
Krešimir Mišura, Mario Žagar

Negotiation in Internet of Things

DOI
UDK

10.7305/automatika.2016.10.1193
004.775:331.106.42

Original scientific paper

Internet of things as a market, and the number of connected devices in particular is growing very rapidly. Cur-
rently, application owners deploy new devices for each application that needs the data. As the number of sensors
increases, it will become much more practical to reuse existing sensors for new applications than to deploy new
ones. But the problem is that the application owner needs to agree with device owners on conditions under which
will the data be made available to applications. Doing this manually is very expensive both in terms of money and
time. We implemented a system that does this automatically using negotiating agents. The system was tested on
simulated environments and showed that it can mediate between devices and applications with reasonable perfor-
mance.

Key words: Internet of things, Negotiation, Software Agents

Pregovaranje u Internetu stvari. Internet stvari kao tržište, a posebno broj spojenih ure�aja, raste vrlo brzo.
Danas vlasnici aplikacija postavljaju nove ure�aje za svaku aplikaciju kojoj su potrebni podatci. Kako se povećava
broj senzora u upotrebi, postaje sve praktičnije koristiti postojeće senzore nego postavljati nove. Problem pred-
stavlja činjenica da se vlasnik aplikacije mora dogovoriti s vlasnicima ure�aja o uvjetima pod kojima će aplikaci-
jama biti dozvoljeno dohvaćanje izmjerenih vrijednosti. Pojedinačno je dogovaranje izme�u vlasnika za svaki
ure�aj skupo i sporo. Izgradili smo sustav koji automatizira ovaj proces pomoću programskih agenata koji prego-
varaju. Sustav je ispitan na simuliranom okruženju i pokazuje da može posredovati izme�u ure�aja i aplikacija s
razumnim performansama.

Ključne riječi: Internet stvari, Pregovaranje, Programski agenti

1 INTRODUCTION

The basic idea of Internet of Things (IoT) concept is the
pervasive presence around us of a variety of things or ob-
jects such as Radio-Frequency IDentification (RFID) tags,
sensors, actuators, mobile phones, etc. which are able to
interact with each other and cooperate with their neigh-
bors to reach common goals [1]. More specifically, in this
paper we are referring to IoT as a loosely coupled, de-
centralized system of smart objects - that is, autonomous
physical/digital objects augmented with sensing, process-
ing and network capabilities [2]. Web of Things is a related
concept to Internet of Things. Unlike IoT which only as-
sumes device connectivity on the IP layer, Web of Things
assumes that devices are accessible using Web protocols
like HTTP. In [3,4] the authors define WoT devices as first-
class citizens of the Web. They consider WoT as a refine-
ment of the IoT by integrating smart things not only into
the Internet (the network), but into the Web (the applica-
tion layer). Even though the proof-of-concept implemen-
tation presented in this paper uses Web connected devices,
in general negotiation strategies between device and appli-

cation owners can be applied just as well for devices that
aren’t available using Web protocols so we use the term
’Internet of Things’ in the remainder of this paper.

There is already a lot of Internet connected devices, and
this number is expected to grow rapidly [5]. This multitude
of devices makes it very important to have a simple and
efficient mechanism for applications to find devices and
data they can use.

Multiple discovery architectures were already pro-
posed in the literature [6, 7], but they assume that devices
offer their data publicly by the very act of registering to
the discovery services. There is no mechanism that would
allow device owner to specify the amount of money per
measurement for which he would be willing to share sen-
sor readings.

When discovering appropriate devices, users require-
ments generally fall in two distinct categories, non-
negotiable and negotiable [8]. For example, if a user is
interested in measuring the temperature at certain coordi-
nates, he will certainly not be satisfied with a humidity
or pressure measurements. This is an example of a non-

Online ISSN 1848-3380, Print ISSN 0005-1144
ATKAFF 57(2), 304–318(2016)

AUTOMATIKA 57(2016) 2, 304–318 304



Negotiation in Internet of Things K. Mišura, M. Žagar

negotiable requirement. However, he is probably willing
to accept measurement from a sensor that is nearby even
though not at the exact coordinates, if the price is lower or
some other conditions are more suitable. This paper deals
primarily with negotiable requirements.

We propose a marketplace, where applications buy data
from devices, and autonomous agents are used to find the
exact conditions (price, time, etc.) under which the data
is provided. They simply need to agree on the price (and
possibly other criteria such as time of delivery). We named
this marketplace and supporting systems ’IoT Mediator
Platform’. Virtual market and negotiation problems were
already investigated in detail by the MultiAgent commu-
nity [9–12]. We believe that it is possible to use the same
mechanisms in the IoT domain to create dynamic contracts
between devices and applications, as shown in Figure 1.

One interesting use-case of this marketplace is creating
a city heart rate monitor where marketing agencies could
gather real time heart rate data in a city and use that data
in their marketing campaigns for example to show how
the city heart rate rises during important sporting events
or other situations of public interest. But, for that to work,
the application needs a lot of devices to provide it data. De-
ploying new devices for this specific purpose is not finan-
cially viable, and personally contacting many device own-
ers to find the ones interested in exposing the data and then
negotiating with them on the price, schedule and other con-
ditions is tiresome and unscalable. Creating a mediation
framework that connects the compatible devices and appli-
cations and performs the negotiation automatically would
ease this process significantly, and could create many new
economically viable use cases for the IoT.

The aim of this paper is to show that using negotiating
agents, data provision terms can be found that both appli-
cation and device owners find acceptable.

We already introduced the idea of negotiation between
IoT devices and applications to find acceptable terms of
data provision in a previous paper [13]. The original sci-
entific contributions of this paper over previous are: 1) de-
tailed analysis of algorithms that are used in agent negoti-
ation 2) analysis of how credibility can be utilized in IoT
context to defend against malicious and malfunctioning de-
vices and 3) use of TwoTariffs algorithm to reduce energy
usage and increase earnings.

The remainder of this paper is organized as follows.
A motivational example for building this platform is pre-
sented in Section 2. A short description of software agents
and JADE middleware platform is given in Section 3. Sec-
tion 4 examines the previous research done on this and sim-
ilar subjects. Platform architecture is presented in Section
5. Section 6 describes the actual negotiation in more de-
tail. Various negotiation algorithms are described in Sec-
tion 7. Section 8 gives implementation details. Results

Fig. 1. Platform overview

are presented in Section 9. Directions for future work and
concluding remarks are given in Section 10.

2 MOTIVATION

Although there are many use-cases for the platform
presented in this paper, in this section we present one
that would help clarify the motivation behind this project.
The idea was to create an Internet connected device that
would be making environmental measurements for the
owner. It measures dust concentration, temperature, hu-
midity, brightness levels, and has carbon monoxide and
flammable gasses detection. Users would buy this device
and install it on their balcony or garden. This would pro-
vide them with useful atmospheric measurements just out-
side their home.

However, they can go one step further and try to make
money with that measurements. They would register the
device to the IoT Mediator Platform and specify the condi-
tions under which they are willing to share data with third-
party applications. Applications can dynamically search
for, and use the data provided by this and similar devices.
The IoT Mediator Platform takes care of negotiating be-
tween applications and devices, and tries to find conditions
with which both of them will be satisfied. This way, appli-
cations can reuse the crowdsourced data at a significantly
lower price than if they bought and deployed all devices
themselves.

