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This paper addresses the position-control problem with variable gains for robot manipulators. We present a
new regulator based on a hyperbolic-sine structure with tuning rules for control gains. It is demonstrated that
the equilibrium point of the closed-loop system is globally, asymptotically stable according to Lyapunov theory.
By using a similar methodology, this concept can be extended to other unbounded controllers such as PD and
PID. In order to show the usefulness of the proposed scheme and with the purpose of validating its asymptotical
stability property, an experimental comparison involving constant gains controllers, for example: simple PD, PID
and hyperbolic-tangent schemes vs variable-gains hyperbolic-sine and PD control schemes, was performed by using
a three degree-of-freedom, direct-drive robot manipulator.
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Neograničeni regulatori s promijenjivim pojačanjem za upravljanje robotskim manipulatorima s direkt-
nim pogonom. Ovaj rad se bavi problemom kontrole pozicije s promjenjivim pojačanjem robotskog manipulatora.
U radu je predstavljen novi regulator baziran na hiperbolično-sinusnoj stukturi s pravilima uga�anja upravljačkih
pojačanja. Pokazano je da je točka ravnoteže sustava u zatvorenoj petlji globalno i asimptotski stabilna prema
Lzapunovljevoj teoriji stabilnosti. Korištenjem slilčne metodologije, predstavljeni koncept se može primijeniti na
ostale neograničene kontrolere, npr. PD i PID. Kako bi pokazali korisnost predložene sheme i s ciljem provjere
asimptotske stabilnosti, provedena je eksperimentalna usporedba izme�u kontolera s konstantnim pojačanjem (npr.
jednostavni PD, PID i hiperbolični-tangencijalna shema) i hiperbolično-sinusnih i PD upravljačkih shema s prom-
jenjivim pojačanjem korištenjem robotskog manipulatora s direktnim pogonom i tri stupnja slobode.

Ključne riječi: regulator, promjenjivo pojačanje, robotski manipulator, algoritam upravljanja

1 INTRODUCTION

In this paper, we focus on the position-control problem
(also referred to as regulation), which is one of the most
relevant issues in robotics. The main goal of position con-
trol in joint space is to move the manipulator’s end-effector
to a fixed, desired target, which is assumed to be constant
regardless of its joint position.

This task was used in order to compare the performance
obtained with unbounded PD and PID controllers, and a
bounded controller (hyperbolic tangent) against the new
regulator based on the hyperbolic sine structure (SINH)
with variable gains, in this phase we are also using the
proposed methodology on variable-gains to PD scheme.
All controllers were implemented on a three-degree-of-
freedom direct-drive, robot manipulator.

In the literature, most of the papers consider the pro-
portional and derivative gains as constants. In 1953, the
concept of Variable Gain [1] was first presented and since

then, it has been used in many areas like control, automa-
tion, medical applications, filters, operational amplifiers,
etc.

In robotics and control, many different contributions
have been developed using this concept. For instance,
in [2], time–varying gains for an adaptive algorithm were
presented as well as variations of algorithms proposed in
other papers in which time–varying setting gains were in-
troduced. Years later, [3] presented a PD controller with
proportional and derivative gains as nonlinear functions
of the robot state, for force and contact control; in the
same year, [4] analyzed the properties of different nonlin-
ear PI controllers with variable gains; in this work different
structures and methods of fuzzy control have been studied,
while performing stability tests and determining the most
suitable analytical approach. Also, in [5], a fuzzy control
MIMO and a nonlinear control PI with variable gains, were
compared. In 1998, [6] and [7] studied the controller struc-
ture of the Takagi–Sugeno (TS) type, using a new and more
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simple scheme of rules. In this work, all consequential
rules use a common function and also, they are propor-
tional to other conditions, which means that the number of
required parameters is reduced for each rule and, by means
of a proportionality rule, a TS fuzzy control approach and a
nonlinear PI controls with variable gains, were considered.

In 2000, [8] proposed two variable-gain algorithms, us-
ing the least squares method in order to achieve high-speed
tracking of parameters and a smooth performance in steady
state. Later [9] presented the Mamdani fuzzy controllers
with state feedback of variable gains, including a demon-
stration of local stability.

