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Abstract—Localization systems for indoor areas have recently
been suggested that make use of existing wireless local area
network (WLAN) infrastructure and location fingerprinting ap-
proach. However, most existing research work ignores channel
interference between wireless infrastructures and this could affect
accurate and precise positioning. A better understanding of
the properties of channel interference could assist in improv-
ing the positioning accuracy while saving significant amounts
of resources in the location-aware infrastructure. This paper
investigates to what extent the positioning accuracy is affected
by channel interference between access points. Two sets of
experiments compare how the positioning accuracy is affected in
three different channel assignment schemes: ad-hoc, sequential,
and orthogonal data is analyzed to understand what features of
channel interference affect positioning accuracy. The results show
that choosing an appropriate channel assignment scheme could
make localization 10% more accurate and reduces the number
of access points that are required by 15%. The experimental
analysis also indicates that the channel interference usually obeys
a right-skewed distribution and positioning accuracy is heavily
dependent on channel interference between access points (APs).

Index Terms—Indoor positioning, Channel Interference, Loca-
tion Fingerprinting

I. INTRODUCTION

W IRELESS Local Area Networks (WLANs) are often
deployed on a large-scale in a wide range of urban

environments. Covering a very large urban environment re-
quires that thousands of access points be placed and installed
properly, without interference. The basic requirements of an
effective WLAN are, first, adequate coverage where users wish
to access location-aware (e.g., pervasive computing-enabled)
applications and services. Second, the WLAN should allow
accurate localization of mobile devices. The deployment of the
network should reduce the interference as much as possible so
as to achieve these functions in a cost-effective and resource-
efficient manner.

Unfortunately, access points (APs) are usually deployed
in an empirical way, manually placed and positioned on
the basis of measurements of RSS (received signal strength)
taken by engineers. Such an unstructured approach to WLAN
infrastructure design implies poor resource utilization and
strong channel interference. [1] For example, more APs may
be used to improve coverage but this may still leave blind
spots or places where there are too many access points packed
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too closely together. This can lead to signal overlap, which is
wasteful and causes interference.

Location-Fingerprinting-based approaches [1][2][3][4][5]
[6] locate a device by comparing its coordinates with the
received signal strengths (RSSs) and coordinates of other
devices within the Wi-Fi footprint as held in an LF database.
More specifically, the LF approach requires the collection
of data {(Yn, Ci), i = 1...N}, for N locations in an area,
where Ci is the known location of the i’th measurement and
Yi = (Yi, ..., YiN ) is the received signal strength (RSS) vector
when the transmitter is at Ci. The vector Yi is the ”fingerprint”
of the location Ci. When a new fingerprint Y is derived from
a transmitter at an unknown location A, I can locate A by
searching for the fingerprint Yi that is closest to Y in say
d distance and estimate the location with the corresponding
Ci. The drawbacks of the LF approach are (1) LF requires
an initially survey with a very large training dataset and (2)
LF is very sensitive to signal fluctuation due to the changes
of infrastructure of buildings and channel interference among
APs leading to inaccurate positioning.

The IEEE 802.11 standard establishes several requirements
for radio frequency transmission, including the canalization
schemes and the spectrum radiation of the signal.[7] In IEEE
802.11 b/g WLAN, there are 14 channels. In North America,
the 2.4GHz frequency ISM band is divided into 11 channels.
Each channel is spread over 22 MHz due to the Direct
Sequence Spread Spectrum (DSSS) technique employed by
IEEE 802.11b/g. These channels have only five MHz of center
frequency separation. Channel interference occurs because
frequency spectrum is shared with each adjacent channel.
Recent research has focused on reducing channel interference
by either creating a new channel assignment scheme [8][9][10]
or enhancing existing MAC protocols [11][12] The goal is
to improve the data transmission through wireless networks.
However, none of existing work on channel interference has
focused on the accuracy of the location estimation algorithm.
Some researchers have even maintained that interference could
increase positioning accuracy.

