manipulations are also

observed.

The absence of effects on largemouth bass suggest that water level

manipulation practices as done in Illinois are ineffective for managing

largemouth bass population abundance. Presence of effects on fish after

water level manipulation have more commonly been reported to be after

over six months (Pierce et al. 1965; Lantz et al. 1967; Hill 1980;

Paller 1997). Man-made water level changes are of short duration (few

weeks) in Illinois, which may explain its weak effects on fish.

A no-effect situation was observed possibly because water level changes

are often done during late summer and early fall in Illinois. When water

levels are dropped with the purpose of increasing predation on excessive

young fish, it may be more effective when done during spawning periods

(Shields 1957). A combination of low and high water levels may even

produce better results. A year of low levels followed by a year of

flooding may enhance growth and survival of fish (Aggus and Elliott

1975). As it is done now in Illinois, water level manipulations do not

produce any detectable change in age-i largemouth bass numbers, and,

when done for managing fish, should be reconsidered as to its timing and

duration.

5.2.4. Aquatic Vegetation Control

The positive effects of aquatic vegetation control observed from the lag

0 model are largely due to a few lakes with a high increase in

electrofishing catches after reductions in aquatic vegetation along the

shoreline. One quarter of the lakes was in the opposite direction as

detected significant in the regression model incorporating all lakes.

Electrofishing catchability has been reported to be an inverse function
of vegetative cover (Bayley and Austen 1987). Change in catchability,

therefore, is one possible cause of the observed increase in age-1 fish

during years when aquatic vegetation controls were implemented. If

aquatic vegetation is reduced, fish are more easily noticed during

sampling procedures, which may have accounted for the observed increase

in age-i fish.
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The main reason for controlling aquatic vegetation in Illinois lakes is

to improve lake recreational use by creating access lanes, opening

fishing areas, and freeing shoreline for swimming. This practice is not

intended to have effects on fish. The results, however, indicate a

possible effect of vegetation manipulations on age-1 largemouth bass and

possibly on angling.

5.2.5. Fish Removal

Effects from fish removal are commonly detected on fish growth or

abundance only when intensively done (Keith 1967; Beckman 1950; Jackson

1966) and are many times done in conjunction with different techniques

(Keith 1967). The effects of partial, less intense fish removals as

examined in this dissertation are not reported.

Fish removal in Illinois is done mainly to control excess of young

sunfish, especially bluegill and is mostly done with rotenone or

antimycin. Fish poisoning is not aimed at adult fish and may not affect

them (as suggested herein). The benefits (control of excessive young

fish) were not tested in this dissertation because no data were

available pertaining to the pre- and post-treatment quantity of young

fish. Regular estimates of young fish done before and after treatment

may provide information as to the short-term efficacy of fish removal

practices in reducing young fish abundance.

5.2.6. Changes in Largemouth Bass Length Limits

Implementations of fishing regulations are done in Illinois primarily to

improve angling. Lakes with persisting excessive numbers of small fish

are strong candidates for becoming subject to regulations. Regulations

are press events, in that they tend to persist over longer time periods
compared to other management actions. The effects of regulations,

therefore, tend to yield stronger results than the more cosuon one-time

or occasional management events.

More restrictive fishing regulations as to the allowable minimum size of

harvestable fish increased fish abundance as shown by the relationship
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between fish catch-per-effort and regulation type (almost twice an

increase for a change to a 350 mm minimum length compared to an increase

of almost three times and over four times for a change to a 375 mm

minimum length and to a 300-375 mm exclusive slot length limit,

respectively). The results are in agreement with other studies (Eder

1984; Hoff 1995; Wilde 1997). The results of regressions analyses

incorporating All lakes were in agreement with the statistically

significant results from lake-specific analyses. Fishing regulations are

one of the most used management tools in the US fisheries sector and are

becoming increasingly important (Johnson and Martinez 1995; Mather et

al. 1995). Effects in agreement with the expectations of fisheries

managers and the low cost of regulation implementations should keep this

practice a preferred choice for managers.

The effects of length limits are closely dependent on fishing pressure.