Dust (i.e. particle count) and Carbon Monoxide mea-
surements could be useful to people suffering from asthma.
Research shows, that fine particle concentration can in-
crease the likelihood of asthma relapse [14]. Actually, ur-
ban pollution proves as such an important problem that
European Commission in Directive 96/62/EC established

305 AUTOMATIKA 57(2016) 2, 304–318



Negotiation in Internet of Things K. Mišura, M. Žagar

the basic principles of a common strategy to define and
set objectives for ambient air quality [15]. Air pollution is
usually monitored by highly reliable networks of fixed sta-
tions. However, permanent monitoring stations have a high
associated acquisition and maintenance costs, which limits
the number of such facilities, resulting in non-scalability
of the system and in an extremely limited spatial resolution
of the pollution maps. By crowdsourcing data from already
deployed devices, measurements could be made with much
higher resolutions and lower costs. It is easy to envision a
web application that would collect information from these
sensors, and provide valuable information, such as current
risk for people with asthma, particle concentrations in dif-
ferent parts of town, prediction of concentrations in differ-
ent times of the day, etc.

Temperature, humidity and brightness level measure-
ments can be used to create a more detailed weather
forecasts. Meteorological agencies would use this large
amount of crowdsourced data, and incorporate it into their
weather prediction models, making them finer grained and
ultimately more precise, while still much cheaper than if
they deployed additional weather stations.

3 SOFTWARE AGENTS

An agent is a special software component that has au-
tonomy that provides an interoperable interface to an ar-
bitrary system, and/or behaves like a human agent, work-
ing for some clients in pursuit of its own agenda. Usually
systems consist of multiple interacting agents called multi-
agent systems (MAS). Agents can decide to cooperate for
mutual benefit or may compete to serve their own inter-
ests. Therefore, an agent is autonomous, because it oper-
ates without the direct intervention of humans or others and
has control over its actions and internal state. An agent is
social, because it cooperates with humans or other agents
in order to achieve its tasks. An agent is reactive, because it
perceives its environment and responds in a timely fashion
to changes that occur in the environment. And an agent is
proactive, because it does not simply act in response to its
environment but is able to exhibit goal-directed behavior
by taking initiative.

Agent-Oriented Programming (AOP) is a software
paradigm that brings concepts from the theories of artifi-
cial intelligence into the mainstream realm of distributed
systems. AOP essentially models an application as a col-
lection of components called agents [16]. AOP is used
in IoT Mediator Platform to accomplish agent negotiation.
Rather than developing core agent communication infras-
tructure, we relied on agent-oriented middleware named
JADE (Java Agent DEvelopment framework).

JADE is the middleware developed by TILAB for the
development of distributed multi-agent applications based

on the peer-to-peer communication architecture. The envi-
ronment can evolve dynamically with agents, that appear
and disappear in the system according to the needs and the
requirements of the application environment. Communica-
tion between the agents is completely symmetric with each
agent being able to play both the initiator and the respon-
der role. JADE is developed in Java. Each instance of the
JADE run-time is called a container. The set of all con-
tainers is called a platform and provides a homogeneous
layer that hides from agents the complexity of the under-
lying tiers (hardware, operating systems, types of network,
JVM). JADE allows each agent to dynamically discover
other agents and to communicate with them according to
the peer-to-peer paradigm. Agents communicate by ex-
changing asynchronous messages. The structure of a mes-
sage complies with the ACL (Agent Communication Lan-
guage) language defined by FIPA [17] and includes fields
needed to support complex interactions and multiple par-
allel conversations [18].

4 RELATED WORK

There are currently many deployed IoT platforms.
Most of them provide the ability to connect devices using
web protocols, collect and store readings, generate alarms
and actions based on the data received, and create some
kind of data analysis such as aggregating the data and dis-
playing it to users represented as graphs, pie charts etc.
Examples of such platforms are Axeda1, Carriots2, Evry-
thng3 and others.

Additionally, platforms like DeviceCloud (Etherios)4,
One platform (Exosite)5, and Xively6 provide device man-
agement solutions. This way, device configuration can be
changed without the need for physical access to the device
itself.

Sensing as a Service is a model that was modeled by
other Everything as a Service (XaaS) services like Infras-
tructure as a Service, Platform as a Service and Software
as a Service [19, 20]. XaaS is growing in popularity be-
cause of the cost effectiveness that it gives clients, where
clients pay only for resources they use. Other benefits in-
clude business agility, elasticity, reliability and less main-
tenance work. Clients can thus focus more on their core
competencies instead of dealing with lower level function-
alities. Proponents of the Sensing as a Service model ar-
gue that the same reasoning will lead to using IoT devices
as a service. The negotiation platform presented in this
paper works very good as method of providing incentive

1http://www.axeda.com/
2https://www.carriots.com/
3http://www.evrythng.com/
4http://www.etherios.com/products/devicecloud/
5http://exosite.com/products/onep
6https://xively.com/

AUTOMATIKA 57(2016) 2, 304–318 306



Negotiation in Internet of Things K. Mišura, M. Žagar

for device owners to utilize their sensors in Sensing as a
Service applications. By using negotiating agents we pro-
vide a method to find conditions (both financial and other)
that both device and application owners find acceptable
and thus provide incentive for device owners to provide
data their devices generate. Without IoT Mediator Plat-
form, device owners were left with three basic options:
keep the data private only for their application, make the
data public for everyone to access or manually select the
consumers that are allowed to access the data. With IoT
Mediator Platform, they are able to automate this process
with an Autonomous agent, increasing the attractiveness of
Sensing as a Service concept.

In [7] the authors present DiscoWoT, an extensible
discovery mechanism that incorporates multiple discovery
strategies to semantically map Web resources and allows
users to extend the pool of available strategies at runtime.
As the authors point out, the task of finding relevant smart
things is significantly more complicated than searching for
documents because of several reasons: First, smart things
should be identified according to dynamic, contextual in-
formation. Second, smart thing does not necessarily ex-
press its functionality such that it may be found by tradi-
tional search engines. Third, we require a mechanism that
allows machines to discover devices and understand their
capabilities in order to enable automatic usage by software
applications. DiscoWoT is a web service that accomplishes
the task of device discovery by allowing smart devices to
provide semantic descriptions of the services they offer.
One of the most important features of DiscoWoT is the
extensible architecture that allows the injection of new dis-
covery strategies during runtime of the system. This gives
the service enough flexibility to handle any future seman-
tic markup languages. However, as good as DiscoWoT is
at discovery, once devices are discovered, it provides no
way of negotiating on the conditions under which the data
will be shared. Thus, it is complementary with the IoT Me-
diator Platform, and integrating the two could prove bene-
ficial, and provide an interesting scientific endeavor.

