Some Chemical Aspects of Tetrahydro-1-thiopyran-4-one Derivatives

\author{

Abstract

3,5-Diarylmethylene-2,6-diphenyltetrahydrothiopyran-4-thiones, 2, reacted with two or four moles of bromine to form 3-arylmethylene 5-bromoarylmethylene-2,6-diphenyltetrahydrothiopyran--4-thione, 3, and 3-arylmethylene-5-bromoarylmethylene-2,6-dibro-mo-2,6-diphenyltetrahydrothiopyran-4-thione, 5 , respectively. Compound $2 a$ reacted with amines giving 2,6 -diphenyl- 5 -iminophenyl-methyl-3-phenylmethylenetetrahydrothiopyran-4-thiones, 6. Diphenydiazomethane and 9 -diazofluorene converted $2 a$ into 4 -diphenyl-ethylene-2,6-diphenyl-3,5-diphenylmethylenetetrahydrothiopyran, 7, and 2,6-diphenyl-3,5-diphenylmethylene-4-(9-fluorenylidene) tetrahydrothiopyran, 8, respectively. Compounds 2 with copper-bronze afforded $3,3^{\prime}, 5,5^{\prime}$-tetraarylmethylene-2,2',6,6'-tetraphenyl-1,1-thio--4,4'-dipyranylidenes, 9.

}

INTRODUCTION

Many pyrone derivatives are known to be useful as intermediates in the pharmaceutical industry. ${ }^{1,2}$ In continuation of our previous work ${ }^{3,4}$ dealing with the synthesis and reactions of 3,5-diarylmethylene-2,6-diphenyltetrahydro-thiopyran-4-ones, 1 , the present paper reports the reaction of 1 with $\mathrm{P}_{4} \mathrm{~S}_{10}$ giving the corresponding 4 -thione derivatives 2 . The behaviour of 2 towards bromine, amines, diazoalkanes and copper-bronze has now been investigated. The newly synthesized compounds have been bacteriologically screened.

RESULTS AND DISCUSSION

The 3,5-diarylmethylene-2,6-diphenyltetrahydrothiopyran-4-ones (1a-c) were prepared by condensing 2,6-diphenyltetrahydrothiopyran-4-one with aldehydes in alkaline medium. ${ }^{\text {b }}$
The action of $\mathrm{P}_{4} \mathrm{~S}_{10}$ on compounds $1 a-c$ afforded the corresponding thiones $2 a-c$. The IR spectra of $2 a-c$ displayed absorption bands at 1255,1230 and $1245 \mathrm{~cm}^{-1}$ for the $\mathrm{C}=\mathrm{S}$ group and showed no absorption for $\mathrm{C}=\mathrm{O}$ group. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $2 a$ showed signals at 3.7 ppm (s, $2, \mathrm{CH}-\mathrm{S}-\mathrm{CH}$) and $6.8-7.7 \mathrm{ppm}$ ($\mathrm{m}, 22$, benzylidene and phenyl protons). The MS of $2 a$ showed the molecular ion peak (M. ${ }^{+}$) at m/e 460. Moreover oxidation of $2 a$ with hydrogen peroxide gave $1 a .^{3}$

1, 2

4

X \quad R
$\mathrm{X} \quad \mathrm{R}$

$1 a$	O	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2 a$	S	$\mathrm{C}_{6} \mathrm{H}_{5}$
$1 b$	O	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$	$2 b$	S	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$
1 c	O	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	$2 c$	S	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$

Bromination of $2 a$ and $2 b$ with two moles of bromide afforded 3-benzyli-dene-5-bromophenylmethylene-2,6-diphenyltethrahydrothiopyran-4-thione (3a) and 5-bromophenylmethylene-3-(4-chlorophenylmethylene)-2,6-diphenyltetrahy-drothiopyran-4-thione (3b) respectively, (Scheme 1).

The UV spectrum of $3 a$ showed that the main absorption band at $\lambda_{\text {max }}$ $280 \mathrm{~nm}(\log \varepsilon=4.0)$ is like that of $2 a$, which indicates that the same conjugation is present in $2 a$ and $3 a$.

The IR spectrum of $3 a$ showed characteristic bands at $1235 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{S},{ }^{6,3}$ $1605 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{C}^{6 \mathrm{~b}}$ and $1080 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{C}-\mathrm{Br}^{6 \mathrm{~b}}$ groups.