Paragamian (1982) reported a depression in largemouth bass abundance due

to high fishing pressure following implementation of a 350 mm length

limit. An increase in the numbers of catchable fish, as suggested by

this work, is evidence of fishing pressure not being too high to depress

fish of harvestable sizes. The observed increases in fish abundance

following length limit changes might not have happened under a more

intense fishing pressure regime following the regulation (or,

conversely, under very low fishing intensity). Current Illinois

regulations aiming to control fishing pressure are based on fish quotas

for individual anglers. Instead, fish quotas for lakes need to be

implemented to limit potential overfishing and a consequent reversal of

the benefits following size limits. Fishing pressure was not able to be

included in this analyses due to only few lakes presenting such data,

but should be considered an important factor determining the benefits of

fishing regulations, especially with the increasing efficiency of

anglers (Noble and Jones 1993).

The number of years necessary to detect the effects of changes in length

limit greatly varied among lakes. The low number of observations within
lakes and the high background variation in adult largemouth bass

abundance was probably the cause of the variable results. In some

occasions, the significance observed in one year was not retained at

later years, again suggesting that fluctuations in adult fish are high

compared to the observed increase in the abundance at individual lakes.
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Within-lake unexplained fluctuations of abundance in adult fish may be

reduced if data for fishing pressure is incorporated.

5.2.7. Conclusions

Results from the anthropogenic component are support for some management

practices having an effect on largemouth bass abundance. Stronger

effects for extreme practices (lake rehabilitations) and practices with

effects over multiple years (changes in length limits) were associated

with the highest effects. The results support the fact that managers

have control over fish populations and, as such, striving to optimize

management using the methods tested here is justified. Lake-specific

results, although not always in close agreement with the results of

regressions incorporating all lakes, suggest the outcome of management

practices to be lake dependent. In summary, the outcome of some

management practices are of a strong enough effect to be detected by

electrofishing data from field samplings and in agree with expectation

from theory.

It is disappointing to realize that spatially and tenporally broad scale

data such as those used herein only detects major effects on fish. It

raises the question of whether the quality of our data collection is

poor or intrinsic variations in fish are too sensitive to even minor

factors or too difficult to track with current methods. Combining data

from different sources may help explaining some of the variation of fish

abundance. A combination of electrofishing with other sampling gears and

with creel data may increase the sensitivity of the data available to

managers and researchers such that the effects may be established for

those management practices for which no detectable effects were found in

this analysis.

5.3. General Discussion

The results of this work are most useful for fishery management in
situations where quality fishing is strongly associated with the size

and quantity of fish caught, as in the sport fishery. The results might

not be as useful when total catch is more important, as it is in

commercial fishing. Commercial and sport fishery differ in that

management objectives in the former are well established. The objectives

in commuercial fishery management are to maximize profit from catch on a
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sustainable basis. Sport fishery management has as its prime objective

the more elusive concept of angler satisfaction, which includes, but is

not limited to., quantity and size of fish caught (not necessarily kept).

Angler satisfaction is the objective in sport fishery management because

fishery agencies rely on license sales as part of their budget. Fishery

agencies have to compete with alternative recreation opportunities,

which makes knowledge of anglers' preferences necessary to incorporate

into management plans. The results herein focused on an increase of

available catch to anglers and should, therefore, not be used in

,situations where angler satisfaction involves different aspects related

to fishing.,

The question often asked by managers, scientists, and the general public

is whether people have any control over exploited natural resources. The

question often leads to whether managers should intensify their efforts

overall, concentrate on more effective tools, or steward natural systems

with minimal intervention. if managers are to direct their efforts to

more effective tools, the question becomes what those tools should be.

The answer for these questions is certainly system and time dependent,

which adds to the difficulty in trying to resolve man's role in

modifying natural systems to reflect our perception of high quality.

A related problem in sport fisheries management is that of resource

allocation. The question of what management practices to prioritize and

devote more attention and resources to was started to be addressed in

this dissertation. Harvest regulations, recruitment issues, and sport

fish stocking are major priorities in the fisheries management sector in

the United States (Mather et al. 1995). The results of this dissertation

are encouraging because fishing size limits produced strong and

desirable effects on harvestable fish, suggesting that resource

allocation should be directed to regulation related practices. Length

and bag limits may be currently the most promising management tools

available. Research on the effects of stocking and water level

manipulations mimicking floodplain systems, however, should not be
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can be directed to potentially more effective practices for improving

fishing (such as fish sampling).