This paper investigates the influence of channel interference
in a location fingerprinting approach. The study of chan-
nel interference is essential for accurate indoor positioning
system. This paper also describes localization experiments
and simulations on the IEEE 802.11 test-bed and investigates
the channel assignment of APs, the distribution of received
signal strength (RSS) values, the variation of coverage, and
distances between APs. The analysis of these features provide
insights into how to assign channels, how to space APs so
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as to reduce interference, and how many access points are
required to uniquely identify a location at a given accuracy and
precision. The results would be of interest and assistance to
engineers designing WLAN channel assignments specifically
for positioning.

The rest of this paper is organized as follows: Section
II describes related work on the deployment of positioning
systems, modeling of wireless signal strength properties and
infrastructure design of Wi-Fi Network. Section III describes
the reason and algorithms of overlapping channel interference.
Section IV describes the positioning methodology. Section
V defines the characteristics of channel interference metrics.
Section VI presents the experiment and result on channel
interference matrix. Section VII presents the experiment and
result on the effect of channel interference to positioning
accuracy. Finally, Section VIII offers our conclusion and future
work.

II. RELATED WORK

In this section, we summarize current research works on
positioning systems, modeling of wireless signal strength
properties and infrastructure design of Wi-Fi Network.

A. Positioning Systems

Acoustic [13][14][15], light-based and global positioning
systems are most effective in relatively open and flat outdoor
environments but are much less effective non-line-of-sight
(NLOS) environments such as hilly, mountainous or built-
up areas. Moreover, most acoustic localization applications
not only require the sound source to have a high intensity
and to be continuously propagated, they also are limited to
localizing only within the area covered by the sound. The
drawbacks of light-based localization approaches include their
dependence on contrast of the background light intensity
[14][16]. Sequential Monte Carlo (SMC) approaches [17][16]
need to have many sampling, weighting and filtering steps
to have updated distribution of sensors. After building an
overview of sensors’ distribution, the sensor estimates its
location by the weighted average of all samples. It is not
effective and has high computational cost in sensor networks.

The task of localization is not limited to above approaches
but is also carried out on other types of networks, in particular,
on Wi-Fi - IEEE 802.11b. Wi-Fi networks are increasingly
ubiquitous in public places, for example, airports, malls, cafes,
campuses, and even public squares. They are fuelling a wide
range of location-aware computing applications. Currently,
Wi-Fi-enabled devices can be located by applying one of
two types of location-sensing approaches, propagation-based
[18][19][20] and location-fingerprinting-based (LF)[5][1][19].

Propagation-based approaches measure the received signal
strength (RSS), angle of arrival (AOA), or time difference of
arrival (TDOA) of received signals and apply mathematical
models to determine the location of the device. The drawbacks
of propagation-based approaches are needed to compute every
condition that can cause wave signal to blend in order to
achieve accurate localization. These approaches majorly suffer
from signal fluctuation and channel interference. Channel

interference worsens the positioning accuracy and increases
the computational complexity.

LF-based approach allows a person to locate himself by
using a device to access a database containing the fingerprint
(i.e., the RSSs and coordinates) of other devices within the Wi-
Fi footprint and then calculate its own coordinates by compar-
ing with the LF database. The drawbacks of LF approach are
needed to have extensive training dataset surveying and highly
affected by the changing of internal building infrastructure,
presence of humans and interference among devices leading
to inaccurate localization. These issues have been addressed
in our previous work [21].

B. Modeling of Wireless Signal Strength Properties
The modeling of wireless signal strength properties [2][6]

is crucial to deploying efficient indoor positioning systems.
Analytical models can be used to improve the design of posi-
tioning systems. For example, by eliminating the installation of
Wi-Fi access points and shortening the sampling time of Wi-
Fi received signal strength (RSS) in location estimation. Yet,
we currently lack an analytical model that might be used as a
framework for designing and deploying positioning systems.
Such an analytical model should have spatial elements to
visualize the RSS distribution and to evaluate and predict
”precision” performance of indoor positioning systems based
on location fingerprinting. Such a model could be used to
improve the design of positioning systems, for example by
eliminating some fingerprints and reducing the size of the
location fingerprint database. Our previous work [22] and [23]
made use of fuzzy logic and topographic mapping techniques
to visualize the received signal strength (RSS) but did not
investigate how channel interference affects positioning ac-
curacy. Most existing research in channel interference has
focused on improving wireless data transmission [11][12] and
channel assignment [8][9][10]. The study on the relationship
between channel interference and positioning accuracy has
been insufficient.