Oxidation of $3 a$ with hydrogen peroxide in acetic acid yield 3 -benzylidene--5-bromophenylmethylene-2,6-diphenyl-1,1-dioxotetrahydrothiopyran-4-one (4). The IR spectrum of 4 exhibited absorption bands at $1675 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}, 1295$ and $1155^{-1}\left(\mathrm{SO}_{2}\right)$ and $1055 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}-\mathrm{Br})$.

Scheme 1

Bromination of $2 a$ and $2 b$ using four moles of bromine, however afforded 5-bromophenylmethylene-2,6-dibromo-2,6-diphenyl-3-phenylmethylenetetrahy-drothiopyran-4-thione (5a) and 5-(4-chlorophenylbromomethylene)-3-(4-chloro-phenylmethylene)-2,6-dibromo-2,6-diphenyltetrahydrothiopyran-4-thione (5b) respectively. ${ }^{7}$

In the ${ }^{1} \mathrm{H}$-NMR of $5 a$ there are no signals for 2,6 -methyne protons up to 6.9 ppm and its UV spectrum showed the main absorption band at $\lambda_{\text {max }}$ $300 \mathrm{~nm}(\log \varepsilon=4.1)$. Its IR spectrum displayed absorption bands at $1235 \mathrm{~cm}^{-1}$ and $1050 \mathrm{~cm}^{-1}$ characterestic for $\mathrm{C}=\mathrm{S}$ and $\mathrm{C}=\mathrm{C}-\mathrm{Br}$ groups.

Compound $2 a$ underwent 1,4-addition ${ }^{3}$ with aliphatic amines, hydrazine hydrate and hydroxylamine followed by air oxidation to give 5-iminophenylmethyl thiones $6 a-c, 2,6$-diphenyl-5-hydrazonophenylmethyl-3-phenylmethy-lenetetrahydrothiopyran-4-thione (6d) and 2,6-diphenyl-5-oximinophenylmethyl--3-phenylmethylenetetrahydrothiopyran-4-thione, (6e) respectively.

a) $\mathrm{R}_{1}=\mathrm{CH}_{3}$; b) $\mathrm{R}_{1}=\mathrm{C}_{2} \mathrm{H}_{5}$; c) $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$; d) $\mathrm{R}_{1}=\mathrm{NH}_{2}$; e) $\mathrm{R}_{1}=\mathrm{OH}$.

The IR spectrum of $6 a$ displayed absorption bands characteristic of $\mathrm{C}=\mathrm{N}$ at $1620 \mathrm{~cm}^{-1}$ and $\mathrm{C}=\mathrm{S}$ at $1230 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $6 a$ showed signals at $2.5 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{~N}-\mathrm{CH}_{3}\right), 3.7 \mathrm{ppm}(\mathrm{s}, 2, \mathrm{CH}-\mathrm{S}-\mathrm{CH})$ and $6.8-7.9 \mathrm{ppm}(\mathrm{m}, 21$, benzylidene and phenyl protons). The MS of $6 a$ showed the molecular ion peak (M. ${ }^{+}$) at m/e 489. The ions at m/e $476\left(\mathrm{M} .{ }^{+}-\mathrm{CH}_{3}\right) 456\left(\mathrm{M} .{ }^{+}-\mathrm{SH}\right)$ and $412\left(\mathrm{M} .{ }^{+}\right.$- Ph$)$ were also observed.

Refluxing of diphenyldiazomethane and 9-diazofluorene with $2 a$ in benzene afforded 3,5-dibenzylidene-2,6-diphenyl-4-diphenylmethylenetetrahydrothiopyran (7) and 3-,5-dibenzylidene-4-(9-fluorenylidene)-2,6-diphenyltetrahydrothiopyran (8) respectively.

7

8

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 7 and 8 showed a singlet $(2 \mathrm{H})$ at $3.7 \mathrm{ppm}(\mathrm{CH}-\mathrm{S}-\mathrm{CH})$ and multiplets 32 H (7) and 30 H (8) at $6.7-8.1 \mathrm{ppm}$ for the phenyl and benzylidene protons. The MS of 7 and 8 showed the molecular ion peaks (M. ${ }^{+}$) at m/e 591 and 592, respectively.

