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One-dimensional polymer refers here to a polymer with a
variable size in only one dimension. A new method for enumeration
of Kekulć structures in such polymeric conjugated hydrocarbons
is presented. It is quite general, but still efficient and simple to
use. It is especially usefu1 for evaluation of the Kekule structure
count, K, in polymers with regular structure, i. e. in those built
up of equal monomers with uniform Iinking. In this case the
method gives a recurrence relation and an explicit formula which
enable the calculation of Kfor any number of monomers constitu-
ting the given polymer. Systems with more or less complex regu-
larity, as well as those with some defect in structure, may also
be successfully treated.

The possibi'lities of application are demonstrated on several
examples, and some specific details, e. g. the lowest order of re-
cursion, are discussed.

INTRODUCTION

The Kekule structure count, K, is an important piece of information for
conjugated polycyc1ic hydrocarbons', In spite of many other established
topological quantities", it remains a reliable parameter for the prediction
and interpretation of stability and reactivity of a given conjugated com-
pound.

Its evaluation for relatively simple molecules is straight-forward, by
counting all different Kekule structures which can be drawn for a given
molecule. This method becomes very impractical for bigger molecules, and
various procedures have been developed for the evaluation of K in large
molecules'', Systems with regularly repeating units, and particularly ben-
zenoid systems, were primarily considered+". These procedures give explicit
formulas for K which depend on the number of monomers involved, or an
easy to use recipe for calculation of K, but their application is restricted to
particular systems for which they were derived. Recently, a general method-?

* Dedicated to the memory of the late professor Andrej Ažman.
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has been developed for the evaluation of K in any one-dimensional polymer,
with full or parti al periodicity. For markedly regular systems the result
can be expressed as a recursive relation or as an explicit formula with the
number of constituting units being the variable.

In this paper this method is described in more detail, partcularly with
respect to its potential use. It can be effectively applied in the evaluation
of K in systems with more complex regularity, as well as in the study of
defect impact on K in respect to its character and position. Attention will
be also paid to some specific properties of the method, regarding the minimal
order of recursion, treatment of systems with even and odd numbers of
carbon atoms in amonomer unit, and others.

The Method
Since the method has been already published elsewhere!", here we shall

only briefly repe at the essentials. By one-dimensional polymer we denote
a polymer built up of a finite number of smaller units, not necessarily
equal, so that each one is connected with maximally two others, through
one or more bonds. In this way, a chain-like or a ring-like form is produced,
depending on whether there are two terminal units, or not.

Because the problem of evaluation of K is combinatorial in its nature,
the graph-theoretical terminology seems to be appropriate, and we shall
use it in the following text. Hydrogen suppressed skeleton of the polymer
is represented by a graph which we call a polygraph!'. It consists of mon0-

graphs!' GJ,G2, ••. , Gm, connected by edge sets XI, X2, ••• , Xm so that each Gi

is conected with Gi+1 by Xi, and Gm is by Xm connected with Gj. The gene-
ral scheme is depicted in Figure 1. The polygraph with the ring-like form

Xm-1

Figure 1.
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we denote S2m= S2m(GJ, G2, ... , Gm; XJ, X2, ••• , Xm), and the case with empty
Xm, having the chain-like form, is denoted rm.

Let M (Xi) denote a set of all mathchings in Xi, with elements W/i),
j = 1, 2, ... , [M (Xi) [ where [M (Xi)! stands for the cardinality of M (X;).
Each W/i) may be also understood as a binary relation with the domain
D (W/i») among the vertices of G" and its range R (W/i») among the vertices
of Gi+l. The matrices S (GI), S (G2), ... , S (Gm), and S (r m) are defined in the
following way:

{

K (Gi - R (W/,-ll) - D (Wk(I»)) if R (W/'-l») n D (Wk(I»)= 0
[S (Gi)ljk=

o otherwise
(1)

j = 1, 2, ... , / M (Xi_I) /' k = 1, 2, ... , /M (Xi) /

{

K (T - R (W(m»)- D (W =»
[S (Tm)ljk = m J k

o otherwise
j, k = 1, 2, ... , [M (Xm) ~

G; - R (W/i-1») - D (Wk(i») denotes the subgraph of Gi obtained by removing
vertices specified by R (W/i-1») and D (Wk(i») out from Gi together with their
incident edges. K of the empty graph by definition equals lo

The following relation holds:

(2)

s (T m) = S (GI) • S (G2) ••••• S (Gm) (3)

It enables the evaluation of all K (rm- R (W/m») - D (W k(m»)) specified in
S (T m) by multiplication of matrices S (Gi) which contain K of monographs
Gi and some of their subgraphs. These should be small graphs whose K
could be easily calculated.