A system that uses negotiation between autonomous
agents to facilitate inter device communication is described
in [21]. The basic scenario is of an M2M environment con-
taining intelligent server and a user device. The intelligent
server manages information of services it offers to users. It
has JADE-based agents which communicate with the user
device through ACL messages. Once the user device es-
tablishes a physical connection, the intelligent server con-
ducts the processing of received requests and provides the
user device with an optimized service. While this work
uses a lot of the same technologies as our work, there are
some significant differences. The purpose of [21] is to cre-
ate a service framework that can offer optimized services to
users. The proposed system uses ontologies that are used

to decide which service offered by the intelligent server
is optimal for the user and to get the information of that
service. Agent negotiation is used to choose the optimal
service from a set of predefined services, i.e. there is only
one service provider. In our work, negotiation is used in
a different way, because the service consumer negotiates
with many different service providers to find the one that is
willing to make the best offer. Also, [21] describes a local
M2M environment with one service provider and possibly
multiple service consumers. In our work, there is a central
negotiation platform that all of the devices and application
register to. Lastly, the use case described in [21] revolves
around providing the optimal service to user’s mobile de-
vice, while our work focuses on a general negotiation plat-
form that can be used by any type of application that needs
data that registered devices provide.

In [10], a formal model of negotiation between au-
tonomous agents is presented. The model defines a range
of strategies and tactics that agents can employ to generate
initial offers, evaluate proposals and offer counter propos-
als. The paper discusses service-oriented negotiation. In
this context, one agent (the client) requires a service to be
performed on its behalf by some other agent (the server).
Negotiation involves determining a contract under certain
terms and conditions. Authors also present rich and flexi-
ble negotiation schemes. The models are based on realistic
assumptions for autonomous computational agents and are
empirically evaluated. The models and theoretical ground-
ing presented are very useful in our IoT negotiation imple-
mentation. Most of the ideas presented in [10] are directly
translatable to our domain, which is to be expected since
IoT device-application negotiation is just a special case of
a more general autonomous agent negotiation. Namely,
algorithms we present in Section 7 are instances of Imi-
tative Tactics named Relative Tit-for-Tat analysed in [10],
and TwoTariffs is a modified Resource-Dependent tactic
where the limited resource is remaining battery power on
the device.

Sensor Web Enablement (SWE) is an Open Geospa-
tial Consortium (OGC) initiative framework of open stan-
dards for exploiting Web-connected sensors and sensor
systems [22]. SWE develops standards for discovery, ex-
change, and processing of sensor observations, and task-
ing of sensor systems. It includes the following stan-
dards: Observations & Measurements Schema (O&M),
Sensor Model Language (SensorML), Transducer Markup
Language (TransducerML), Sensor Observations Service
(SOS), Sensor Planning Service (SPS), Sensor Alert Ser-
vice (SAS) and Web Notification Service (WNS).

OneM2M attempts to standardize a common M2M hor-
izontal service layer across a number of industry verticals
of globally applicable M2M services [23]. The problem it
is trying to solve is of each M2M solution using a propri-

307 AUTOMATIKA 57(2016) 2, 304–318



Negotiation in Internet of Things K. Mišura, M. Žagar

etary system comprising all layers, from physical to appli-
cation and developing the same services again instead of
reusing existing services.

The SSN ontology is an OWL 2 ontology to describe
sensors and observations developed by the W3C Semantic
Sensor Network Incubator group (SSN-XG) [24]. It de-
scribes the capabilities and properties of sensors, the act
of sensing and the resulting observations. It is compatible
with OGC standards and can be used to enable the Seman-
tic Sensor Web [25].

Agent negotiation was already used for determining
Quality of Service guarantees in context of IoT Cloud
Services [26]. Authors analyse two existing negotiation
strategies, Concession and Tradeoff. Concession strategy
is when an Agent relaxes some of his requirements in order
to make his offer more acceptable to other parties. Trade-
off strategy is when an agent decreases his demands for
some less important property but demands more on another
property that is more important to him. Concession strat-
egy has higher success rate and tradeoff strategy has higher
achieved utility. Authors propose a mixed strategy where
agent mixes the two basic strategies presented previously.
Paper concludes that when a party has no knowledge of the
strategy of its counterpart, a mixed strategy outperforms
a concession one in terms of utility and a tradeoff one in
terms of success rate.

Negotiation mechanisms have also been used for en-
abling self-organization in IoT [27, 28]. In [27], authors
define a networking approach called ’goal-driven network-
ing’ to increase the network performance and simplify the
configuration of networks. In [28], authors present a ref-
erence framework for management of large-scale IoT de-
ployments. The framework promotes management that
mediates between application requirements and physical
infrastructure using a management as a service platform.
However, such negotiation implementation is different
from price-based negotiations as used in our paper, so it
can’t be readily applied to our case.

5 ARCHITECTURE

The IoT Mediator Platform consists of three modules:
HTTP interface, database and the negotiation module. This
can be seen in Figure 2. HTTP module allows devices, ap-
plications and humans to communicate with the platform
using a REST interface. It is possible to register the de-
vice or application, fetch the contracts that the device or
application has agreed to, and of course to unregister the
device/application.

Devices register by making a POST request to the IoT
Mediator Platform. HTTP message body contains device
description in XML format. An example of the device de-
scription is given in Figure 3. Platform parses that message

and saves device details to a database. System responds
with a unique id that was associated with the newly regis-
tered device. The device can use this id for identification
in all future interactions. A described XML is used for
simplicity, it can be integrated with existing standards de-
scribed in Section 4, but that would be a separate project
that would draw away from the aim of this paper which
focuses on the negotiation mechanism. Thus we leave the
integration with existing standards and device description
formats for future work. Tags in the XML have the follow-
ing meaning:

• <type> is an enumeration indicating the type of mea-
surement such as "temperature", "humidity", "wind
speed" and similar.

• <location> specifies coordinates in standard decimal
representation and elevation is given in meters

• <algorithm> specifies the algorithm that agent uses
for negotiation and contains all of the relevant param-
eters used for algorithm configuration

Device can get all of it’s contracts by doing a GET
query to the IoT Mediator Platform REST endpoint, pro-
viding its unique id. System queries the database to find all
of the contracts that pertain to the requesting device. From
these contracts, the device knows what measurements it
needs to make and at what times. The devices are respon-
sible for fetching the contracts from the platform. This is
because sending a push notification to the device would be
energy inefficient in the general case considering that a lot
of devices spend most of the time in sleep mode. XML
serialization of a contract is shown in Figure 4. The XML
description contains all of the information needed for ne-
gotiation. In 4 tags are defined as follows:

• <applicationId> and <deviceId> identify the applica-
tion and device that are making the contract

• <measurementType> is the type of measurement that
device will provide

• <calendar> specifies the agreed schedule at which de-
vices will provide the data. <startTime> is in millisec-
onds since epoch and period is also in milliseconds.

• price is in currency defined by the IoT Mediator Plat-
form and all contracts use that currency so there is no
need to specify it in the contract XML.

Applications use the same HTTP interface for regis-
tration. When registering, application description with all
of the needed parameters is XML encoded in HTTP mes-
sage body. This description contains all information nec-
essary for finding the appropriate devices and negotiating

AUTOMATIKA 57(2016) 2, 304–318 308



Negotiation in Internet of Things K. Mišura, M. Žagar

with them. This data is sent towards database and the ne-
gotiation module. An example of XML that is sent to the
IoT Mediator Platform to register an application is shown
in Figure 5. The explanation of some of the properties in
XML is as follows:

• <calendarWithTolerance> is similar to <calendar>
property discussed earlier, but in addition to ideal
schedule it specifies a <tolerance> property in mil-
liseconds. This property means that all measure-
ments that are within <tolerance> milliseconds from
the ideal schedule are also acceptable.