Compound $2 a$ and $2 c$ reacted with copper-bronze in ahnydrous boiling xylene to give the thiopyranylidene derivatives: $2-2^{\prime}, 6,6$ '-tetraphenyl- $3,3^{\prime}, 5,5^{\prime}$ --tetraphenylmethylene-1,1'-thio-4,4'-dipyranylidene, (9a) and 2,2',6,6'-tetraphe-nyl-3, $3^{\prime}, 5,5^{\prime}$ '-tetra(p-methoxyphenylmethylene)- $1,1^{\prime}$ '-thio-4,4'-dipyranylidine, ($9 b$) respectively.
[
a) $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
b) $\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 9 b showed signals at 3.7 ppm (s, $2, \mathrm{CH}-\mathrm{S}-\mathrm{CH}$), 3.85 ppm (s, 6, $2 \mathrm{OCH}_{3}$) and $6.8-6.0 \mathrm{ppm}$ (m, 20, benzylidene and phenyl protons) and the IR spectra of $9 a$ and $9 b$ displayed absorption bands at 1640 and $1645 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$), respectively. The MS of $9 a$ and $9 b$ exhibited the molecular ion peaks at $\mathrm{m} / \mathrm{e} 428$ ($1 / 2 \mathrm{M} .^{+}$) and $\mathrm{m} / \mathrm{e} 488\left(1 / 2 \mathrm{M} .^{+}\right)$, respectively. The ions at m/e 351 $\left(1 / 2 \mathrm{M} .{ }^{+}-\mathrm{Ph}\right)$ and $381\left(1 / 2 \mathrm{M} .{ }^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}-\mathrm{p}\right)$ were observed in the spectra of $9 a$ and $9 b$ respectively.

Cleavage by Sulphur and Thionyl Chloride
It has been reported ${ }^{8-11}$ that at higher temperatures, certain ethylenes are suspectible to cleavage by sulphur and thionyl chloride. Thus, when compounds $7,9 a$ and $9 b$ were fused with sulphur above their melting points, compound $2 a$ (in case of 7 and $9 a$) and $2 c$ (in case of $9 b$) were obtained. Compound 7 when boiled with thionyl chloride gives the ketochlorides 4,4-dichloro-2,6--diphenyl-3,5-dibenzylidene-tetrahydrothiopyran and dichlorodiphenyl methane. These ketochlorides gives rise to $1 a$ as well as benzophenone on hydrolysis. Similarly $9 b$ was cleaved by thionyl chloride yielding $1 c$ in a quantitative yield.

Biological Activity

The above compounds were screened against six organisms representative for Gram positive (Micrococus tetragenus, Staphylococcus citrus and Streptococcus faccalis) and Gram negative (Salmonella species, Pseudomonas aerogenosa and Escherichia coli) bacteria using a modified Cup-test assay technique. ${ }^{12,13}$ It appears that compound $2 b$ has inhibited the growth of Salmonella species at concentrations of $100 \mu \mathrm{~g} / \mathrm{ml}$ and compound $5 b$ was active against Escherichia coli at $100-10 \mu \mathrm{~g} / \mathrm{ml}$.

EXPERIMENTAL

IR spectra were determined as KBr pellets with Unicam SP 1200 spectrophotometer. UV spectra were recorded in ethanol solution with Unicam SP 8000 recording spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian EMI-360 spectrophotometer in CDCl_{3} with TMS as the internal reference. MS 7070 F mass spectrometer operating at 70 ev using direct inlet. All melting points are uncorrected.

Reaction of 3,5-Diarylmethylene-2,6-diphenyltetrahydrothiopyran-4-ones (1a-c) with $P_{4} S_{10}$

Compound $1 a-c(0.01 \mathrm{~mol})$ was refluxed with $\mathrm{P}_{4} \mathrm{~S}_{10}(0.01 \mathrm{~mol})$ in 10 ml of anhydrous xylene for 4 hrs . The solvent was evaporated and the residue crystallised to give $2 a-c$ (Table I).

Oxidation of 3,5-Dibenzylidene-2,6-diphenyltetrahydrothiopyran-4-thione (2a) with Hydrogen Peroxide

Hydrogen peroxide ($50 \mathrm{ml}, 35 \%$ vol.) was added to $2 a(0.01 \mathrm{~mol})$ in 20 ml of acetic acid. The mixture was left for 2 days at room temperature. The $1 a$ separated as solid in $82^{\%} \%$ yield had m . p. and mixed m. p. with authentic sample of $1 a$ of $124^{\circ} \mathrm{C}$.