In [10], an universal integral controller with nonlinear
gains for nonlinear systems, was proposed. In this work,
a sliding-mode controller is designed with the purpose
of increasing the performance of the transient response
of a second-order system. Stability tests were performed
and local, asymptotical stability in the sense of Lyapunov,
was demonstrated. This work demonstrated that the non-
linearity of proportional and integral gains reduce the over-
shoot and enhances the transient response of the robot ma-
nipulator.

In [11] this work was extended to fuzzy controllers
of the Mamdani type, by studying the two and three-
dimensional analytic structure of these controllers and set-
ting the required conditions to become, structurally, PID,
PI and PD controllers with variable gains. In other words,
this work was aimed at establishing the conditions that
enable a fuzzy controller, whose input-output relationship
can be explicit or implicitly expressed, to achieve the form
of a PID, PI or PD controller with variable gains.

In [12] a PD controller with variable gains applied
to a tracking task using Growing Multi–Expert Networks
(GMN), was designed. This method improved the perfor-
mance in size of the neural network.

In 2005 [13], another tracking-control structure for
robot manipulators is presented. Such a control structure
consists of a sliding mode PID control that considered the
total or partial knowledge of all the dynamics of the robot
manipulator. It also proved the global, asymptotical stabil-
ity in the sense of Lyapunov, formulated in terms of a full
quadratic form.

Two variable–gain controllers were presented in [14].
The first fuzzy controller is designed in order to cancel the
effects of variable disturbance which is, in essence, the de-
viation of the actual system dynamics from the nominal
plant as the system traverses a specific trajectory. In the
second one, in a set of all linear subsystems, the distur-
bance was modeled for each subsystem, considered as a
nominal plant, taking into account the effects of its neigh-
bor subsystems in which a control action is computed to
locally stabilize each nominal plant.

Another neural-networks control method, based on
variable gains, was developed in [15]. The control gains
were adapted for a teleoperated system for rehabilitation
tasks, ensuring a stable, smooth motion of the slave robot
while reducing the disruption caused by spasms of the pa-
tient. The gains varied depending on changes of the stiff-
ness and inertia of the environment.

In [16], gains which vary according to a polynomial
curve, which enabled a PI controller to remove the over-
shoot characteristic of this type of control, is designed with
the purpose of controlling the speed of an induction motor.

In recent years, [17–19] presented a PD control with
variable gains for tracking control of a robot manipula-
tor. In this work, the tuning is a self–organizing, fuzzy-
like function algorithm, which depends on the error posi-
tion. Such a controller was compared with a classic PD
controller. By means of a candidate Lyapunov function,
the required conditions for stability in a region, were es-
tablished. In [20], variable-gain integral controllers for a
linear motion system was presented and demonstrated on a
scanning-motion system.

In this paper, the most important motivation is to de-
sign a new control scheme for position problem of robot
manipulators that achieves a good performance in terms
of position error while simplifying the tuning of the gains,
avoiding the saturation of the motors. The main difference
with respect to other variable-gains schemes reported in the
literature is that the tuning rules of variable gains are based
on continuous functions of state variables, this is the pro-
portional gain depends on position error and the derivative
gain depends of joint velocity, only. The stability analysis
is performed by means of Lyapunov theory and, in order
to validate the performance of the proposed variable-gain
schemes, experimental results of the controllers applied to
a three degree–of–freedom direct drive robot manipulator,
are presented.

The organization of this paper is as follow: Section 2
focuses on the description and presentation of useful prop-
erties of the robot dynamics of an n–degree–of–freedom,
direct-drive robot manipulator; Section 3 presents the PD-
type control with variable gains and the control-problem
formulation. Section 4 presents a new controller based
on the hyperbolic-sine structure with variable gains, the
control-problem formulation and the stability analysis. In
the Section 5 the robustness of the controller is shown by
the position error bound. Section 6 describes the experi-
mental platform and the new scheme of variable gains used
for the proposed controllers. Finally, the experimental re-
sults are presented in Section 7.

2 ROBOT DYNAMICS
Consider the nonlinear dynamics of a n–degree–of–

freedom rigid robot manipulator, and assume that all links
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are joined together by revolute joints. See [21–23].