The results of this work point to a few management practices having

detectable effects, despite the high variability inherent in fisheries

data for fish. number estimators, suggesting these practices to be of a

strong effect. Environmental factors produced weaker results compared to

anthropogenic factors, suggesting weather to be less important than

management practices in accounting for fluctuations in fish abundance.

This, however, should not be generalized. Illinois lakes are small

systems compared to systems like the oceans, seas, and the great lakes.

Illinois lakes being small and shallow, should be expected to be much

more prone to human perturbations than larger water bodies. In large

water bodies, environmental factors may play a bigger role in

determining the characteristics of the biota.

The effects of management practices have traditionally been evaluated by

considering short-term data from one or few lakes only (Viosca 1945;

Krumholz 1950; Swingle 1950; Martin et al. 1981). The high annual

variation of fish abundance estimates from electrofishing samples

suggest that statistical power from results of studies relying on only a

few years of observation from one or few lakes is low and should be

interpreted with caution. For more robust results, more attention should

be paid to existing large data sets. Due to the nature of data

collection, large scale data sets in fisheries rarely follow statistical

designs, which makes analyses difficult. These data sets, however, may

provide important information after an initial data filtering and

exploration phase. Considering lakes as replicates (only possible when

large-scale data are available) by averaging within lake observations is

an alternative approach for averaging out unexplained extreme

observations and controlling for possible effects of autocorrelation.

The potential benefits of analyzing large data sets for inland fisheries

management may be extended to regions outside Illinois. Similar data
sets for other areas exist, and, even if their quality is marginal,

might still be worth analyzing. Such data may provide not only a better

understanding of biological systems, but also facilitate the development

of management designs which more readily and reliably lend themselves to

quantitative analyses addressing fisheries related questions.
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Although the locations of fish sampling stations did not change,

fisheries managers selected prime areas for fish sampling to maximize

the catch. The biased selection of sampling locations might have yielded

estimates of annual fluctuations in fish abundance which were not

representative of the entire population in each of the sampled lakes.

Fishery managers' selection of sampling locations, therefore, may have

contributed to the infrequency of statistically significant effects of

treatments. Fish populations in habitats of marginal quality are likely

to be more sensitive to treatment effects, especially those which induce

stress. By choosing areas with higher fish abundance, managers may be

selectively sampling higher quality habitats, potentially biasing

results of management interventions and environmental factors on fish.

Not only sampling protocols, but also management designs are of

importance in determining anthropogenic and environmental effects on

fish populations. The procedure of management practices still does not

follow a design that promptly lends itself to inter-lake comparative

analyses. Experimental management techniques (Walters 1986; Walters et

al, 1988; McAllister and Peterman 1992), whereby control and treatment

lakes are used, may prove useful in overcoming this problem. The

benefits of understanding the effects of management practices by using

different intensities of the same practice could outweigh short-term

costs which might be borne at control lakes, where managers would have

to refrain from implementing any management practice or allowing any

fish harvest.

Incorporating experimental designs in the structure of fisheries

management practices is not the only potential improvement. Other

species of fish sharing food, habitat, and also predators may influence

largemouth bass abundance (Hackney 1975; Jenkins 1975). Unexplained

fluctuations in largemouth bass abundance were common in the data used.

Absolute values for fish abundance, incorporating many species, may

yield data sets more sensitive to detect the effects of management

practices with marginal impacts on fish. The catchability of the various
fish sampling gears is, therefore, of concern especially when

information on fish community structure is required. Single-species

management can tolerate differential catchability in sampling gear

because information on relative abundance suffices, so long as

catchability stays constant with time in the same system. When

comparisons across systems are desired or multispecies management is the
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goal, however, absolute values for fish abundance are preferred. Gear

calibration factors may circumvent this problem. Routine sampling of

fish with different gears before lake rehabilitation practices produce

more accurate lake-specific calibration factors for sampling devices

(Bayley and Austen 1987), which in turn can be used for estimating

accurate species abundance and compositions.

In sunmmary, this work suggests that the anthropogenic componet in

Illinois fisheries management more strongly determines fish abudance in

inland lakes. This places a stronger responsibility on fisheries

agencies, fisheries managers, and the public in general for the optimal

functioning of lakes and other interrelated systems. Optimal functioning

is dependent not only on angler's expectations, but also on the

intrinsic characteristic of each lake. It is understandable that

management is ultimately aimed to satisfy anglers, however, considering

angler's preference as the primary variable for devising management

plans may lead to unwanted consequences, such as declines in fish

abundance after unlimited fishing pressure.