Action of Bromine on $2 a, b$
Reaction with 2 moles of bromine
Bromine (0.01 mol) in 20 ml of acetic was added dropwise with stirring to $2 a, b$ $(0.005 \mathrm{~mol})$. The mixture was refluxed for 6 hrs , concentrated, cooled and crude $3 a, b$ was filtered off and crystallised to give pure $3 a, b$. (Table I).
Reaction with 4 moles of bromine
Bromine (0.02 mol) in 30 ml of acetic acid was added dropwise with stirring to $2 a, b$ (0.005 mol). The mixture was refluxed for 6 hrs , concentrated and cooled. The solid obtained was filtered off and crystallised to give $5 a, b$. (Table I).

Oxidation of 3-Benzylidene-5-Bromophenylmethylene-2,6-diphenyltetrahydro-

 thiopyran-4-thione (3a) with Hydrogen PeroxideHydrogen peroxide ($50 \mathrm{ml}, 35 \%$ vol.) was added to $3 a(0.01 \mathrm{~mol}$) in 20 ml of acetic acid. The mixture was left for 2 days at room temperature. The solid that separated was filtered off and crystallised to give 3-benzylidene-5-bromophenyl-methylene-1,1-dioxo-2,6-diphenyl-tetrahydrothiopran-4-one (4) (Table I).

Reaction of 3,5-Benzylidene-2,6-diphenyltetrahydrothiopyran-4-thione

 (2a) with AminesA mixture of $2 a(0.01 \mathrm{~mol})$ and the appropriate amines (0.01 mol) in 20 ml of ethonol was refluxed for 5 hrs . The ethanol was distilled off and the residue crystallised to give pure $6 a-e$. (Table I).

Reaction of 3,5-Dibenzylidene-2,6-diphenyltetrahydrothiopyran-4-thione (2a) with Diphenyldiazomethane and 9-Diazofluorenes

A mixture of $2 a(0.01 \mathrm{~mol})$ and diazoalkane (0.015 mol) in 20 ml of anhydrous benzene was refluxed for 4 hrs . The mixture was concentrated and cooled. The solid obtained was crystallised to give 7 and 8. (Table I).

Reaction of 2a, c with Copper-bronze

A mixture of $2 a$ or $2 c(0.01 \mathrm{~mol})$, copper-bronze $(3 \mathrm{~g})$ and 20 ml of anhydrous xylene was refluxed for 6 hrs under nitrogen. The solution was filtered while hot. The filtrate was evaporated under reduced pressure and the residue formed crystallised to give $9 a$ and $9 b$, respectively.
9a: yield 89%, m. p. (petrol. ether) $150^{\circ} \mathrm{C}$, analysis Calcd. for $\mathrm{C}_{62} \mathrm{H}_{48} \mathrm{~S}_{2}$: C, $86.9 ; \mathrm{H}, 5.61$; S, 7.5. Found: C, $86.8 ; \mathrm{H}, 5.49 ; \mathrm{S}, 7.6^{\circ} / 0$.
$9 b$: yield 75%, m. p. (ethanol) $177{ }^{\circ} \mathrm{C}$, analysis calcd. for $\mathrm{C}_{66} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 81.2; H, 5.74 ; S, 6.6. Found: C, 81.0; H, 5.7; S, 6.5 $/ 0$.
TABLE I
Physical and Analytical Data for Compounds 2-8