M(q)q̈ + C(q, q̇)q̇ + g(q) +Bq̇ = τ (1)

where q, q̇ and q̈ represent the n × 1 vectors of joint dis-
placements, joint velocities and joint accelerations, respec-
tively; τ is the n×1 vector of applied torques; the manipu-
lator’s inertia matrix is defined by M(q), which is a n× n
symmetric positive definite matrix; C(q, q̇) is the n × n
matrix of centripetal and Coriolis torques; g(q) is the n×1
vector of gravitational torques obtained as the gradient of
the robot potential energy U(q)

g(q) =
∂U(q)
∂q

(2)

and B is the n× n diagonal matrix of positive entries, de-
noting the viscous coefficients of each joint. Due to the
complex, nonlinear nature of the friction phenomena, a
model containing only viscous friction is considered as an
acceptable simplification for many robotic applications.

The following are important properties of the dynamic
model (1) [24, 25],

Property 1 The matrix C(q, q̇) and the time derivative of
the inertia matrix Ṁ(q) satisfy the following,

q̇T
[
1

2
Ṁ(q)− C(q, q̇)

]
q̇ = 0 ∀q, q̇ ∈ Rn

Ṁ(q) = C(q, q̇) + C(q, q̇)T .

See [26].

Property 2 For robots having exclusively revolute joints,
there exist a number kc1 > 0 such that

‖C(q,x)y‖ ≤ kc1‖x‖‖y‖

for all q,x,y ∈ Rn

Property 3 If positive constants kpu and kpl exist such
that kpu ≥ kpi(q̃i) ≥ kpl∀q̃i ∈ R, for i = 1, . . . , n. These
represent upper and lower bounds of certain continuously
integrable functions as follows,

1

2
kpl‖q̃‖2 ≤

∫ q̃

0

σTKp(σ)dσ ≤
1

2
kpu‖q̃‖2. (3)

See [27–29]

3 PD CONTROL WITH VARIABLE GAINS

Consider a PD-type control scheme with variable gains
as presented in [29], which is a control law for motion con-
trol. This can be written as

τ = Kp(q̃)q̃ −Kv(q̇)q̇ + g(q) (4)

where q̃ = qd − q denotes the n × 1 vector of position
error, Kp(q̃) and Kv(q̇) are diagonal matrices of n × n
order, whose entries of Kp(q̃) are denoted by kpi(q̃i) and
the entries ofKv(q̇) denoted by kvi(q̇i), are nonlinear even
positive functions.

The closed–loop system is obtained by substituting the
control law (4) into the robot dynamics (1). This can be
written as

d

dt

[
q̃
q̇

]
=

[
−q̇

M(q)−1[Kp(q̃)q̃ −Kvq̇ − C(q, q̇)q̇ −Bq̇]

]

(5)
which is an autonomous nonlinear differential equation
whose origin of the state space is the unique equilibrium
point.

3.1 Lyapunov function candidate

In order to study the stability of the equilibrium point
obtained above, consider the following candidate Lya-
punov function used in [29],

V (q̃, q̇) =
1

2
q̇TM(q)q̇ +

∫ q̃

0

σTKp(σ)dσ − εq̃M(q)q̇

(6)

For the complete demonstration see [29].

4 SINH CONTROL WITH VARIABLE GAINS

In this section, the new SINH controller with nonlin-
ear gains matrix as function of the robot configuration, is
presented. The proposed control law is described by

τ = Kp(q̃)




sinh(q̃1)
sinh(q̃2)

...
sinh(q̃n)


−Kv(q̇)q̇ + g(q) (7)

where q̃ = qd − q denotes the n × 1 vector of position
error, Kp(q̃) and Kv(q̇) are diagonal matrices of n × n
order, whose entries are denoted by kpi(q̃i) and kvi(q̇i),
respectively.

The closed–loop system is obtained by substituting the
control law (7) into the robot dynamics (1). This can be
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written as,

d

dt

[
q̃
q̇

]
=




−q̇

M(q)−1[Kp(q̃)




sinh(q̃1)
sinh(q̃2)

...
sinh(q̃n)


−Kv(q̇)q̇−

−C(q, q̇)q̇ −Bq̇]




(8)
which is an autonomous, nonlinear differential equation
and the origin of the state space is the unique equilibrium
point.