C. Infrastructure Design of Wi-Fi Network
WLANs are made up of many access points (APs) or nodes.

These access points (APs) are manually placed and positioned
on the basis of measurements of RSS (received signal strength)
taken by engineers empirically. An unstructured approach to
WLAN infrastructure design implies poor resource utilization.
[1] as extra APs may be used to improve coverage but this
may still leave blind spots or places where there are too many
access points packed too closely together. This can lead to
signal overlap, which is both wasteful and causes interference.
As long as an ad-hoc approach is used, it is not possible to
estimate in advance how many APs are optimally required for
localization or where they should be placed. In our previous
work [24] and [25], we addressed this issue and proposed
a more structured approach which would produce economies
of scale and efficiencies as well as improved localization
capabilities. However, different Wi-Fi infrastructure designs
could cause different patterns of channel interference and
to date there has been no in-depth study of how channel
interference might affect positioning accuracy.
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III. OVERLAPPING CHANNEL INTERFERENCE

The bandwidth of wireless network is limited because of the
property of wireless networks and stations have to share the
limited bandwidth. [26] IEEE 802.11b/g has 14 overlapping
frequency channels. Channel 1, 6 and 11 are non-overlapping
channels.

As shown in 1, IEEE 802.11 b/g spreads through 2,401
MHz to 2,483 MHz. Each channel spreads over 22 MHz. Two
adjacent channels are separated only by 5 MHz such that most
of existing channels are overlapped.
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Fig. 1. IEEE 802.11b/g Frequency Spectrum to Channel Number

A. Interference-level Function

The interference-level function γ is defined as follows:

γ (∆c) = max (0, 1− k∆c) (1)

where ∆c is the absolute channel difference and k is the non-
overlapping ratio of two channels. γ and ∆c are in Db unit.
When ∆c increases, γ decreases. For example, if ∆c = 0,
then γ(∆c) = 1 and if ∆c ≥ 5, then γ(∆c) = 0. In other
words, for channel 1 and 6,∆c = 5, k = 0, then γ(∆c) = 0,
suggesting no interference. In real case, if APs are installed
far enough with others, γ should be at least equal to the above
threshold.

B. Signal Propagation Loss Algorithm

Signal propagation loss algorithm [5][18][20] calculates the
received signal strength (RSS) with path loss as follows:

R = r − 10α log10(d)− wallLoss (2)

where r is initial RSS, d is a distance from APs to a location, α
is the path loss exponent (clutter density factor) and wallLoss
is the sum of the losses introduced by each wall on the line
segment drawn at Euclidean distance d.

Initially, r is the initial RSS at the reference distance of
d0 is 1 meter (this is 41.5 dBm for LOS propagation and for
37.3 dBm NLOS propagation for some report measurement).
The path loss exponent α at a carrier frequency of 2.4 GHz

is reported to be 2 for LOS propagation and 3.3 for NLOS
propagation [7]. Under other circumstances, α can be between
1 and 6.

C. Signal-to-Interference-plus-Noise-Ratio

Signal-to-Interference-plus-Noise-Ratio (SINR) is a very
common indicator to measure interference. SINR is defined
as follows:

SINR =
Rb

γ(∆c)
∑

R + n
(3)

where Rb is the highest RSS after path loss calculation. R
is the remaining set of RSS after path loss calculation. n is
the noise signal strength. Rb, R, n are in dBm unit. Usually,
n should have the value of -100dbm. Again SINR should be
at least equal to above calculated threshold which depends on
the distance among APs, the transmission rate, the modulation
scheme and the required bit-error rate.