• <area> is similar to location with addition of toler-
ance properties for coordinates and elevation which
function in the same way as with calendar. Thus, all
devices less <coordinateTolerance> degrees and <ele-
vationTolerance> meters away from the ideal location
are acceptable.

Negotiation module is composed of two sub-modules.
A preselection module queries the database and filters the
devices according to preselection conditions. This way,
a smaller number of devices actually enters the negotia-
tion phase which reduces the negotiation complexity. After
that, an autonomous software agent is created for the ap-
plication and for each device. The actual negotiation takes
place inside the JADE container. A separate container is
created for each application request, i.e. each time the ap-
plication contacts the IoT Mediator Platform that it needs
to find some devices, a new JADE container is created.
Thus, the container contains a single application agent. It
also contains multiple device agents and a single notary
agent. The negotiation flow is described in Section 6. Af-
ter the negotiation is finished, final contracts are saved to
the database and sent back to the HTTP module. HTTP
module sends the contracts back as an HTTP response.

When the device has the data ready, it sends it to the
IoT Mediator Platform. The platform will save the data
and provide it to the applications that have the appropriate
contracts. The data needs to pass through the IoT Mediator
Platform (instead of going directly from the device to the
application) so that it is possible to identify devices and
applications that don’t stick to their ends of the contracts.

Making sure contract is respected by all parties is a
complicated problem. There is existing research on au-
tomated contract creation and some interesting solutions
like WSLA Framework [29] have emerged. Usually, the
sides agree on the penalties in the case that one of the sides
doesn’t deliver or provides a service of low quality. In the
case of IoT Mediator Platform, this is too heavyweight be-
cause applications and devices will typically make a large
amount of contracts with a multitude of partners. Agree-
ment with each device on the penalties would further com-
plicate the negotiation process, and the problem would still

Fig. 2. Architecture overview

<device>
<name>kitchen_thermometer</name>
<type>HUMIDITY</type>
<location>

<latitude>45.8167</latitude>
<longitude>15.9833</longitude>
<elevation>120</elevation>

</location>
<algorithm type="minPrice">

<minPrice>22.85</minPrice>
</algorithm>

</device>

Fig. 3. Device registration XML example

remain if the agent/owner simply ignores the penalties af-
ter failing to deliver the service.

Because of that, IoT Mediator Platform implements a
simpler solution based on credibility, similar to the rating
system implemented on eBay and other Internet based mar-
kets. System simply notes each time the device/application
fails to provide the service it has agreed upon. This is saved
and available in all future negotiations. Ratings are kept
on a per-owner basis. The owner can naturally have many
deployed devices/applications. But if one device breaks
the contract, the credibility of all other devices that belong
to the same owner is degraded. How algorithms use this
credibility value during negotiations is described in more
details in Section 7.

6 NEGOTIATION FLOW

Negotiation is done by using the Contract Net Protocol
(CNP). In the CNP, the network is assumed to consist of
loosely coupled asynchronous agents, each agent can com-
municate with every other agent by sending messages. In
the role of contractor, an agent can send requests for bids

309 AUTOMATIKA 57(2016) 2, 304–318



Negotiation in Internet of Things K. Mišura, M. Žagar

<contract>
<applicationId>12</applicationId>
<deviceId>145</deviceId>
<measurementSpecification>

<id>0</id>
<measurementType>

TEMPERATURE
</measurementType>
<calendar>

<startTime>
1393131600000

</startTime>
<period>3600000</period>

</calendar>
<location>

<latitude>45.8167</latitude>
<longitude>15.9833</longitude>
<elevation>120</elevation>

</location>
<price>28</price>

</measurementSpecification>
</contract>

Fig. 4. Contract XML example

on each specific task to all the other agents, select the most
appropriate bid and allocate the task to that subcontractor.
In our implementation, application agents send requests for
bids, and device agents compete on who can offer the best
bid. More info about Contract Net Protocol can be found
in [30].

First, user registers the application to the IoT Mediator
Platform. During registration, user supplies application de-
tails via an XML document. The system parses this docu-
ment and concludes on what measurements the application
needs. Then, it selects all devices that potentially could
provide the data the application needs. For each ’prese-
lected’ device, a device agent is created. Once this is done,
negotiation process can start. The flow is depicted in Fig-
ure 6.

Application agent sends the call for proposal (CFP) to
all device agents. Call for proposal contains the description
of a measurement that needs to be performed. It defines
the type of measurements, calendar at which the measure-
ments need to be made and the description of acceptable
geographical locations.

Each device agent analyses the CFP and creates an
offer. Offer has the exact specification of measurement
times, location, and price per measurement. This offer is
sent back to the application agent.

The application agent can accept the offer, reject it, or
create a counter-offer. This exchanging of counter-offers

<application>
<name>Weather app</name>
<measurement-requirements>
<requirement>
<measurementType>
ATMOSPHERIC_PRESSURE

</measurementType>
<calendarWithTolerance>
<calendar>

<start>1393995600000</start>
<period>3600000</period>

</calendar>
<tolerance>1800000</tolerance>

</calendarWithTolerance>
<area>
<center>

<latitude>42.6621</latitude>
<longitude>114.2432</longitude>
<elevation>120</elevation>

</center>
<coordinateTolerance>

0.01
</coordinateTolerance>
<elevationTolerance>

2
</elevationTolerance>

</area>
</requirement>

</measurement-requirements>
<algorithm type="fixedBudget">
<totalBudget>100</totalBudget>
<minCredibility>0.95</minCredibility>

</algorithm>
</application>

Fig. 5. Application registration XML example

AUTOMATIKA 57(2016) 2, 304–318 310



Negotiation in Internet of Things K. Mišura, M. Žagar

Fig. 6. Negotiation flow

can repeat until the device or application agent finally ac-
cepts or rejects the offer. Usually the agents will make con-
cessions until they finally find some conditions that they
are both satisfied with. Once the application agent finishes
the negotiations with all of the agents, it sends a request
to the Notary Agent asking him to validate the negotiation
results and create contracts.

Notary Agent is used as a trusted third party between
device and application agents. It creates contracts and
guarantees that both sides agreed to them. Once notary
agent receives a list of accepted offers from the applica-
tion agent, it iterates through them and for each offer, re-
quests confirmation from the concerned device agent. If
the device agent confirms that the offer is indeed valid, No-
tary Agent creates a contract. This contract is sent back to
the application agent, REST module, and database. REST
module sends the contracts in a HTTP response to the user.
Thus, the application knows from which devices it can get
it’s data.

7 NEGOTIATION ALGORITHMS

When registering an application or device, user can
choose which algorithm will that application/device use for
negotiating on the data usage terms. Application owners
can choose between two algorithm templates: FixedBud-
get and ByPriority. Device owners can also choose be-
tween two template algorithms: MinPrice and TwoTariffs.
In addition to specifying the algorithm, the user must pro-

vide algorithm parameters, such as budget in dollars, or
minimal price etc.

Regardless of the chosen template or the specified pa-
rameters, all algorithms use a modification of a well-
known tit-for-tat algorithm for creating counter proposals.
They all have a starting price that was specified when the
application/device was registered, or calculated from other
specified parameters. If the agent is creating an initial of-
fer, it will use this start price. The specifics of creating
counter-offers are described below for application and de-
vice agents separately.