4.1 Lyapunov function candidate
In order to study the stability of the equilibrium point,

consider the candidate Lyapunov function described by,

V (q̃, q̇) =
1

2
q̇TM(q)q̇ +

∫ q̃

0




sinh(σ1)
sinh(σ2)

...
sinh(σn)




T

Kp(σ)dσ−

− εq̃TM(q)q̇

(9)

where, for notation purposes, the integral representing

∫ q̃

0




sinh(σ1)
sinh(σ2)

...
sinh(σn)




T

Kp(σ)dσ =

n∑

i=1

∫ q̃i

0

sinh(σi)kpidσi,

ε > 0 is defined by,

ε = ε(‖q̃‖) = ε0
1 + ‖q̃‖ (10)

where ε0 is a positive constant. εmust be sufficiently small
so as to satisfy,

kplλmin{M(q)}
λ2Max{M(q)} > ε2 > 0 (11)

kpl and kpu are chosen as design constants and, by using
Property 3, sufficient conditions exist to make V (q̃, q̇) a
positive, definite function.

Proof 1 Consider

∫ q̃

0




sinh(σ1)
sinh(σ2)

...
sinh(σn)




T

Kp(σ)dσ ≥
1

2
kpl

∥∥∥∥∥∥∥∥∥




sinh(q̃1)
sinh(q̃2)

...
sinh(q̃n)




∥∥∥∥∥∥∥∥∥

2

≥1

2
kpl‖q̃‖2.

(12)

the candidate Lyapunov function (9) can be bounded as
follows,

V (q̃, q̇) ≥1

2
λmin{M(q)}‖q̇‖2 + 1

2
kpl‖q̃‖2−

− ελMax{M(q)}‖q̃‖‖q̇‖
(13)

which is rewritten as,

V (q̃, q̇) ≥
1

2

[
‖q̃‖
‖q̇‖

] [
kpl −ελMax{M(q)}

−ελMax{M(q)} λmin{M(q)}

] [
‖q̃‖
‖q̇‖

]

(14)

Since ε is chosen in such a way that the condition (11)
is satisfied, it is shown that V (q̃, q̇) is a positive definite
function.

4.2 Time derivative of the candidate Lyapunov func-
tion

The time derivative of the candidate Lyapunov function
can be written as,

V̇ (q̃, q̇) =q̇TM(q)q̈ −




sinh(q̃1)
sinh(q̃2)

...
sinh(q̃n)




T

Kp(q̃)q̇+

+
1

2
q̇T Ṁ(q)q̇ + εq̇TM(q)q̇−

− εq̃T Ṁ(q)q̇ − εq̃TM(q)q̈ − ε̇q̃TM(q)q̇

(15)

where the Leibniz rule for the derivation of integrals has
been applied. Previous expression, along the trajectories
of the closed–loop equation (8), is expressed by

V̇ (q̃, q̇) =

�
�
�

�
�
�

�
�
��

q̇TKp(q̃)




sinh(q̃1)
sinh(q̃2)

...
sinh(q̃n)


− q̇

TKv(q̇)q̇−

− q̇TBq̇ + 1

2
q̇T Ṁ(q)q̇ − q̇TC(q, q̇)q̇−

�����������

−




sinh(q̃1)
sinh(q̃2)

...
sinh(q̃n)




T

Kp(q̃)q̇ + εq̇TM(q)q̇−

− εq̃T Ṁ(q)q̇ − εq̃TKp(q̃)




sinh(q̃1)
sinh(q̃2)

...
sinh(q̃n)


+

+ εq̃TKv(q̇)q̇ + εq̃TC(q, q̇)q̇ + εq̃TBq̇−
− ε̇q̃TM(q)q̇

(16)
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now, by using the skew–symmetry Property 1 and Ṁ(q) =
C(q, q̇) + C(q, q̇)T , the time derivative of the candidate
Lyapunov function can be written as,

V̇ (q̃, q̇) =− q̇T [Kv(q̇) +B − εM(q)]q̇−

− εq̃TKp(q̃)




sinh(q̃1)
sinh(q̃2)

...
sinh(q̃n)


+ εq̃T [Kv(q̇) +B]q̇−

− εq̃TC(q, q̇)T q̇ − ε̇q̃TM(q)q̇.

(17)

where ε̇ = ε0
‖q̃‖[1+‖q̃‖]2 q̃

T q̇; now, by taking the upper–
bounds of the followings terms,

−εq̃TC(q, q̇)T q̇ = −εq̇TC(q, q̇)q̃
≤ | − εq̇TC(q, q̇)q̃|
≤ ε‖q̇‖‖C(q, q̇)q̃‖
≤ εkc1‖q̇‖2‖q̃‖
≤ ε0kc1‖q̇‖2 (18)

where, by using the Property 2 and the definition of ε in
(10).