IV. POSITIONING METHODOLOGIES

Two positioning methodologies are typically applied in
WLANs, propagation based approaches and location finger-
printing (LF). Our previous works [21][27] make use of LF
to track a WLAN-enabled device. In our later simulations
we will use only LF approach. As accuracy obtained using
LF approach will also be obtained using a propagation-based
approach but for completeness in the following we briefly
describe both.

A. Propagation-based Approach

Propagation-based approaches measure the received signal
strength (RSS), angle of arrival (AOA), or time difference of
arrival (TDOA) of received signals and apply mathematical
models a set of triangulation algorithms to determine the
location of the device.
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Fig. 2. Triangular Algorithm

The triangular positioning algorithm uses trigonometry and
geometry to compute the locations of objects. In a 2D environ-
ment, this requires three access points (APs). The locations of
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these three APs’ location are denoted as (x1, y1), (x2, y2), (x3,
y3) and the object location is (x, y). Using the propagation-
based theorem in (2), we can denote the distance between the
access points and object location as d1, d2, and d3, where
d0 is the initial RSS at the reference distance. To estimate
the location of the object, we use the tri-lateration method as
follow.





d1 = d010
r0−r1−wallLoss

10·α

d2 = d010
r0−r2−wallLoss

10·α

d3 = d010
r0−r3−wallLoss

10·α

(4)

Initially, r0 is the initial RSS at the reference distance of d0

is 1 meter (this is 41.5 dBm for LOS propagation and for 37.3
dBm NLOS propagation for some report measurement) [28].
The path loss exponent α at a carrier frequency of 2.4 GHz
is reported to be 2 for LOS propagation and 3.3 for NLOS
propagation [5]. Under other circumstances, can be between
1 and 6.

After calculating the distance, we find the angle θ1, θ2 and
θ3 between the object location and APs, and then we are
able to calculate the possible location matrix of the object
as follows:




x′1 y′1
x′2 y′2
x′3 y′3


 =




x1 + d1 cos θ1 y1 + d1 sin θ1

x2 + d2 cos θ2 y2 + d2 sin θ2

x3 + d3 cos θ3 y3 + d3 sin θ3




(5)

B. Location Fingerprinting Approach

There are two Location Fingerprinting approaches, the K-
Nearest Neighbor (K-NN) and the probabilistic approach.

1) K-Nearest Neighbor Location Fingerprinting Approach:
The K-Nearest Neighbor (K-NN) algorithm requires two sets
of data. The first set of data is the samples of RSS from N
APs in the area. Each element in a vector is an independent
RSS (in dBm) collected from APs in the location. The second
set of data contains all of the average RSS from N APs at
a particular location. This second dataset forms the location
fingerprinting database. F = {f1...fn|fi ∈ <n} is a set of
sampling LF vectors in database. We estimate the location dk

by clustering the Euclidean distance |r − fi| between current
received LF vector r and sampling LF vector fi with position
di as

d =

n∑
i=0

di

|r−fi|
n∑

i=0

1
|r−fi|

(6)

2) Probabilistic Location Fingerprinting: Probabilistic LF
applies Baye’s theorem to calculate the most probable location
out of the pre-recorded LF database, F = [f1, f2, f3...fN ]. We
can estimate d by

arg max
d

[P (d/F )] = arg max
d

[
P (F/d)P (d)

P (F )

]
(7)

Since P (F ) is constant for all d, the algorithm can be
rewritten as:

arg max
d

[P (d/F )] = arg max
d

[P (F/d)P (d)] (8)

As P (d) can be factored out from the maximization pro-
cess, the probabilistic positioning algorithm is as

P (F/d) =
N∏

i=1

P (fi/d) (9)

We make use of probabilistic location fingerprinting to
estimate the position in our later part of experiment and
simulation.

