
 
 

  
Abstract—The algorithm for an indirect time domain (TD) 

analysis using arbitrary frequency domain method is presented. 
In previous work, an optimized version of the indirect time-
domain method based on adaptive sampling iterative algorithm 
used in combination with inverse Fast Fourier Transform (FFT) 
was presented. In this paper, the algorithm is further improved 
by circumventing the use of inverse FFT altogether, and using 
the simple formula based on the analytical inverse Fourier 
transform. The proposed approach is simpler and more 
convenient for use with the underlying iterative optimization 
method, as only a part of the frequency domain (FD) signal has 
to be transformed to the time domain during each iteration 
procedure, the frequency domain discretisation does not have to 
be uniform, and the time domain discretisation does not have to 
be performed. These advantages can also lead to the reduced 
computational time cost of the frequency to time domain 
transformation when compared with the standard inverse FFT. 
 

Index Terms—time domain analysis, optimization, adaptive 
sampling, inverse Fast Fourier Transform, analytical Fourier 
transform. 
 

I. INTRODUCTION 
Transient analysis of thin wire structures can be generally 

performed via direct and indirect time domain methods [1]. 
Direct time domain methods are formulated and solved 
directly in the time domain, while indirect methods use 
frequency domain as a basis for the formulation, as well as for 
obtaining the set of frequency domain solutions. Thus 
obtained solutions need to be transformed into the time 
domain via some appropriate transformation technique, 
typically inverse Fast Fourier Transform (FFT). Indirect time 
domain methods are therefore in principle easier to formulate 
and implement than direct time domain methods, which makes 
them more often used than direct time domain methods [1]-
[2]. By using the well tested frequency domain solver, such as 
Numerical Electromagnetic Code (NEC) [3], as a basis for the 
indirect time domain analysis in combination with FFT, a 
reliable benchmark time domain results can be achieved [4]- 
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[6]. On the other hand, for geometries which impulse response 
spans across larger frequency spectrum, or that are highly 
resonant, indirect methods are significantly less efficient than 
direct time domain methods, which require only one 
calculation, regardless of the observed geometry [1]-[2]. In 
this regard, additional advantage of the direct time domain 
methods is that transient response of the observed structure is 
usually of interest only in the early time interval, where the 
transient non-harmonic behavior is typically most 
pronounced. Indirect methods yield a transient response for all 
times, not only for the early time periods, which is also one of 
the reasons of their relative computational inefficiency when 
compared to the direct time domain methods. 

However, this problem can be significantly alleviated if 
uniform sampling of current where frequency domain 
solutions to be calculated is avoided. The basic idea is to 
perform the calculation only for the frequencies which 
significantly contribute to the corresponding time domain 
behavior of the system transient response, while other 
frequencies (with low amplitude harmonics or slowly 
changing transfer function of the system) can be interpolated. 
Typical examples of such an approach are algorithms focusing 
on the resonant frequencies or poles of the frequency domain 
solution, resulting in higher density of samples around the 
resonant frequencies [7]-[9]. Similar approach was adopted in 
the algorithm presented in [10], where it was shown that more 
than an order of magnitude improvements of the overall 
computation time can be achieved using simple iterative 
adaptive sampling algorithm for finding significant resonant 
frequencies, and using simple linear interpolation for 
frequencies that are not sampled. In this paper, the algorithm 
presented in [10] is further improved by using analytical 
inverse Fourier transform. The usage of high enough number 
of points in inverse FFT can be circumvented altogether and 
the unknown current in the frequency domain can be 
approximated as a series of known functions spanned by the 
points determined during the adaptive sampling step of the 
algorithm. In this way, a significantly smaller number of 
samples need to be used in order to calculate the time domain 
inverse of the frequency domain current, by subjecting the 
approximate function to the analytical inverse Fourier 
transform. The resulting function is a sum of simple closed 
form expressions that can readily be numerically evaluated. 
This procedure also has an additional advantage that the 
complete inversion, over the entire frequency span, does not 
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need to be repeated in the each iteration. In other words, all 
summands need not need not be evaluated, but only those 
pertaining to the additional segments determined by the 
adaptive sampling algorithm. The principal advantage of this 
approach, when compared to the usage of FFT is its 
formulation simplicity and implementation when applied to 
the iterative adaptive sampling algorithm. 