7.1 Application Algorithms
First, application agent sends request for bids to all de-

vice agents. After receiving responses, it selects the best
one and continues negotiations with that device agent. Tar-
get or start price is the price at what the application would
like to purchase the measurement. This is the price with
what the application agent will begin the negotiations (ini-
tial offer), and actual price will usually be higher than tar-
get price because of the compromises the agent will make
during negotiations. If creating a first counter-offer, appli-
cation agent will increase his initial offer for 10% of the
difference between his initial offer and that offered by the
device agent. If there were already multiple counter-offers,
the application agent will increase his last offer by the same
amount as the one by which the device agent has decreased
his last offer. This is best described by the formula 1. dn
is the device agent’s offer in step n, while an is application
agent’s offer in step n.

an = an−1 +
dn−1 − dn
dn−1 − an−1

∗ (dn − an−1) (1)

This process continues until device and application
agent reach a common price. In order to avoid the prices
closing in asymptotically, they are considered equal if they
differ by less than 1 percent.

Application owners can choose between two template
algorithms: FixedBudget and ByPriority.

FixedBudget is a simple algorithm where the applica-
tion agent tries to satisfy as much measuring requirements
as it can with the given budget (B). User defines the budget
amount. User can also specify the target price. If target
price is not provided by the user, Equation 2 is used to
calculate it. Nreq represents the number of measurement
requirements that the agent was given.

a0 =
1

2
∗ B

Nreq
(2)

If the user wants to satisfy all of the requirements, no mat-
ter what the price, he can leave out the budget in applica-
tion specification. Representing agent will then act as if

311 AUTOMATIKA 57(2016) 2, 304–318



Negotiation in Internet of Things K. Mišura, M. Žagar

the budget is unlimited, and try to satisfy all of the require-
ments. In this scenario, the user must provide a starting ne-
gotiation price for each requirement. During negotiations,
representing agent first concludes cheapest deals and then
moves to more expensive ones, in order to maximize the
number of satisfied requirements with the given budget.

ByPriority is similar to FixedBudget, difference being
in the ordering of requirements that the agent will try to
satisfy. It is assumed that the user has provided require-
ments sorted by importance, first being the most important.
Agent will respect this, and only negotiate on a require-
ment after it has satisfied all of the higher priority require-
ments. This might mean that if the price for first couple of
requirements is very large, it will be able to satisfy only a
couple of requirements before it depletes it’s budget. Other
than difference in ordering, ByPriority is exactly the same
as FixedBudget.

7.2 Device Algorithms

Reserve price is the smallest price at which the device
agent will sell the measurements. It is defined by the de-
vice owner during device registration. Target price is de-
fined as 1.5 * reservePrice. If creating a first counter-offer,
device agent will decrease his initial offer for 10% of the
difference between his initial offer and that offered by the
application agent. If there were already multiple counter-
offers, the device agent will decrease his last offer by the
same amount as the one by which the application agent
has increased his last offer. This is best described by the
formula 3. Symbols are the same as in the last example.

dn = dn−1 −
an − an−1

dn−1 − an−1
∗ (dn−1 − an) (3)

Device owners can choose between MinPrice and
TwoTariffs algorithms.

MinPrice is a very simple algorithm that accepts all
offers that pay at least the specified amount of money per
measurement. It doesn’t care at what time the measure-
ments need to be made. All offers with less than the speci-
fied amount are rejected. User defines the minimal amount
of money needed for a measurement to take place.

TwoTariffs is an algorithm that defines a cheaper price
Rc for measurements that can be made at moments when
the device is already awake, and a more expensive priceRe
otherwise. This makes the TwoTariffs algorithm ideal for
energy savings. Remote sensors typically consume much
more power when communicating than when idle [31].

Other than just communication costs, some sensors
spend a great deal of energy for the actual measurement.
Example of those are the electrochemical gas sensors.

They measure the concentration of a target gas by oxidiz-
ing or reducing the target gas at an electrode and measuring
the resulting current [32]. They have an internal heater that
uses power when heating.

If we could use the same communication cycle to pass
measurements to more than one application, this would
significantly reduce the energy consumption. By making
the measurements at already awake time cheaper than reg-
ular measurements, this algorithm makes the application
agents reuse the same wake cycles for different applica-
tions.

User needs to define what are the values of Rc and Re.
The reserve price R is calculated based on the ratio (p) be-
tween the number of measurements that can be made with-
out additional waking of the device, and total number of
measurements. In the case all of the measurements can be
made when the device is already awake p will be 1, and in
case when each measurement requires waking the device,
p will be 0. The equation used to calculate the value of
reserved price is given in 4.

R = Rc + (Re −Rc) ∗ p (4)

Although negotiation algorithms presented above are
just variations of the well known tit-for-tat algorithm [10],
to our knowledge they haven’t been used in negotiation on
data provision in IoT context. In addition to that, TwoTar-
iffs algorithm was specifically developed in this paper for
IoT use-case and constitutes an original contribution. It re-
duces energy consumption of devices and increases earn-
ings for device owners.

7.3 Credibility

Credibility values are mostly useful to application
agents. During negotiations, they inspect the credibility
(C) of devices they are negotiating with and use that cred-
ibility to decide between similar offers and to terminate
negotiations with devices that don’t have suitable credibil-
ity. Application owners only need to specify a single value
named minCredibility (Cmin). Application agents will
then ignore devices with credibility lower than this value.
When deciding between offers from two device agents, ap-
plication agents take credibility into account. Application
agents calculate a ’balanced price’ PB - a price with risk
taken into account. PB will be higher for devices with
lower credibility. This balanced price will be used when
comparing offers from devices, however, when calculating
the budget or making contracts, normal offered price P will
be used. PB is calculated per formula 5.

PB = P ∗ 1− Cmin
C − Cmin

(5)

AUTOMATIKA 57(2016) 2, 304–318 312



Negotiation in Internet of Things K. Mišura, M. Žagar

Credibility as used in IoT Mediator Platform is a sim-
plification of Application trustworthiness previously de-
scribed in literature [33]. Application trustworthiness is
quantitatively evaluated by the similarity between the ap-
plication’s behavior and the behavior expected by the user.
It is used in the mobile or IoT context for applications de-
ployed on devices. It consists of combination of different
attributes including correctness, reliability, safeness, effec-
tiveness, integrity, usefulness and predication [34]. In our
case we are simply interested in the consistency of deliver-
ing data that device agents agreed to, so instead of having
multiple attributes we have a single value C ∈ [0,1] which
simply represents the proportion of successfully delivered
measurements.

More generally, this credibility mechanism is a Repu-
tation system. Reputation can be considered as a collec-
tive measure of trustworthiness based on the referrals or
ratings from members in a community [35]. Each device
owner thus has a reputation/credibility that is calculated as
the proportion of successful previous transactions his de-
vices were involved in. IoT Mediator Platform credibility
system satisfies the needed properties to qualify as a repu-
tation system [36]:

1. Entities are long lived, meaning that there is always an
expectation for future transactions. This is satisfied
in a trivial way because the main value that device
owners gain is reusing their devices and selling their
data to multiple clients.

2. Ratings of current interaction are distributed to inter-
ested parties. IoT Mediator Platform observes each
transaction and incorporates the result into credibility
ratings which are then made available to application
agents during negotiations.

3. Ratings about previous interactions impact future de-
cisions of involved parties. Application agents use the
credibility ratings as described previously in this sec-
tion.