$6 a$	$\begin{array}{cc} 76 & 117 \\ \text { (ethanol) } \end{array}$	1620,1230	$\begin{array}{r} 290 \\ (3.9) \end{array}$	$\begin{aligned} & 2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \\ & 3.2(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{S}-\mathrm{CH}) \\ & 6.8-7.9(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ph} \\ & \& \text { benzyl }) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NS}_{2} \\ & (489.7) \end{aligned}$	$\begin{gathered} 78.53 \\ (78.44) \end{gathered}$	$\begin{gathered} 5.52 \\ (5.69) \end{gathered}$	$\begin{gathered} 13.09 \\ (13.35) \end{gathered}$	$\begin{gathered} 2.86 \\ (2.81) \end{gathered}$	-
$6 b$	$\begin{aligned} & 69 \quad 123 \\ & \text { (methanol) } \end{aligned}$				$\begin{aligned} & \mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NS}_{2} \\ & (503.7) \end{aligned}$	$\begin{gathered} 78.73 \\ (78.54) \end{gathered}$	$\begin{gathered} 5.77 \\ (5.63) \end{gathered}$	$\begin{gathered} 12.72 \\ (12.70) \end{gathered}$	$\begin{gathered} 2.78 \\ (2.66) \end{gathered}$	-
6 c	$\begin{array}{lc} 81 & 132 \\ \text { (benzene) } \end{array}$				$\begin{aligned} & \mathrm{C}_{38} \mathrm{H}_{31} \mathrm{NS}_{2} \\ & (565.7) \\ & \text { (} \end{aligned}$	$\begin{gathered} 80.71 \\ (80.93) \end{gathered}$	$\begin{gathered} 5.49 \\ (5.44) \end{gathered}$	$\begin{gathered} 11.32 \\ (11.44) \end{gathered}$	$\begin{gathered} 2.48 \\ (2.61) \end{gathered}$	-
$6 d$	$\begin{array}{cc} 77 \quad 169 \\ \text { (petrol- } \\ \text { ether) } \end{array}$	$\begin{aligned} & 3390,1630 \\ & 1230 \end{aligned}$	$\begin{array}{r} 300 \\ (4.0) \end{array}$	$\begin{aligned} & 3.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C}=\mathrm{S}), \\ & 3.4\left(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), \\ & 3.7(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{S}-\mathrm{CH}), \\ & 6.9-7.9(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ph} \\ & \& \text { benzyl }) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}_{2} \\ & (490.7) \end{aligned}$	$\begin{gathered} 75.92 \\ (76.08) \end{gathered}$	$\begin{gathered} 5.31 \\ (5.19) \end{gathered}$	$\begin{gathered} 13.06 \\ (13.02) \end{gathered}$	$\begin{gathered} 5.71 \\ (5.64) \end{gathered}$	
$6 e$	$\begin{gathered} 70 \quad 180 \\ \text { (petrol- } \\ \text { ether) } \end{gathered}$	$\begin{array}{r} 3050-3080 \\ 1645,1245 \end{array}$	$\begin{array}{r} 305 \\ (4.1) \end{array}$	3.3(s,1H,CH-C=S), $3.7(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{S}-\mathrm{CH})$, 6.8-7.9(m,21H,Ph \& benzyl.),109(s,1H, $\mathrm{OH})$	$\begin{aligned} & \mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NOS}_{2} \\ & (491.6) \end{aligned}$	$\begin{gathered} 75.76 \\ (75.63) \end{gathered}$	$\begin{gathered} 5.09 \\ (5.12) \end{gathered}$	$\begin{gathered} 13.03 \\ (13.21) \end{gathered}$	$\begin{gathered} 2.85 \\ (2.90) \end{gathered}$	-
7	$\begin{array}{cc} 69 & 159 \\ \text { (dioxan) } \end{array}$				$\begin{aligned} & \mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~S} \\ & (594.7) \end{aligned}$	$\begin{gathered} 88.89 \\ (89.03) \end{gathered}$	$\begin{gathered} 5.72 \\ (5.66) \end{gathered}$	$\begin{gathered} 5.39 \\ (5.30) \end{gathered}$	-	-
8	$\begin{array}{cc} 70 & 169 \\ \text { (dioxan) } \end{array}$				$\begin{aligned} & \mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~S} \\ & (592.7) \end{aligned}$	$\begin{gathered} 89.19 \\ (89.13) \end{gathered}$	$\begin{gathered} 5.41 \\ (5.60) \end{gathered}$	$\begin{gathered} 5.41 \\ (5.40) \end{gathered}$	-	-

Action of Sulphur on $7,9 a$ and $9 b$
One g of each of $7,9 a$ or $9 b$ was fused with 1 g of sulphur at $180^{\circ} \mathrm{C}$ for 2 hrs ; the mixture was then cooled and extracted with methanol. 7 gave $2 a(\mathrm{~m} . \mathrm{p}$. and mixed $\mathrm{m} . \mathrm{p} .115{ }^{\circ} \mathrm{C}$) and benzophenone, due to the oxidation of the formed thiobenzophenone.
9a: yielded $2 a$ (m. p. and mixed m. p. $150^{\circ} \mathrm{C}$).
$9 b$: yielded $2 c$ (m. p. and mixed m. p. $218^{\circ} \mathrm{C}$).
Reaction of 3,5-Dibenzylidene-2,6-diphenyl-4-diphenylmethylenetetrahydrothiopyran (7) and 2,2',6,6'-Tetraphenyl-3,3',5,5'-tetra (p-methoxyphenylmethylene)--1,1-thio-4,4-dipyranylidene (9b) with Thionyl Chloride