The layout of the paper is as follows: Chapter 2 outlines the 
basic algorithm presented in [10], and in Chapter 3 the 
implementation of the analytical inverse Fourier Transform on 
the previously described algorithm is presented. Numerical 
examples illustrating the method are given in Chapter 4, 
followed by Conclusion. 

 

II. INDIRECT TIME-DOMAIN ANALYSIS USING 
ADAPTIVE SAMPLING ALGORITHM 

The procedure of calculating time-domain results via 
indirect method based on NEC can be divided in several basic 
steps. First, viewing the geometry as a linear system, transfer 
function of the analyzed geometry H(f) is obtained by 
executing NEC sufficient number of times so that H(f) curve 
is accurate enough. If excitation with magnitude 1 and phase 0 
is used for all frequencies, the obtained frequency domain 
current results represent the transfer function of the system. 
Then, time-dependant voltage source V(t) is sampled and FFT 
is performed, resulting in a frequency spectrum of the 
excitation V(f). Next, excitation frequency spectrum V(f) and 
structure transfer function H(f) are multiplied in the frequency 
domain thus obtaining frequency-domain current distribution 
on the observation point at the analyzed structure 
I(f)=H(f)V(f). Finally, I(t) is calculated from I(f) via the 
inverse FFT.  

The principal disadvantage of this procedure, with regards 
to computational time, is that the frequency domain 
calculation has to be repeated sufficient number of times in 
order to obtain satisfactory accuracy of the results - that is, 
time domain current. Namely, H(f) have to be sampled with 
sufficient density of samples. If the analyzed structure is 
highly resonant, there will be very pronounced and narrow 
high magnitude peaks in H(f) function, that have to be 
sampled very densely. If the simplest, uniform sampling is 
used, there will be very high number of samples for such 
structures, and the overall calculation time will get 
unacceptably long. This follows from the basic parameters of 
the sampling process in inverse Discrete Fourier Transform 
(DFT) [11]. Given some maximum frequency of the transfer 
function fmax, representing the bandwidth of the I(f), and the 
number of frequency domain samples N, the frequency 
domain sampling interval Δf is given by: 

 

 maxf
f

N
Δ = . (1) 

 
Time domain sampling interval Δt is related to fmax 

according to the Nyquist sampling theorem which states that 
the time domain rate of sampling fs=1/Δt should be at least 
twice the bandwidth of the signal. Therefore, the maximum 
time domain sampling interval is  

 

 
max

1
2

t
f

Δ = . (2) 

 
If Nyquist sampling condition, represented by (2) is not 

satisfied, i.e. if Δt  is choosen larger then value specified by 
(2), aliasing errors will be introduced in the time domain 
results.  

Since time domain and frequency domain number of 
samples must be the same (N), maximum observation time 
period T is than simply T=Δt·N, or using relations (1) and (2): 

 

 
max

1
2 2

NT
f f

= =
Δ

. (3) 

 
Therefore, with relations (1)-(3) all the parameters of the 

inverse FFT are completely determined, once fmax and N are 
chosen. Obviously, the larger the values of these parameters, 
the better the results, but the question is how to determine 
their minimum acceptable value. These parameters can not be 
determined in advance, since the I(t) and therefore I(f) are 
unknown, so initially fmax and N have to be chosen empirically. 
However, there are some strategies that can help in rough a 
priori estimation of fmax. For example, at fmax magnitudes of 
the I(f) drop to sufficiently small values, so that they can be 
considered zero. Although H(f) is unknown, since it depends 
on the specific geometry that is being analyzed, the frequency 
counterpart V(f) of the excitation (forcing) function V(t) is 
known, and its bandwidth can be used instead. If fmax is chosen 
in such a way that V(fmax) becomes sufficiently small, so that it 
can be considered zero, I(fmax) can also be considered zero 
(assuming H(fmax) is not very large), since I(f)=V(f)H(f) [7], 
[12], [13]. Another approach is applicable in case a more 
simple geometries, such as single wires, are analyzed. In this 
case, resonant frequencies are approximately [14]-[16]   

 

 0 ; 1, 2,...
2i
cf i i
L

= = . (4) 

 
where c is the speed of light, and L is the length of the wire. 