8 IMPLEMENTATION

The whole platform is implemented as a web ap-
plication written in JAVA. Devices and applications can
communicate with the platform using the HTTP REST
paradigm. To implement RESTful web services, Jersey 7

library was used. The platform stores all of the data re-
garding existing devices and applications in the database.
Once an application issues a negotiation request, the pro-
cess goes through 3 steps:

7https://jersey.java.net/

• 1. Preselection - Since there could be a large num-
ber of devices, and the agent negotiation is a resource
hungry process, preselection is used to reduce the
time and space requirements of the actual negotia-
tion by reducing the number of devices that are ac-
tually part of the negotiation. Preselection is based on
two properties: measurement type and location. Mea-
surement type refers to the physical property that the
device measures. Naturally, this isn’t up on negoti-
ation since a thermometer can never measure bright-
ness. Considering that the a majority of devices are
on a fixed location, preselection can also be done so
to eliminate from negotiation all devices that are out-
side the area that the application requires.

• 2. Negotiation - Once preselection is completed, for
each remaining device an autonomous agent is cre-
ated. This agent uses the negotiation algorithm spec-
ified by the device owner. It knows under which con-
ditions it will agree to make device measurements.
These device agents enter into negotiations with the
application agent. Application agent keeps track of
what device agents agreed to give it information and
under what conditions. Negotiation flow is described
in more detail in Section 6. Application agent is best
described as a state machine shown in Figure 7, and
in the pseudo code in Figure 1.

Algorithm 1 Application pseudo code
sendCFPtoAllPotentialAgents
collectResponses
for each requirements in sorted order do

{sorted by priority or by price}
best← pickBestResponse
if best is accept then

finished;
else

if opponents offer final then
if acceptable then

send acceptMessage;
else

send rejectMessage;
end if

else
cntOffer <- makeCounterOffer;
send cntOffer;

end if
end if

end for

• 3. Formalization - Once application agent has agreed
with the device agents, it sends a list of devices and
negotiated terms to the Notary agent. Notary agent’s

313 AUTOMATIKA 57(2016) 2, 304–318



Negotiation in Internet of Things K. Mišura, M. Žagar

Waiting

proposals

Proposals

received

Proposals

analysed

Start

Finished

Counter - 

proposals

sent

Send CFP Receive proposals

Analyse

Send counter-proposals

Formalize Agreements

Fig. 7. Application algorithm state machine

job is to validate that information and create contracts.
It first contacts all device agents so they can confirm
that they indeed agreed to the listed conditions. Af-
ter that the Notary agent persists the contracts in the
database and notifies the web services module. At
this point a HTTP answer with the made contracts is
returned to the original issuer of the request.

As already stated, JADE middleware was used to imple-
ment autonomous agents and the negotiation itself. How-
ever, JADE is not well optimized when a very large number
of agents is present in the system. For this reason, some
parts of JADE were replaced with custom, more special-
ized implementations that were specifically optimized for
this use-case. Most significant problem was that the DF
(Directory Facilitator) agent would crash when the number
of device agents present reached into thousands. Thus, we
implemented a simpler and optimized version of DF agent
that can function with much larger number of devices.

9 RESULTS

This platform allows users to buy and deploy Internet
connected devices without having any specific application
in mind. They can register their devices on the IoT Medi-
ator Platform and specify the conditions under which they
agree to give/sell the data. This way, users can earn money
simply by buying and deploying IoT devices.

Application owners can quickly find the data they need
for their applications. This helps them avoid large initial
costs of buying and deploying devices. Also, doing this
process automatically is a lot faster and cheaper than doing
it manually.

TwoTariffs algorithm is an example of an algorithm
that can help device and application owners to reduce
power consumption. Since measuring data requires more

energy than device sleeping, energy can be saved by
reusing the same measurements for multiple applications.
TwoTariffs enforces this behavior by making the reused
measurements cheaper than new ones.

Prototype of IoT Mediator Platform described in this
paper was implemented as a web application. This imple-
mentation was put under test to measure it’s performance.
It is important to measure the time the negotiation takes
in order to asses the amount of devices the platform can
handle. Tests were made using a number of simulated de-
vices. Negotiation time depends on the number of agents
that were part of the negotiation. Results are presented in
Figure 8. It is important to note that this refers to the num-
ber of agents after the preselection step. So, only those
agents that have the appropriate measurement type and lo-
cation are a part of the negotiation.

As visible from Figure 8, negotiation time increases al-
most linearly with number of devices. This is due to the
way negotiation is implemented. As described in Section
8, the application algorithm sends a CFP to all devices,
and selects the best proposal. After that he continues ne-
gotiation with the device that made the best proposal. The
duration of that negotiation is the same regardless of how
many devices are registered to the platform. The majority
of the time goes to the initial step of sending CFPs to pre-
selected devices and analyzing their responses, and that is
obviously linear in the number of devices.

Figure 9 shows the negotiation between an application
agent using FixedBudget and a device agent using Min-
Price algorithm. Current price that agents offer are shown
on y-axis, and negotiation step (time) is shown on x-axis.
Both agents use a tit-for-tat strategy described previously.
Device target price is 20, and application budget is 20. The
offering prices converge gradually towards 12 until they
finally reach it in step 5. Naturally, this graph shows a
situation where a deal is possible. If specified MinPrice
is greater than the remaining application budget, a deal
isn’t achievable. Although shown only for FixedBudget-
MinPrice pair, process is the same for all other pairs of
device-application algorithms. Both application and de-
vice offering show a linear dynamic which is typical of
tit-for-tat algorithms.

Exact numeric values of target price and application
budget were chosen at random, and that is acceptable be-
cause we don’t attempt to find the exact agreed price, but
simply to show the dynamic of how agent’s relative offered
prices change during negotiations. One thing we needed to
take into account when selecting the experiment parame-
ters is that application has sufficient budget to eventually
purchase the measurements.

Figure 10 shows the difference between FixedBudget
and ByPriority algorithms. Total budget per application is

AUTOMATIKA 57(2016) 2, 304–318 314



Negotiation in Internet of Things K. Mišura, M. Žagar

plotted on x-axis. Y-axis shows the number of satisfied re-
quirements. Experiments were conducted with randomly
selected devices, such that for every requirement there ex-
isted a device that is able to satisfy it. Devices used the
MinPrice algorithm with randomly selected price. For each
type of requirement a standard price was randomly chosen
using normal distribution with mean value 20 and standard
deviation 7. After that, devices each chose a minPrice from
a distribution that had a mean value previously selected for
that type of measurement, and stddev being 1/3 of mean
value. Experiment was repeated 10 times to minimize the
effect of chance. It can be seen that FixedBudget satisfies
more requirements on average, the reason for that being
that it prefers the cheapest requirements. ByPriority first
tries to satisfy the requirements high on priority list, even
if they are expensive, thus being able to satisfy a smaller
number of requirements before depleting it’s budget.

Similar as in previous experiment, the exact numeric
values of chosen experiment parameters are not impor-
tant because we only attempt to show the differences be-
tween two application algorithms. We however did choose
a number of devices and prices so that the difference can
be clearly observed.