A solution of 7 or $9 b(0.01 \mathrm{~mol})$ in 10 ml of thionyl chloride was refluxed with stirring for 2 hrs . The solution was cooled and poured into crushed ice. The solid obtained was filtered and crystallised from methanol.
7 gave $1 a\left(\mathrm{~m} . \mathrm{p} \text {. and mixed m. p. } 124^{\circ} \mathrm{C}\right)^{3}$ and benzophenone and 9 gave $1 \mathrm{c}(\mathrm{m} . \mathrm{p}$. and mixed m. p. $\left.158{ }^{\circ} \mathrm{C}\right) .{ }^{3}$

Acknowledgment. - Thanks are expressed to Dr. T. Mathrous, Microbiology Institute, Aarhus University, Aarhus, Denmark, for help in the biological activity part.

REFERENCES

1. A. S. R. Anjaneyulu and R. L. Row, Symp. Syn. Heterocycl. Compounds Physiol. Interest, Hydrerabad, India, (1964), 47.
2. Y. A a rre, Maataloustieteellinen Aikak, 41 (1969) 243; C. A. 73 (1970) 24195a.
3. A. A. El-Barbary, F. M. E. Abdel-Megeid, and F. A. Gad, J. Chinese Chem. Soc. 31 (1984) 241.
4. A. A. El-B arbary, Die Pharmazie, in press.
5. R. Cornubert, R. Delmas, S. Monteil, and J. Viriot, Bull. Soc. Chim. (France) 17 (1950) 36.
6. N. B. Colthup, L. H. Daly, and S. P. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, N. Y. (1964); a) p. 311; b) p. 412 , c) p. 407.
7. G. A. Russell and H. C. Brown, J. Amer. Chem. Soc. 77 (1955) 4025.
8. A. Schönberg, A. Ismail, and W. Asker, J. Chem. Soc. (1946) 442.
9. I. F. Zeid and A. A. El-B a r bary, Bull NRC Egypt 4 (1979) 23.
10. I. F. Zeid and A. A. El-B arbary, Bull NRC Egypt 3 (1978) 227.
11. A. A. El-Barbarbary, H. A. Hammouda, and M. El-Borai, Ind. J. Chem. 23b (1984) 770.
12. A. A. Abou-Zeid and Y. M. Shehata, Ind. J. Pharmacy 31 (1969) 72.
13. A. A. Abou-Zeid, M. M. Abdel-Hamid and Y. M. Shehata, Zeitschrift für Allg. Mikrobiologie 16 (1976) 337.

SAZ̆ETAK

Neki aspekti kemije derivata tetrahidro-1-tiopiran-4-ona

A. A. El-Barbary, S. M. Hussain i M. M. S. El-Morsy

Reakcijom 3,5-diarilmetilen-2,6-difeniltetrahidrothiopiran-4-tiona (2) sa dva ili četiri mola broma nastaju 3-arilmetilen-5-bromarilmetilen-2,6-difeniltetrahidrotio-piran-4-tion, (3) i 3-arilmetilen-5-bromarilmetilen-2,6-dibrom-2,6-difeniltetrahi-drotiopiran-4-tion (5). Supstancija 2 daje reakcijom s aminima 2,6-difenil-5-imino-fenilmetil-3-fenilmetilentetrahidrotiopiran-4-tion (6), a reakcijom S difenildiazometanom i 9-diazofluorenom nastaju 4-difeniletilen-2,6-difenil-3,5-difenilmetilentetrahidrotiopiran (7) i 2,6-difenil-3,5-difenilmetilen-4-(9-fluoreniliden)tetrahidrotiopiran (8). U reakciji s bakrom, 2 daje $3,3^{\prime}, 5,5^{\prime}$ 'tetraarilmetilen-2,2'6,6'-tetrafenil-1,1-tio-4,4'--dipiraniliden (9).