It is therefore important to choose fmax larger than at least first 
resonant frequency [15].  

Number of samples N should also be chosen sufficiently 
large, so that the transfer function of the geometry is sampled 
accurately enough in the frequency domain, especially around 
the resonant frequencies which appear as peaks in the transfer 
function H(f). If those frequencies are not sampled, an 
important frequency domain behavior information is skipped, 
and the resulting time domain results will be highly 
inaccurate. Also, choosing an insufficiently high value of N 
will, according to (1) and (3), result in larger Δf and therefore 
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smaller T. Too small observation period T will in turn cause 
truncation of the time domain results, and end-effect error, 
causing the time domain waveform truncated end to appear 
"wrapped around" on the starting point at t=0 [8].  

One, rather obvious, solution to the problem of choosing 
both fmax and N high enough, without proportional increase in 
computational cost, is selectively increasing the sampling 
density only around resonant frequencies. However, if no a 
priori knowledge about the waveform of the frequency 
domain response is assumed, the problem is related to 
efficient assessment of the resonant frequencies. This problem 
can then be tackled by using some adaptive sampling 
algorithm. Generally, the basic idea of adaptive sampling is to 
construct iterative algorithm for selecting the frequencies that 
are most likely to be near the resonant frequencies, based on 
the results from the previous iterations. One such algorithm 
was presented in [8], and in this chapter, a basic outline of this 
algorithm is presented. 

The algorithm can be described in several fundamental 
steps: 

 
1. Initial guess: select initial small set of frequencies 
2. Frequency domain calculation of the current for each 

frequency on a given frequency set 
3. Obtain time-domain current using inverse FFT 
4. Decide if time domain current is accurate enough - if 

yes, go to step 7 
5. Based on the frequency domain results obtained so far, 

find a new frequency set to be calculated 
6. Go to step 2 
7. End 
 
Initially, an arbitrary set of frequencies is chosen in order to 

obtain a very rough estimate of the transfer function. If no 
previous knowledge about the frequency domain structure 
behavior is assumed, then a straightforward choice is to 
simply use a small set of frequencies uniformly distributed 
from zero to some maximum frequency. In the next step, 
frequency domain calculation is repeated for all of the chosen 
frequencies. This can be undertaken by any frequency domain 
method suitable for the analysis of the observed geometry - in 
this paper the well known Numeric Electromagnetic Code is 
used as a frequency domain solver. Although the third step 
can be avoided, the intermediate time-domain results can be 
convenient in construction of the stopping criteria, as 
described in [8]. Inspection of the intermediate time-domain 
results is also useful in case the iteration is to be stopped by 
hand, prior to fulfillment of the stopping criteria in the fourth 
step. 

The crux of the algorithm is in the fifth step. The question 
is how to decide what frequencies to choose in the next 
iteration. The algorithm should choose those frequencies 
where the impact of the error between approximated and the 
actual transfer function on the shape of the resultant time 
domain current is expected to be the greatest. Obviously, the 
best candidates for these are the resonant frequencies. The 

behavior of the transfer function H(f) around the resonant 
frequencies will manifest itself as a rapid change in the curve 
representing the absolute value of H(f). So, the basic idea is to 
choose the frequencies where the rate of change of the |H(f)| is 
the greatest. However, in case the magnitude of |H(f)| is very 
small, even in case the curve is very steep, the frequencies 
with much greater magnitudes of |H(f)| will have a more 
significant influence on the final time domain results. It 
follows that the criteria for choosing the frequencies to be 
calculated in the next iteration should take into account both 
the rate of change and the magnitude of the transfer function 
around each of the frequencies calculated in the previous 
iterations. 