Figure 11 shows the behavior (total earnings) of
TwoTarrifs algorithms with different discount price set-
tings. Total device earnings are plotted on y-axis, and
the discount price is plotted on x-axis. The experiment
was conducted using one device agent and 50 application
agents. Device agent had normal-min price fixed at 60,
and discount price varied according to x-axis, decreasing
in steps of 3 from 60 to 0. Application agents were us-
ing the FixedBudget algorithm, and budget was selected
at random for each application, having mean value 40 and
standard deviation 30. All application were selected to re-
quire the measurement that the device was offering. Exper-
iment was repeated 5 times, and average values are shown.
First column in the graph represents the case when dis-
count price is the same as normal price, i.e. when there is
no discount offered. The graph shows that when offering
the measurement at already awake times cheaper than new
measurements, device can increase it’s total earnings with
zero additional energy. This is because a portion of appli-
cations didn’t have enough budget to buy measurements at
full price, but can afford it at a discount price if they are
willing to adjust their timings a bit. Same is true if there
are multiple devices that are competing, a device could of-
fer a discount price with no additional cost and beat the
competition. In this particular case, maximum earnings
are achieved when discount price is 42.

As in previous experiments, we attempt to show the
property of TwoTariffs algorithm that earnings don’t in-
crease monotonically, instead of focusing on the exact
earnings in any hypothetical currency. Device target price

Fig. 8. Negotiation time

Fig. 9. Negotiation between MinPrice and FixedBudget
algorithms

and applications budget distribution were chosen to clearly
show this property of TwoTariffs algorithm.

Through examining the literature, we didn’t find a sys-
tem that allows IoT devices to sell data using a market
based mechanism. Although markets using negotiating
agents exist for other types of goods, they are usually made
for one-time purchases of existing goods or already col-
lected information. Special properties of IoT scenario, like
many small data providers, purchasing data that has not
yet been generated, and very important timing of measure-
ments make this scenario different enough that we believe
a direct comparison would not make sense. This is in-line
with the main aim of this paper which is to show that nego-
tiation agents can be used to allow selling of IoT data and
handling all of the specificities of the described scenario,
instead of presenting a performance improvement over any
existing approach.

10 CONCLUSION AND FUTURE WORK
The IoT Mediator Platform presented in this paper is

one possible solution to accomplish negotiation between
Internet connected devices (in particular sensors) and ap-
plications. The negotiation itself is the most complicated

315 AUTOMATIKA 57(2016) 2, 304–318



Negotiation in Internet of Things K. Mišura, M. Žagar

Fig. 10. Number of satisfied requirements using FixedBud-
get and ByPriority algorithms

Fig. 11. Earnings of TwoTariffs in relation to it’s discount
price

and resource hungry part of the whole platform. Results
show that negotiation complexity increases linearly with
the number of agents that are negotiating. This complex-
ity is reduced by preselection, so that a smaller number of
agents takes part in the negotiation. There are a couple
of predefined algorithms that users can configure to match
their needs.

The analysis of different Algorithms and their compar-
ison shows the relative strengths and weaknesses of each
algorithm. ByPriority algorithm lets users select which
measurements are the most important, and focus on that,
but FixedBudget is able to acquire a larger number of mea-
surements for the same amount of cash. TwoTariffs algo-
rithm allows device owners to get an edge over competition
and earn more money without draining the device battery
for additional measurements.

We hope that this platform will encourage users to buy
more IoT devices, simply because they can make money
from the data they provide. This will lead to application
owners having a richer set of data upon which to build their
applications. More applications will mean more money in
the system and a bigger incentive for people to connect de-

vices. This circular process could lead to faster expansion
of the IoT market.

There are still many features that we hope to add to this
platform in the future. We would like to provide support
for users to write the algorithms themselves, that their de-
vices and application will use for negotiation. One way of
doing this is to provide a public API against which users
will be able to write their own negotiation implementa-
tions. The platform will then dynamically load the correct
API implementation and let the device/application agent
use it to make decisions. This API could be quite simple,
there are only two crucial methods that need to be imple-
mented. One creates a counter offer for a given offer, and
the other compares a list of offers to find the best ones.
However, there are inherent security concerns when exe-
cuting third party code on the platform. This security is-
sues need to be resolved before users are allowed to imple-
ment their own algorithms. One possible way of resolving
them is to create a sandbox execution environment where
users algorithms can be executed without endangering the
rest of the system.

Security and privacy is a very important topic due to
private nature of data, and proper discussion of it would
be out of scope for this paper so we leave it for future
work. Mechanisms that allow device owners to choose
which data consumers are allowed to obtain their data or
to make different requirements of different consumers are
needed. For example, people might be willing to give their
data to universities and environment activists almost free of
charge, but not be willing to sell their data to political par-
ties or companies looking to create users profiles or make
aggressive marketing campaigns. On the other side, data
consumers would like to be sure that measurements sup-
plied by devices are genuine, and mechanisms that ensure
that users are not simply providing generated fake mea-
surements need to be devised. Further, mechanisms that
prevent eavesdropping or other ways of unauthorized col-
lection of data need to be prevented, but are not strictly
related to discussed negotiation mechanisms.

Currently, IoT Mediator Platform implementation is
optimized for sensors, and we would like to make it easier
to use for actuators as well. This would open up a whole
new range of possibilities. It is easy to imagine agents from
different companies negotiating with a smart billboard on
who gets to show the advertisement, etc.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet
of things: A survey,” Computer Networks, vol. 54,
no. 15, pp. 2787–2805, 2010.

[2] G. Kortuem, F. Kawsar, D. Fitton, and V. Sun-
dramoorthy, “Smart objects as building blocks for

AUTOMATIKA 57(2016) 2, 304–318 316



Negotiation in Internet of Things K. Mišura, M. Žagar

the internet of things,” Internet Computing, IEEE,
vol. 14, no. 1, pp. 44–51, 2010.

[3] D. Raggett, “The web of things: Challenges and op-
portunities,” Computer, vol. 48, no. 5, pp. 26–32,
May 2015.

[4] D. Guinard, V. Trifa, and E. Wilde, “A resource ori-
ented architecture for the web of things,” in Internet
of Things (IOT), 2010. IEEE, 2010, pp. 1–8.

[5] Ericsson. (2011, February) More than 50
billion connected devices. [Online]. Avail-
able: http://www.ericsson.com/res/docs/whitepapers/
wp-50-billions.pdf

[6] S. Evdokimov, B. Fabian, S. Kunz, and N. Schoen-
emann, “Comparison of discovery service architec-
tures for the internet of things,” in Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC),
2010 IEEE International Conference on, 2010, pp.
237–244.

[7] S. Mayer and D. Guinard, “An extensible discov-
ery service for smart things,” in Proceedings of the
Second International Workshop on Web of Things.
ACM, 2011, p. 7.

[8] C. Perera, A. Zaslavsky, C. Liu, M. Compton,
P. Christen, and D. Georgakopoulos, “Sensor search
techniques for sensing as a service architecture
for the internet of things,” Sensors Journal, IEEE,
vol. 14, no. 2, pp. 406–420, Feb 2014.

[9] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Par-
sons, M. J. Wooldridge, and C. Sierra, “Automated
negotiation: prospects, methods and challenges,”
Group Decision and Negotiation, vol. 10, no. 2, pp.
199–215, 2001.

[10] P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation
decision functions for autonomous agents,” Robotics
and Autonomous Systems, vol. 24, no. 3, pp. 159–
182, 1998.