V. CHARACTERIZATION OF CHANNEL INTERFERENCE
METRIC

This section investigates whether interference is normally
or log normally distributed. The signal difference between the
preset (maximum) RSS value of AP and sample RSS of an AP
could be seen as interference strength value (in dB). Two APs
are placed and interfere with each other. We assume that there
is a zero (or very short) distance between receiver and APs, In
other words, the signal should not be reduced by propagation-
loss. The preset RSS value is denoted by ρ and the interference
strength value by F = {f1, f2, ..., fn}. The interference could
then be by:

Y =

√√√√
n∑

i=1

(ρ− ri)2 =

√√√√
n∑

i=1

f2
i (10)

where n represents the number of collected sample. In (10),
the difference between a preset RSS value and measured RSS,
ri considered to be a signal interference strength. In fact, the
random variable of interference fi should have a zero mean
if and only if the wireless RSS obeys a normal distribution.
In other words, the random variable of interference fi has a
non-zero mean when the wireless RSS does not obey a normal
distribution.

It is assumed that the random variable X = Y 2 where the
random variable X is the square of the difference between
the sample RSS and the preset RSS. Assuming that the RSS
is normally distributed, the random variable X = Y 2 has a
central chi-squared distribution with n degrees of freedom, i.e.
E {ri} = ρ or the mean of sample RSS is equal to a preset
RSS value. Thus, the difference-squared fi obeys a zero mean
Gaussian distribution. A probability density function (PDF) of
X will be the chi-square distribution:

PX2
n
(x) =

1

2
n
2 σnΓ(n

2 )
x

n
2−1e−

x
2σ2 (11)

where the variance of each Gaussian component in X is σ2,
and Γ denotes Gamma function which has closed-form values
at the half-integers.

However, in some real-world scenarios, the distribution of
the RSS is not usually Gaussian and it is often left-skewed. The
standard deviation for this real distribution varies according to
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the signal level. This has been verified in [29]. Actually, the
distribution of the RSS is a non-central chi-squared distribu-
tion. In this case, the random variable of interference fi will
have a non-zero mean equal to µ = ρ− E{ri}.

Here, λ is defined as a non-centrality parameter of the non-
central chi-squared distribution. Parameter λ could be defined

as λ =
n∑

i=1

µ2
i . A larger value of λ indicates that some regions

are experiencing higher signal interference. The PDF of non-
central chi-square distribution is seen to be a Poisson-weight
mixture of central chi-squared distribution. It could be defined
by:

PX(x; n, λ) =
∞∑

i=0

e−λ/2σ2
(λ/2σ2)i

i!
PP

X2
n

(n+2i)(x) (12)

Alternatively, the PDF can be written as

PX(x;n, λ) =
1

2σ2
e−

x+λ

2σ2

(x

λ

)n−2
4

In−2
2

(√
λx

σ2

)
(13)

where Ik (x) is the kth-order modified Bessel function of the
first kind given by

Ik(x) =
(x

2

)k ∞∑

i=0

x2i

4ii!Γ(k + i + 1)
(14)
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Fig. 3. Theoretical comparison of the PDFs of central and non-central chi-
squared distribution of interference under σ = 1.5, n = 3

In Figure 3 we have the theoretical distribution formed by
(11) and (13). The dotted purple line represents the central
chi-squared distribution used by (11). The blue line represents
a non-central chi-squared distribution used by (13). As can be
seen, the use of a central chi-square distribution produces a
more evenly distributed interference-square. In other words,
the strength of the interference fluctuates widely. When σ
= 1.5, n = 3, the interference-square of the non-central
distribution would be mostly around 10. When a non-central
distribution is used, the distribution is skewed more to the right
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Fig. 4. Theoretical comparison of the PDFs of central and non-central chi-
squared distribution of interference under σ = 20, n = 3

and interference strength is more likely to be a smaller value.
When σ = 1.5, n = 3 and λ = 10, the interference-square of
non-central distribution would be mostly at 4.

Figure 4 shows the PDF versus mean interference-square
under σ = 20, n = 3. The non-central and central chi-square
becomes very similar when the standard deviation of the
received signal strength has a larger value. This indicates that
the larger standard deviation of received signal strength causes
the mean interference-square of central and non-central chi-
distribution to move closer together.

In conclusion, depending on whether RSS is a central or
non-central normal distribution, the interference distribution
could be defined by either (11) or (13). Having said this, it
should also be noted that experiments with RSS distributions
could vary, with some experiment results showing that RSS
obeys a normal distribution and some showing otherwise. To
our knowledge, however, the distribution of interference has
not yet been studied. The later experimental section will show
that interference usually follows the distribution described in
(13).