This criteria can be described by a very simple relation 
assigning an error estimate ei to each of the frequencies 
calculated so far. The error ei for i-th point is constructed by 
taking into account neighboring points.  

 
 
As illustrated in Fig. 1, the value of estimated error ei 

represents the difference between magnitude at the frequency 
fi+1 (point C), and extrapolated value (point C*), based on 
points A and B: 

 

 

1
1 1

1
( )i i

i i i i i
i i

f f
e h h h h

f f
+

− +
−

−
= + − −

− . (5) 
 
If point B is the first point that was calculated (i=1), the 

previous point (point A) is assigned zero value, since in this 
case fi-1 = 0, and therefore H(0) = 0. The new frequency points 
are added only for frequencies larger then the first frequency 
f1, so f1 should be chosen small enough during the first step, 
i.e. the initial frequency selection. 

Estimating the errors for each pair (fi, hi), only frequencies 
with estimated error ei greater then some minimum value emin 
are chosen as a reference for adding a new frequency, and 
new frequencies to be calculated in next iteration are chosen 
halfway between fi and fi+1, as illustrated in Fig. 1. The value 
of emin is chosen so that in the next iteration, only the points 

f

( )H f

1if − if 1if +

1ih −

ih

1ih +

*
1ih +

ie

Nf

?
Add new
frequency

A

B

C

*C

 
Fig. 1.  Interpolation error estimation for frequency fi : new 
frequency fN is added only if ei is large enough 

14 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 8, NO. 1, MARCH 2012



 
 

with associated above average error estimations are used for 
calculation of the new frequencies. This can be determined 
using the standard deviation of all estimated errors: 

 
 min ;e e K Kσ= + ∈  (6) 

 
where 
 

 2

1

1 ( )
N

i
i

e e
N

σ
=

= −∑ , (7) 

 

 
1

1 N

i
i

e e
N =

= ∑ , (8) 

 
N is the total number of frequencies calculated up to the 

current iteration and K is empirical coefficient, typically 
chosen between 1 and 1,5. 

 

III. ANALYTICAL INVERSE FOURIER TRANSFORM 
OF THE APPROXIMATE FUNCTION 

Instead of using inverse FFT and resampling the transfer 
function to obtain time domain results, a simple method, that 
requires only samples acquired during adaptive sampling 
estimation in previous iteration, can be used. The basic idea is 
to use simple linear interpolation to approximate the segment 
of the unknown I(f) function as an analytical function fully 
described by the two neighboring samples: 

 

 1
1

1 1
( ) k k

k k k
k k k k

f f f f
I f I I

f f f f
+

+
+ +

− −
= +

− −
. (9) 

 
Fig. 2. depicts a general case where the unknown current 

can be approximated by linear function along the segment k, 
bracketed by the frequencies fk and fk+1: 

 
 
Expression (9) can be rewritten as 
 

 ( )k k kI f A f B= + , (10) 
 
where 
 

 1 1 1

1 1
;k k k k k k

k k
k k k k

I I I f I f
A B

f f f f
+ + +

+ +

− −
= =

− −
. (11) 

Current along k-th segment can now be subjected to the 
analytical inverse Fourier transform: 

 

 2( ) ( ) j ft
k ki t I f e dfπ

∞

−∞

= ∫ . (12) 

 
In order to obtain real time domain counterpart of the 

current function, the additional term, corresponding to the 
negative frequencies, is required: 

 

 
1

1

* 2 2( ) ( ) ( )
k k

k k

f f
j ft j ft

k k k
f f

i t I f e df I f e dfπ π
+

+

−

−

= − +∫ ∫ , (13) 

 
where *( )kI f  is complex conjugate of the ( )kI f . 
Analytical solution of integrals (13) is given in a simple 

closed-form expression, as follows: 
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( )
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f f
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where 
 