[11] N. Karacapilidis and P. Moraïtis, “Intelligent agents
for an artificial market system,” in Proceedings of the
fifth international conference on Autonomous agents.
ACM, 2001, pp. 592–599.

[12] A. Chavez and P. Maes, “Kasbah: An agent market-
place for buying and selling goods,” in Proceedings
of the First International Conference on the Practi-
cal Application of Intelligent Agents and Multi-Agent
Technology, vol. 31. London, UK, 1996, p. 40.

[13] K. Mišura and M. Žagar, “Internet of things cloud
mediator platform,” Computers in Technical Systems,
2014.

[14] G. Norris, S. N. YoungPong, J. Q. Koenig, T. V.
Larson, L. Sheppard, and J. W. Stout, “An associa-
tion between fine particles and asthma emergency de-
partment visits for children in seattle.” Environmental
Health Perspectives, vol. 107, no. 6, p. 489, 1999.

[15] E. Commission. (1996) Ambient air quality
assessment and management. [Online]. Available:
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=OJ:L:1996:296:0055:0063:EN:PDF

[16] F. Bellifemine, G. Caire, and D. Greenwood,
Developing multi-agent systems with JADE, ser.
Wiley series in agent technology. John Wiley, 2007.
[Online]. Available: http://books.google.hr/books?
id=ZLBQAAAAMAAJ

[17] A. Fipa, “Fipa acl message structure specifica-
tion,” Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00061/SC00061G.
html (30.6. 2004), 2002.

[18] F. B. G. Caire, A. Poggi, and G. Rimassa, “Jade. a
white paper,” 2003.

[19] J. Soldatos, M. Serrano, and M. Hauswirth, “Con-
vergence of utility computing with the internet-of-
things,” in Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2012 Sixth Inter-
national Conference on. IEEE, 2012, pp. 874–879.

[20] C. Perera, A. Zaslavsky, P. Christen, and D. Geor-
gakopoulos, “Sensing as a service model for smart
cities supported by internet of things,” Transac-
tions on Emerging Telecommunications Technolo-
gies, vol. 25, no. 1, pp. 81–93, 2014.

[21] P. Jeon, J. Kim, S. Lee, C. Lee, and D.-K.
Baik, “Semantic negotiation-based service frame-
work in an m2m environment,” in Web Intelligence
and Intelligent Agent Technology (WI-IAT), 2011
IEEE/WIC/ACM International Conference on, vol. 2,
2011, pp. 337–340.

[22] M. Botts, G. Percivall, C. Reed, and J. Davidson,
“Ogc R© sensor web enablement: Overview and high
level architecture,” in International conference on
GeoSensor Networks. Springer, 2006, pp. 175–190.

[23] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song,
“Toward a standardized common m2m service layer
platform: Introduction to onem2m,” IEEE Wireless
Communications, vol. 21, no. 3, pp. 20–26, June
2014.

317 AUTOMATIKA 57(2016) 2, 304–318



Negotiation in Internet of Things K. Mišura, M. Žagar

[24] M. Compton, P. Barnaghi, L. Bermudez,
R. GarcíA-Castro, O. Corcho, S. Cox, J. Gray-
beal, M. Hauswirth, C. Henson, A. Herzog et al.,
“The ssn ontology of the w3c semantic sensor
network incubator group,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 17,
pp. 25–32, 2012.

[25] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic sen-
sor web,” IEEE Internet computing, vol. 12, no. 4, pp.
78–83, 2008.

[26] X. Zheng, P. Martin, K. Brohman, and L. Da Xu,
“Cloud service negotiation in internet of things envi-
ronment: A mixed approach,” IEEE Transactions on
Industrial Informatics, vol. 10, no. 2, pp. 1506–1515,
2014.

[27] W. Hu and H. Zhu, “A methodology to enable self-
organization in the internet of things based on ne-
gotiation mechanism,” in Measurement, Information
and Control (MIC), 2012 International Conference
on, vol. 1. IEEE, 2012, pp. 332–336.

[28] A. McGibney, A. E. Rodríguez, and S. Rea, “Manag-
ing wireless sensor networks within iot ecosystems,”
in Internet of Things (WF-IoT), 2015 IEEE 2nd World
Forum on. IEEE, 2015, pp. 339–344.

[29] A. Keller and H. Ludwig, “The wsla framework:
Specifying and monitoring service level agreements
for web services,” Journal of Network and Systems
Management, vol. 11, no. 1, pp. 57–81, 2003.

[30] L. Xu and H. Weigand, “The evolution of the contract
net protocol,” in Advances in Web-Age Information
Management. Springer, 2001, pp. 257–264.

[31] A. Dementyev, S. Hodges, S. Taylor, and J. Smith,
“Power consumption analysis of bluetooth low en-
ergy, zigbee and ant sensor nodes in a cyclic sleep
scenario,” in Wireless Symposium (IWS), 2013 IEEE
International. IEEE, 2013, pp. 1–4.

[32] J. Watson, “The tin oxide gas sensor and its applica-
tions,” Sensors and Actuators, vol. 5, no. 1, pp. 29–
42, 1984.

[33] K. Kang, Z. Pang, L. Da Xu, L. Ma, and C. Wang,
“An interactive trust model for application market of
the internet of things,” IEEE Transactions on Indus-
trial Informatics, vol. 10, no. 2, pp. 1516–1526, 2014.

[34] Y. Yuan and Q. Han, “A data mining based measure-
ment method for software trustworthiness,” Chinese
Journal of Electronics, vol. 21, no. 1, pp. 13–16,
2012.

[35] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust
and reputation systems for online service provision,”
Decision support systems, vol. 43, no. 2, pp. 618–
644, 2007.

[36] P. Resnick, K. Kuwabara, R. Zeckhauser, and
E. Friedman, “Reputation systems,” Communications
of the ACM, vol. 43, no. 12, pp. 45–48, 2000.

Krešimir Mišura is a phd student at the Univer-
sity of Zagreb, Faculty of electrical engineering
and computing. He graduated computer science
at the same University in 2012. He is currently
employed at RealNetworks where he creates mo-
bile applications for Android operating system.
His interests include Internet of Things, Machine
learning and mobile applications development.

Mario Žagar , Ph. D. is a tenure professor of
computing at the University of Zagreb, Faculty
of electrical engineering and computing. He re-
ceived Dipl. ing., M. Sc. CS and Ph. D. CS
degrees from the University of Zagreb, Faculty
of Electrical Engineering and Computing (FER)
in 1975, 1978, 1985 respectively. In 1977 M. Ža-
gar joined the faculty and since then has been in-
volved in different scientific projects and educa-
tional activities. His current professional inter-
ests include: computer architectures, distributed

ubiquitous and pervasive computing, open technologies and Internet re-
lated technologies. Mario Žagar is author/co-author of 5 books and more
than 100 scientific/professional journal and conference papers.

AUTHORS’ ADDRESSES
Krešimir Mišura, Mag. Ing.
Prof. Mario Žagar, Ph. D.,
University of Zagreb,
Faculty of Electrical Engineering and Computing,
Department of Control and Computer Engineering,
Unska 3, HR-10000 Zagreb, Croatia
e-mail: kresimir.misura@fer.hr, mario.zagar@fer.hr

Received: 2015-01-26
Accepted: 2016-09-16

AUTOMATIKA 57(2016) 2, 304–318 318