VI. EXPERIMENT & RESULT ON CHANNEL
INTERFERENCE METRIC

The following section describes an experiment on channel
interference metrics and discusses the experiment results. The
purpose of the experiment is to determine whether interference
distribution obeys a normal, mean chi-square, or non-mean
chi-square distribution.

The experiment places two APs within a short distance of an
RSS receiver. The assumption is that all signal fluctuations are
caused by interference between two APs. Two APs were set to
the same channel and emitted a WLAN signal at the maximum
strength -70dBm. A receiver recorded 1,000 samples of signal
strength from two APs over two hours. The sample result was
used to form a distribution and the theoretical distribution
was compared using (11) and (13). Table I summarizes the
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TABLE I
EXPERIMENT SETTINGS (SET A)

Item Description

Number of APs 2 APs
Sampling time 2 hours
Samples of Signal Strength 1,000
Wi-Fi coverage from each APs 80 meters
Range of signal strength -70dBm to -30dBm

experimental settings of Set A. Two parameters, σ and λ
are input to adjust the shape of the distribution curve. σ is
the standard distribution of interference. λ is a non-centrality
parameter.
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Section V discussed the theoretical distribution of interfer-
ence. Here, it is compared with the actual experimental result.
Figure 5 shows the relationship of the mean interference-
square to frequency. Along the Y-axis, frequency represents the

TABLE II
EXPERIMENT SETTINGS (SET B)

Item Description

Total area 150m x 100m
Number of APs 9 APs
Positioning resolution 3 meters
Wi-Fi coverage from each APs 80 meters
Range of signal strength -85dBm to -30dBm

number of occurrences of a particular value of the interference-
square. The interference-square is mostly at 7 and is a right-
skewed distribution.

Figure 6 shows the relationship of the mean interference-
square to the probability density function (pdf). As can be seen
in Figure 6, it is again a right-skewed distribution. A smaller
value for the mean interference-square means a larger value
of the pdf. When the mean interference-square is 4, the pdf
has the largest value of 0.31.

In following paragraphs, we could now further discuss on
the impact of parameters of the interference based on the
visual results presented so far. The visual results so far suggest
that interference is a random variable if the received signal
strengths from APs are also all random variables. Intuitively
this makes sense. The results in these experiments indicate that
the interference mostly occurs in a right-skewed distribution,
which implies a smaller value for the mean interference-
square. It also shows that a non-central chi-distribution (13)
could represent the distribution of interference. It would be
ideal to have less interference and a smaller fluctuation. The
above work helps to understand the features of interference
and it could be used to decide a better positioning system.

The following sections will continue to look at some factors
that affect interference: channel assignment, number of APs,
the SINR value, and distribution of location uncertainty.

VII. THE EFFECT OF CHANNEL INTERFERENCE ON
POSITIONING ACCURACY: EXPERIMENT AND RESULTS

This section describes experiments on the effect of channel
interference on positioning accuracy. The experiments were
conducted in a 150m X 100m testing area. Accuracy was
measured using only the probabilistic LF approach, which is
defined by (9). The radius of coverage of each AP is 80m.
The signal strength ranges between -85dBm and -30dBm.
The positioning resolution is set to three meters. Table II
summarizes the experiment settings of Set B.

The following discusses the results and compares the
positioning accuracy under three typical channel allocation
schemes. Subsection A looks at the impact of channel inter-
ference on positioning accuracy. Subsection B investigates the
positioning accuracy by varying the number of access points
under different channel allocations. Subsections C and D look
at how channel interference is affected by varying the number
of APs and SINR values.