5. 4. Recommendations

Rehabilitation practices and fishing regulations are shown to have

effects strong enough to be detected despite the high year-to-year

fluctuations characteristics of the data set analyzed. Rehabilitation

practices are labor-intensive, expensive, and not done on a regular

basis. Conversely, fishing regulations are easier to implement, not as

disturbing, and, if complied with, potentially beneficial to angling

quality. Fishing regulations in Illinois are size and bag limits., Bag

limits were not investigated, but are closely associated with the

potential success of any regulation. Bag limits are presently angler-

specific, whereby anglers are allowed a maximum number of fish to be

harvested. Under this scenario, the effects of regulations may vary if

the number of anglers varies. Bag limits should be lake-specific for the

effects of regulations to persist despite anglers fish harvest
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combination with aquatic vegetation practices might prove beneficial to

establishing strong fish year-classes. Additionally, for determining

sampling effort, multiple electrofishing sampling during a short

interval (weeks) may estimate the extent to which variations in catches

reflect variations in fish abundance or catchability. If variation in

catches is due to variations in fish abundance, sampling effort should

increase or at least remain as frequent as once a year. If catchability

is mostly the culprit for the observed variability, a combination of

gears such as gill nets and electrofishing used concurrently may

minimize the problem.

5.5. Future Research

Management practices at inland Illinois lakes through the 1980s have

unfortunately resulted in a data set with problems (Section 2,3.3).

Despite the problems, some management practices were sufficiently strong

for detection of an effect. Future fisheries management will hopefully

operate under protocols more closely mimicking experimental management.

It is probably unrealistic to expect designs as rigorous as those

implemented in purely experimental settings, because imposing necessary

restrictions on management, such as prohibiting all interventions and

fishing at a control lake even for a short period of time, is probably

still not well accepted by managers and the public. Not using control

lakes, but still using management practices of varying, but consistent,

intensities among lakes for several years may offer an intermediate and

feasible step towards refining the results obtained in this

dissertation.

Some management practices appeared to affect fish abundance only

marginally. Further investigation of these practices might prove

valuable. Controlled experiments should be conducted on stocking

effects, particularly related to differential mortality between stocked

and naturally breeding fish. Similarly, promising management practices

such as vegetation controls and water level manipulations (the latter
addressing issues related to timing and duration) should be

investigated. Controlling the density of vegetation and manipulating

water levels may prove to be an inexpensive management tool for

manipulating habitat and food supply.
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The data used in this dissertation indicated high year-to-year variation

in the abundance of largemouth bass. This phenomenon is common in

fisheries data (Miller 1975). Power analyses indicated that analyses

based on single lakes are suspicious. Multiple lakes are, however, not

always available, making it necessary to determine the reason for fish

fluctuations, if the statistical power is to be increased in studies

based on single or few lakes (with many occasions considering only a few

years) using sampling protocols similar as the one used herein. Among

the possible reasons are high variations in catchability, or high

sensitivity of young and maybe adult fish to minor abiotic or biotic

factors, causing high variations in fishing mortality. It may be

difficult to predict year-class strength if the variation observed in

the data is mostly due to mortality. Variations in fish catchability of

gears used in samplings may, however, be estimated. If variation in

catchability is a major factor in the observed fish fluctuation, data

sets may become less variable in the future if habitat-specific

catchability estimates are determined.

The reason for the unexplained year-to-year variation in fish abundance

may be the most immediate issue needed to be addressed for determining

the amount of sampling effort necessary to detect the effects of

management. Large differences in catches may occur if largemouth bass

possess an escape response to electrofishing. Multiple samplings within

a season separated by a few days may also indicate the extent to which

the observed fluctuations in fish are due to catchability. Assuming that

mortality is minimum during the multiple sampling period, estimates of

the variation of catchability may be established. If done on a regular

basis, multiple samplings combined with regular sampling before and

after lake rehabilitation events may provide good estimates of

catchability for fish. Catchability is not the only factor needed to

determine the reason of fish fluctuations over time, but is a central

one, potentially cleaning data sets from excessive unexplained

fluctuations of fish.
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