 1 2 1

1 2 1

2 arg( ); 2 arg( )
2 arg( ); 2 arg( )

k k k k

k k k k

f t A f t A
f t B f t B

φ π φ π
φ π φ π

+

+

= + = +
′ ′= + = +

, (15) 

 
Applying relation (14) to all Km segments and summing up 

the results yields an approximate value of the current at instant 
t for the m-th iteration: 

 

 
1

( ) ( )
mK

m m
k

k

i t i t
=

= ∑ , (16) 

 
where ( )m

ki t  is the approximate value of current at the 
instant t along the k-th segment for m-th iteration. 

This simple procedure is particularly convenient for 
iterative algorithms, where the repeated inversion is required, 
because the entire sum need not be evaluated. Specifically, in 
the next (that is, m+1) iteration, only the segments associated 
with the newly added frequencies need to be evaluated. Each 
new frequency determined by the adaptive sampling algorithm 
as described in previous section, generates two new segments 
that approximate the actual function better than single 
segment from the previous (that is, m-th) iteration.  

For example, if one of the newly added frequencies fN is 
found between fk and fk+1 such that: 

 

( )kI f

1 ( )
kI

f−

( )I f

kI
1kI −

1kI +

1kf − kf 1kf + f
 

Fig. 2.  Linear interpolation of the FD current 
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2
N k kf f

f ++
= , (17) 

 
the k-th segment used in previous, m-th, iteration will be 

replaced by the segments k' and k'', as shown in Fig. 3. 

 
 
Time domain current for the m-th iteration can now be 

calculated using only contributions from the changed 
segments. In the example depicted by Fig. 3, the k-th segment 
from m-1 iteration is replaced by segments k' and k'', therefore 
only the contributions of those segments need to be calculated 
in order to determine time domain current at m-th iteration: 

 
 

' ''

1 1( ) ( ) ( ) ( ) ( )
k k k

m m m m mi t i t i t i t i t− −= − + + . (18) 

 
Therefore, for each new frequency point added by the 

adaptive sampling algorithm, only two evaluations of the (14) 
are required in order to obtain the time domain results. This 
procedure is repeated for all newly added frequencies in the 
each iteration. 

The principle advantages of this approach, as opposed to 
using standard inverse FFT, is its simplicity and avoidance of 
the time discretisation, since the current can be calculated for 
arbitrary chosen time instants. This can be particularly useful  
in obtaining the transient response of the structure where the 
very early times behavior is of interest. In such cases, using 
standard inverse FFT necessitates the sampling of a very wide 
frequency spectrum and very high number of samples, which 
might prove to be impractical, particularly with respect to the 
algorithm memory requirements. Additionally, unlike inverse 
FFT, the frequency samples need not be uniformly distributed, 
which reduces the number of samples during the frequency to 
time inversion itself. This approach is naturally adapted to the 
sampling algorithm described in the previous chapter, since 
the frequency set obtained during adaptive sampling can be 
directly used in inversion, without further resampling.  

The reduction of the number of samples in both frequency 
and time domain can lead to increased computational 
efficiency of the frequency to time domain inversion when 
compared with inverse FFT. If N is a number of frequency and 
time domain samples, then the inverse FFT will require 
approximately N·log2(N) operations. If the analytical inverse 
Fourier transform is used however, the overall number of 
basic operations will be approximately 2NF·NT, where NF and 
NT are number of frequency and time domain samples, 
respectively, and the single basic operation consist of 

evaluation of  relation (14). The number of frequency samples 
NF  is typically significantly smaller then N, since NF includes 
only frequencies selected during adaptive sampling process. 
The number of time domain samples NT can be chosen 
arbitrarily. Therefore, if NF and NT are sufficiently smaller 
then N, so that 
 
 22 log ( )F TN N N N⋅ < ⋅ , (19) 
 

this approach can be more computationally efficient then 
standard inverse FFT. 