A. Effect of Interference on the positioning accuracy

Figure 7 shows the relationship of channel interference to
positioning accuracy. In order to see how channel interference
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affects positioning accuracy specifically, the number of APs is
set to 13. The channel interference is varied from 0 to 25 dBm
and the accuracy is in a scale from 0 to 1 (1 represents 100%
accuracy). The three different channel allocations do not have
major difference of positioning accuracy when the interference
value is still small. When the interference strength increases
above 15dBm, positioning accuracy deteriorates seriously. It
is thus clear that when channel interference increases, the po-
sitioning accuracy decreases. However, this interference value
is difficult to control because it depends on the environment.
One way of improving this is to take more iteration. As can be
seen in Figure 7, the positioning performance of orthogonal
channel allocation is the most accurate. This result indicates
that orthogonal channel allocation is 10% more accurate when
the system is burdened with high channel interference.
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Fig. 7. Relationship of interference to accuracy under ascending, orthogonal
and ad-hoc channel allocation

B. Effect of number of APs on the positioning accuracy

This section considers the impact of the number of APs.
Figure 8 shows the relationship of the number of access
points to accuracy using each of the three allocation schemes.
The resolution is 2m. A higher number of APs improves the
precision dramatically up to the point that nine APs are used.
If more than nine APs are used, the accuracy does not increase
significantly due to the interference between them.

The channel interference between APs increases when the
number of APs increases. Figure 8 shows that orthogonal
channel allocation with only nine APs achieve 90% accuracy.
Perhaps the most important point to note is that orthogonal
channel allocation could require 15% fewer APs than either
ascending channel allocation or ad-hoc channel allocation.
Again, the smaller the interference is, the more accurate the
positioning is. This is because orthogonal channel allocation
provides less interference than the other two channel alloca-
tions. The next subsection further investigates this issue.
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Fig. 8. Relationship of number of access points to accuracy under ascending,
orthogonal and ad-hoc channel allocation

C. Effect of number of APs on the interference

Figure 9 shows the relationship of the number of APs
to interference. The result suggests that more APs cause in
more interference. Orthogonal channel allocation is associated
with less interference in any case, an average of 10.9 dBm,
whereas ascending channel allocation and ad-hoc channel
allocation respectively average of 13.1 dBm and 14.24 dBm
of interference.
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Fig. 9. Relationship of number of APs to interference under ascending,
orthogonal and ad-hoc channel allocation

D. Effect of Signal-to-Interference-plus-Noise-Ratio on the
positioning accuracy

In order to see how SINR affects the positioning accuracy,
the number of APs is set to 13. The SINR is varied from 0 to
1 and the accuracy was in a scale from 0 to 1 (1 represents
100% accuracy). Figure 10 shows the relationship of SINR to
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Fig. 10. Relationship of Signal-to-Interference-plus-Noise-Ratio to accuracy
under ascending, orthogonal and ad-hoc channel allocation

positioning accuracy. The result indicates that the higher the
value of SINR, the more accurate the positioning. Orthogonal
channel allocation has the best positioning performance and
was 8% more accurate than the other two channel allocations.

VIII. CONCLUSION

We present a comprehensive analysis of the channel interfer-
ence to positioning accuracy based on location fingerprinting.
The result indicates that channel interference would worsen
the positioning accuracy. Higher channel interference implies
less accurate positioning. We clear from falsehood that inter-
ference could help to achieve more accurate positioning. From
our experiment, channel interference among APs using same
frequency channel have a significant (worsening) impact on
the positioning system. Our experimental analysis also verifies
that the channel interference usually obeys a right-skewed
distribution. This verification helps to model the environment
of channel interference virtually.

The effect of channel interference to positioning accuracy
depends on number of APs, SINR and channel assignment
scheme. A higher number of APs gives more accurate po-
sitioning. Moreover, as the number of APs increases, the
channel interferences among APs increase and decrease the
rate of increasing positioning accuracy. We also point out that
a higher value of SINR is, more accurate positioning could be
achieved. In this paper, we emphasize that channel assignment
is critical issue to positioning system. Choosing orthogonal
channel allocation could save 15% of APs and meanwhile
achieve 10% more accurate positioning in average. The results
in this paper provide more insight on the stable and robust
indoor positioning system based on LF. Our studies address
that the positioning accuracy is seriously dependent on channel
interference. Thus, reducing channel interference is essential
to improve the positioning accuracy and meanwhile could save
significant amount of resources of localization infrastructure.
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