−ε̇q̃TM(q)q̇ = − ε0
‖q̃‖[1 + ‖q̃‖]2 q̃

T q̇q̃TM(q)q̇

≤
∣∣∣∣−

ε0
‖q̃‖[1 + ‖q̃‖]2 q̃

T q̇q̃TM(q)q̇

∣∣∣∣

≤ ε0
‖q̃‖[1 + ‖q̃‖]2 ‖q̃‖‖q̇‖‖q̃‖‖M(q)q̇‖

≤ ε0
1 + ‖q̃‖‖q̇‖

2λMax{M(q)}

≤ ε0‖q̇‖2λMax{M(q)}. (19)

By bounding the time derivative (15), the previous ex-
pression is reduced to

V̇ (q̃, q̇) ≤− [λmin{Kv(q̇)}+ λmin{B}−
− ε0kc1 − 2ε0λMax{M(q)}]‖q̇‖2−
− ε0

1 + ‖q̃‖λmin{Kp(q̃)}‖q̃‖2+

+ ε0[λMax{Kv(q̇)}+
+ λMax{B}]‖q̃‖‖q̇‖

(20)

which in turn may be written as

V̇ (q̃, q̇) ≤ −
[
‖q̃‖
‖q̇‖

]T
Q

[
‖q̃‖
‖q̇‖

]
(21)

where the entries of the matrix Q are defined by

Q(1, 1) =
ε0

1 + ‖q̃‖λmin{Kp(q̃)}

Q(1, 2) =− ε0
2
λMax{Kv(q̇)}+ λMax{B}]

Q(2, 1) =Q(1, 2)

Q(2, 2) =λmin{Kv(q̇)}+ λmin{B} − ε0kc1−
− 2ε0λMax{M(q)}

(22)

the required conditions on ε0 for V̇ (q̃, q̇) to be definite neg-
ative are given by,

4λmin{Kp(q̃)}(λmin{Kv(q̇)}+ λmin{B})
D1 +D2

> ε0 ≥ ε
(23)

where,

D1 = [1 + ‖q̃‖][λMax{Kv(q̇)}+ λMax{B}]2(24)
D2 = 4λmin{Kp(q̃)}(kc1 + 2λMax{M(q)}) (25)

The knowledge of the actual numerical value of ε in the
proposed controller is not required; it is just needed for
stability purposes. In this way, we choose ε so as to sat-
isfy simultaneously (11) and (23). Thus, by invoking Lya-
punov’s direct method (see [30, 31]), we conclude that the
origin of the state space is a global, asymptotically stable
equilibrium point of the closed–loop system (8).

5 POSITION ERROR BOUND

For more knowledge about the position error, con-
sider the condition on ε defined by (23) then we have
V̇ (q̃, q̇) ≤ 0 and in another hand the Proof 1 demonstrate
that V (q̃, q̇) > 0, therefore the Lyapunov function candi-
date is decreasing function for t ≥ 0 and it also has:

V (q̃(0), q̇(0)) ≥ V (q̃(t), q̇(t)) > 0; ∀t ≥ 0, (26)

so,

V (q̃(0), q̇(0)) =
1

2
q̇(0)TM(q(0))q̇(0)+

+

∫ q̃

0

σ(0)TKp(σ(0))dσ−

− εq̃(0)TM(q(0))q̇(0)

(27)

then taking the upper bounds evaluated in the initial condi-
tion, the previous expression may be written as,

V (q̃(0), q̇(0)) ≤1

2
λMax{M(q(0))}‖q̇(0)‖2+

+
1

2
kpu‖q̃(0)‖2−

− ε0‖q̇(0)‖2λMax{M(q(0))}

(28)
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Fig. 1. i-th element of matrix Kp

replacing (13), (28) in (26) and after some algebra, the
norm of position error can be expressed as,

‖q̃(t)‖ ≤

√√√√√√

1

2
kpu‖q̃(0)‖2

1

2
kpl

(29)

It is clear that the position error is bounded and inde-
pendent of the model uncertainties, so we can conclude the
robustness of the controllers against to this type of uncer-
tainty.

6 DESIGN OF VARIABLE-GAINS MATRIX

For the stability of the closed–loop systems described
in eqs. (5) and (8), the proportional Kp(q̃) and deriva-
tive Kv n × n matrices need to be diagonal; the entries
of Kp(q̃) and Kv are, by design, nonlinear, positive even
functions.