Except for the cases of very large number of frequency 
domain samples N, or very small number of time domain 
samples NT, the condition (19) will typically not be satisfied 
and the FFT approach will be a more efficient one. However, 
if frequency to time domain inversion is to be performed 
during each iteration during the adaptive sampling procedure, 
the complete inverse FFT has to be repeated each time the 
transfer function is refined, while the proposed approach 
requires evaluation of only changed segments of the transfer 
function, resulting in the same overall number of operations 
2NF·NT, irrespective of the number of iterations during the 
adaptive sampling algorithm Therefore, using the analytical 
inverse Fourier transform instead of inverse FFT in this case 
will be more computationally efficient if following condition 
is satisfied: 
 
 22 log ( )F TN N K N N⋅ < ⋅ ⋅ , (20) 
 

where K is the number of iterations during the adaptive 
sampling algorithm. 

Finally it should be stressed out that the computational time 
considerations are of less importance for the efficiency of the 
overall algorithm. The reason for this is that the computational 
time cost of the frequency to time domain inversion is 
typically several orders of magnitude smaller then frequency 
domain computation. Therefore only a small fraction of the 
overall computational time is spent on frequency to time 
domain inversion, irrespective of the inversion technique 
used. 

IV. NUMERICAL RESULTS 
Scattering from two different thin wire geometries, depicted 
on Fig. 4, is analyzed. In both cases, wires are illuminated by 
the normally incident EMP plane wave, with the waveform 
described by the double exponential function: 
 
 0( ) ( )inc t t

xE t E e eα β− −= − , (21) 
 
where 
 
 1 17 8

0 1 / ; 4 10 ; 6 10E V m s sα β− −= = ⋅ = ⋅ . (22) 
 
Geometry (a), shown on Fig. 4. (a), consist of a single wire of 

' ( )kI f

1 ( )
kI

f−
( )I f

kI
1kI −

1kI +

1kf − kf 1kf + f

NI '' ( )kI f

Nf
 

Fig. 3.  Adding a new frequency splits the segment from previous 
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length L = 1 m, radius a = 2 mm, placed at height h = 0.5 m 
above infinite perfectly conducing plane. 

 
 
Second analyzed geometry, geometry (b), consist of two wires 
of the same length L = 10 m and radius a = 2 cm, placed in 
free space, as shown on Fig. 4. (b).  The wires are displaced 
relative to each other with the parameters Δy = 1 m, Δz = 1 m. 

The results are compared with the referent results obtained 
by Galerkin-Bubnov Boundary Integral Equation Method 
(GB-BIEM) [17], which is the direct time domain method that 
has proven to be rather accurate for straight wire geometries 
[2]. The referent results for the time-domain currents at the 
center of the wire obtained by GB-BIEM are shown in Figs. 
5-6 for geometry (a) and (b), respectively. 

 

 
 
When performing indirect time domain analysis, the 

transfer functions of the both geometries are obtained, as 
depicted in Fig. 7. It can be observed that the geometry (b) is 
highly resonant when compared with geometry (a). The use of 
the adaptive sampling can therefore be expected to have more 
impact in this case, then if simple structure, without the highly 
pronounced peaks in its transfer function, is analyzed.  

This can be clearly observed in Figs 8-9, which depict 
relative error of the results obtained via uniform and adaptive 
sampling as a function of the total number of samples N. 

 

 

 

 
 
 Figs. 8-9 are obtained by evaluating the current at the 

centre of the wire for different number of samples using 
adaptive and uniform sampling and calculating the relative 
error to the referent (GB-BIEM) results according to the 
following expression: 

 

 0

0

( ) ( )

( )

T

NEC BEM

T

BEM

i t i t dt

Err

i t dt

−

=
∫

∫
. (23) 
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Fig. 9.  Relative error to reference results for uniform and adaptive 
sampling as a function of N for geometry (b), wire 2 

Fig. 7.  Absolute value of the transfer function H(f) for geometry (a) 
and wire 2 of geometry (b) 
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Fig. 5.  Current at the center of the wire, geometry (a) 
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Fig. 6.  Current at the center of the wires, geometry (b) 

 
Fig. 4.  Scattering on two observed geometries 
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Fig. 8.  Relative error to reference results for uniform and adaptive 
sampling as a function of N for geometry (a) 
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where T is the observation period, iBEM(t) is the referent 
time domain current, and iNEC(t) is the current obtained for the 
same wire point using NEC in combination with frequency to 
time domain inversion. The integrals in (23) are numerically 
evaluated using different number of samples N, via uniform, 
and then adaptive sampling. 