6.1 Proportional matrix Kp(q̃)

In this case we propose, as a tuning rule for the entries
of the proportional matrix, continuous functions inversely
proportional to the absolute value of the position error. In
this way, saturation of the maximum torque of the robot’s
actuators is avoided by choosing a small constant for large
position errors, and a higher constant for small positioning
errors.

The following function is proposed, for each entry of
the matrix,

kpi(q̃i) = e−ai|q̃i|+bi ; (30)

where ai and bi are positive constants. Fig. 1 presents a
graph of (30).
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25
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k
v
i

Fig. 2. i-th element of matrix Kv

The value of bi can be used as upper bound, chosen as
follows,

bi = log(kpu) (31)

where kpu is the maximum desired value of kpi(q̃i).
The value of ai is chosen as a function of the desired

position and maximum torque of servoactuators.

ai =

bi − log

(
τmaxi

|f(qdi)|

)

|f(qdi)|
(32)

where f(qdi) is the value of the desired position evaluated
in the controller’s function while τmaxi is the maximum
torque. In order to avoid saturation of the motors, they
operate in the linear range, for example, at a value of 80%
of the maximum torque.

6.2 Derivative matrix Kv(q̇)

The entries for the derivative matrix were chosen as
continuous functions, proportional to the absolute value of
the joint velocities plus an offset.

The following functions

kvi(q̇i) = ci|q̇i|+ di, (33)

represent our approach for the entries of each element of
the derivative matrix. Fig. 2 presents the graph of (33).

The values of constants c1 = 0.1, c2 = 0.1 and
c3 = 0.01 correspond to the base, shoulder and elbow,
respectively. The offset values are d1 = 15, d2 = 60 and
d3 = 1.25 for the base, shoulder and elbow respectively.

7 EXPERIMENTAL RESULTS

The experimental results were obtained by using
a three-degree-of-freedom, direct-drive, antrophomorfic
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Fig. 3. Experimental robot manipulator “Rotradi”

robot manipulator named “Rotradi”, which is shown in
Fig. 3. This device consists of three 6061 aluminum links,
actuated with three brushless, direct-drive servoactuators,
DM–1050A, DM–1150A and DM–1015B models from
Parker Compumotor, for the base, the shoulder and el-
bow joints, respectively [32]. The robot was designed and
built at the Robotics Laboratory of Benemérita Universi-
dad Autónoma de Puebla (BUAP). The servoactuators are
operated in torque mode, which means that the motor acts
as a torque source where an analogue voltage is provided
as a reference for the torque signal. The servoactuators fea-
tures are shown in Table 1. The robot system has a device
designed for reading the encoders and generate reference
voltages, which is a motion–control board of Precision Mi-
croDynamics Inc. The system runs in real time in a PC host
computer Pentium–1 at 166MHz with a 2.5 ms sample rate
and the control programs are written in C code.

Table 1. Robot arm servo actuators

Joint Model Max. Torque Resolution
Base DM–1050 50 [Nm] 1,024,000 [cpr]

Shoulder DM–1150A 150 [Nm] 1,024,000 [cpr]
Elbow DM–1015B 15 [Nm] 1,024,000 [cpr]

For the PD controller, the initial value of the pro-
portional gains are kp1(q̃1(t0)) = 25.33, kp2(q̃2(t0)) =
151.92 and kp3(q̃3(t0)) = 15.20; the final values
are kp1(q̃1(tf )) = 197.6, kp2(q̃2(tf )) = 592.8 and
kp3(q̃3(tf )) = 198.1. For the derivative gains, the max-
imum values are kv1 = 24, kv2 = 70.8 and kv3 = 3.9.

The position errors for the PD controller with variable
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Fig. 4. Position errors for PD controller with variable
gains
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Fig. 5. Applied torque for PD controller with variable
gains

gains are shown in the Fig. 4 and, for the SINH controller
with variable gains, the errors are shown in Fig. 8. The
performance of both controllers is similar and validate the
functionality of the proposed variable-gains scheme.

Figures 5 and 9 show the applied torque, which do not
exceed the maximum torque of the servoactuators.

Finally, the change of the proportional gains are shown
in Fig. 6 and Fig. 10, for the PD and SINH controllers,
respectively. In the case of the derivative gains, the change
of the gains are shown in Fig. 7 for the PD controller, and
in Fig. 11 for the SINH controller.

For the SINH controller, the initial value of the pro-
portional gains are kp1(q̃1(t0)) = 17.37, kp2(q̃2(t0)) =
137.18 and kp3(q̃3(t0)) = 13.73. The final values
are kp1(q̃1(tf )) = 196.2, kp2(q̃2(tf )) = 593.7 and
kp3(q̃3(tf )) = 198.3. For the derivative gains, the max-
imum values are kv1 = 23.5, kv2 = 70.6 and kv3 = 3.9.
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Fig. 6. Proportional gains for PD controller
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Fig. 7. Derivative gains for PD controller
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Fig. 8. Position errors for SINH controller with variable
gains
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Fig. 9. Applied torque for SINH controller with variable
gains
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Fig. 10. Proportional gains for SINH controller
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Fig. 11. Derivative gains for SINH controller
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Fig. 12. Position errors for a manually-tuned PD con-
troller

The PID control with constant gains is an unbounded
scheme given by:

τ = Kpq̃ +Ki

∫ t

0

q̃(σ)dσ −Kvq̇ + g(q) (34)

while that the hyperbolic tangent control (Tanh) with con-
stant gains is a bounded scheme with the following form:

τ = Kp tanh (q̃)−Kv tanh (q̇) + g(q) (35)

where Kp,Ki,Kv are 3 × 3 proportional, integral and
derivative constant gains, respectively.

The L2−norm is a method for measuring the perfor-
mance of controllers. Manually tuning methods for the
constant gains were made for PD, PID and hyperbolic
tangent (Tanh) control schemes; for comparison reasons
among these gains, their profiles are presented in Fig. 12,
13 and 14 respectively.

In Fig. 15, the L2−norm for the transient state is
shown, where PD, PID and Tanh are a manually-tuned con-
trollers for reference, PDv and SINHv is a PD an SINH
controllers with variable gains, respectively.

In transient state, the controllers’ performance is simi-
lar and competitive because it was scheduled to smoothly
arrive at the desired point by setting the settling speed, ex-
cept Tanh controller, that was the slowest shown here.

With the L2−norm for the steady-state, shown in
Fig. 16, we can show the performance of the controllers
with variable gains, where the errors of the PD controller
with variable gains is 2.1%, 16.3% and 11.6% of the errors
for the manually-tuned PD controller in the elbow, shoul-
der and base, respectively and competing with PID and
Tanh controllers, which have proven a good performance
in a steady-state. In the case of the SINH controller with
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Fig. 13. Position errors for a manually-tuned PID con-
troller
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Fig. 14. Position errors for a manually-tuned Tanh con-
troller
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Fig. 16. L2−norm in steady state.
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Fig. 17. Planned trajectory for PD controller

variable gains, the errors were 0.3%, 10.6% and 31.5% of
the error for the manually-tuned PD controller in the elbow,
shoulder and base, respectively.

The presented control schemes were designed for reg-
ulation, i.e., position control considering a constant ref-
erence qd. Greater demands are placed on point-to-point
control, which is why a planned trajectory consisting of a
circle with a radius of 20 cm, with center in (0.3,−0.3)
m, that is to be completed in 20 seconds, was implemented
and is presented in Fig. 17, where PDv is a PD controller
with variable gains, SINH is our proposed controller with
variable gains, while PD, PID and Tanh are manually-
tuned controllers. It is easy to observe that the performance
of the manually-tuned PD controllers is very poor, unlike
the controllers with variable gains (SINH and PD), which
have a better performance.

8 CONCLUSION

In this paper a new control scheme based on hyperbolic
sine (SINH) with variable gains, has been presented, where
the equilibrium point of the closed-loop equation is asymp-
totically stable according to Lyapunov theory. The tun-

ing procedure of the variable gains is based on continuous
functions in order to define the profile of these gains; this
method can be extended to other schemes; this is the case
of PD controllers whose performance can be improved, as
compared to the same scheme with constant gains.

The usefulness of the proposed SINH scheme was val-
idated experimentally by using a direct-drive robot manip-
ulator involving constant gains controllers. It was shown
that the position error is bounded and it does not depend
on the robot manipulator dynamics evidencing robustness
to parametric uncertainty.
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