When compared to simple uniform sampling, the adaptive 
sampling algorithm reduces the total number of samples by a 
factor of two in the case of geometry (a), as depicted by Fig. 
8. However, if the geometry (b) (which is highly resonant, as 
illustrated in Fig. 7 (b)) almost tenfold decrease in the number 
of samples can be expected if adaptive sampling is used, as 
illustrated in Fig. 9. 

 

 
 
The comparison of the total estimated number of operations 

NTOT for both geometries are depicted in Table I. In case the 
analytic inverse Fourier transform is considered, the number 
of frequency samples is given by NF, while the number of time 
samples NT, as already mentioned, can be arbitrarily chosen. 
In this case, NT was chosen sufficiently high to generate 
graphical depiction of the time domain currents illustrated by 
Figs. 5, 6. The total number of operations is estimated using 
following expression: 
 
 2TOT F TN N N= ⋅ . (24) 
 

In case the inverse FFT is considered, the number of 
frequency samples is the same as the number of time samples, 
that is  N = NF = NT. The number of iterations during the 
adaptive sampling is given by K. The total number of 
operations NTOT is multiplied by K, since in this case the 
frequency to time domain inversion is performed after each 
iteration: 

 
 2log ( )TOTN K N N= ⋅ ⋅ . (25) 

 
Table I displays the relevant data for both inverse analytic 

Fourier transform and the inverse FFT for both geometries. By 
comparing the two approaches, it can be observed that inverse 
FFT takes almost half of the overall number of operations in 
case geometry (a) is being analyzed. However, in case of 
geometry (b), the number of operations increases by more 
than a tenfold in case inverse FFT is used. This is mainly due 
to the significant reduction of the number of frequency 
samples NF, which directly determines the computational time 

cost of the analytic inverse Fourier transform. If inverse FFT 
is used instead, the transfer function has to be resampled 
densely enough using interpolation, regardless of the 
efficiency gains resulting from the adaptive sampling. 
However, it should be noted that the data displayed in Table I 
pertains to the case when frequency to time domain inversion 
is performed with each iteration during the adaptive sampling. 
As previously mentioned, this is convenient, but not critical to 
the adaptive sampling algorithm. In case the inversion is 
performed only once instead, the overall number of operations 
of the inverse FFT will be reduced by a factor of K. In this 
case inverse FFT is more computationally efficient even in 
case of the geometry (b). 
 

V. CONCLUSION 
In this work previously published adaptive sampling 
algorithm is further modified to obtain the time domain results 
from the frequency domain results, using the analytic inverse 
Fourier transform instead of inverse FFT. Unlike FFT, the 
derived analytical expression need not be evaluated for the 
complete frequency domain results, but only for the 
frequencies changed during each iteration, which makes this 
approach more suitable for the use with iterative algorithm. 
The expressions are valid for arbitrary time instants, making 
the proposed approach particularly useful for geometries 
where a very early times of the geometry transient response 
are of interest, and allowing the choice of arbitrary small set 
of time samples. These advantages can also lead to increased 
efficiency of the frequency to time domain inversion when 
compared to inverse FFT, depending on the geometry that is 
being analyzed. However, the overall performance differences 
are not significant, since calculation time requirements of 
inverse FFT during each iteration is typically negligible to the 
overall iteration calculation time. The principle advantage of 
using the simple analytical expression instead of the inverse 
FFT is much easier formulation and implementation within the 
existing adaptive sampling algorithm. 
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