For K (S2m) we have:

(4)

Relations (3) and (4) become extremely useful when all Gi and Xi are
equal: GI = G2 = ... = Gm = G, XI = X2 = ... = Xm = X. In this case we
deal with completely regular, ideally periodical graphs which correspond to
ideal polymers in the usual chemical sense. Again, we distinguish two types:
one with closed ends, analogous to S2m,which is called a rotagraph'" and is
denoted by Wm = Wm (G; X), and the other with open ends, analogous to r 01,

called a Iasciagraph'", and denoted by Ym. Relations (3) and (4) now read as:

S (Ym) = s: (G)

K (wm) = tr [sm (G)]

Let us add that S (Ym) is defined as:

{

K(Ym-R(Wj)-D(Wk) if R(Wj) n D(Wk) = 0s (Ym)jk=
o otherwise

(5)

(6)

(7)

j, k = 1, 2, ... , /M (x) /

having in mind that, in analogy with (2), vertices R (Wj) are removed from
the first terminal monograph, and vertices D (Wk) from the last one. Equa-
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tions (5) and (6) allow us to calculate K (wm)' K (Ym) and K of other subgraphs
specified in S (Ym) for any m, once the matrix S (G) is written out.

These two equations provide also the recurrence relations for K (rf;m),
with 'Pm standing for any of Wm, Ym and its subgraphs. Let <p (S; A) denote the
characterstic polynomial of S (G), defined by:

N
([J (S; J.) = det (S - Je I) = ~ ai J.N-i (8)

where N stands for IM (X) I. According to the Hamilton-Cayley theorem:
<p (S; S) = O, where O is the zero matrix of the order N. By equating matrix
elements on the left and the right side (one is free to multiply both sides
with any power of S), and by taking into account eqns. (5) and (6), the fol-
lowing recursions are derived:

N
~ ai·K(Ym_i-R(W)-D(Wk)) =0, m2:N (9)

N
~ ai· K (Wm_i) = O, m =2: N
i = o

(10)

To use these recursions for the calculation of Kfor a particular poly-
graph rf;nH it is first necessary to evaluate the coefficients ai, and to deter-
mine the initial values, i. e. K of rf;o, rf;!, ... , rf;N-l. By definition: K (Wo) = N,
K (Yo - R (Wj)- D (Wk)) = Ojk, where 0jk is the Kronecker symbol. The same
recursion applies to all rf;m, and the difference is only in their initial values ..
One should also note that the characteristic polynomial does not generally
give the shortest recursion. The recursion of the lowest order, common to
all rf;m, should be derived from the minimal polynomial of S. Recursions
for K (Ym - R (Wj) - D (Wk)) may be even of a lower order (and frequently
are), but their finding is generally rather difficult, so in most cases the
recursion derived from the characteristic polynomial is satisfactory.

The theory of linear recurrence relations'! makes it possible to express
K (rj;m) in another form: as an explicit formula in terms of the roots AJ, A2, ... ,
AN of <p (S; A), with m being the variable. Its derivation is a mathematical
routine and we shall present it on some characteristic examples.

APPLICA TIONS

We begin with some simple cases which may be treated by a straight-
forward application of the described method.

Example 1. - Figure 2a shows two polygraphs whose K are to be cal-
culated.
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Figure 2.

it is constructed is depicted in Figure 2c. Its characteristic polynomial reads
as:

(11)

and the recursion relation follows:

with the following inrtial values for the polygraphs in Figure 2a: K (wo) =
= K (WI) = K (wz) = K (W3) = 4, and K (<Po) = O,K (<PI) = 1, K (<pz) = 2, K (<P3) = 3.

Since K (wm) is equal to the trace of sm (G), eqn. (6), always holds'":

N
K (Wm) = ~ }'jm

j = 1
(13)

where Aj denote the zeros of the characteristic polynomial of S (G) (not e. g.
zeros of its minimal polynomial). In this case AI = ,1.2 = ,1.3 = ,1.4 = 1 yield
K (wm = 4, for any m. Before we derive an explicit formula for K (<Pm),
let us point out a specific property of S (G) when the monograph G has an
even number of vertices.

The numbering of the elements of M (X) is arbitrary; so we may take:
WI = <P, Wz = {(rJ, SI), (r2' sz)}, W3 = {(rJ, Sl)}, W4 = {(rz, Sz)}. Rewritten S (G)
is given by:
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CP TIT2 TI T2

CP l 1 1 O O

1~l~;][S"";ilSI :;2 O 1 O O
S(C) =

SI O O 1 O (14)

s2 O O O

A block-diagonal matrix is obtained, and we symbolically write it as: S (G) =
. .

= SI + S2+ S3. Its appearence is a consequence of the chosen ordering of Wj,

and of the necessary condition for K (G) r= O: the number of vertices in G
must be even. Since G has an even number of vertices, K (G - R (Wj)-

-D (Wk» r= O only when cardinalities of R (Wj) and D (Wk) are both even
or both odd. If elements Wj are arranged so that those with even cardinality
are separated from those with odd cardinality, the block-diagonal S (G) will
he formed. It is important to note that this is true only when G has an even
number of vertices; in the opposite case the zero and non-zero blocks will
have exchanged positions. The feature associated with the block-diagonali-
zation of S (G) has already been discussed, with regard to its physical rele-
vance in manifesting a type of »Iong-range spin pairing order e".

S (G) from (14) has the following important property:

(Fi)

If we are interested in [Sm (G)Lj, we have to take into consideration only
the block which contains the given i,j-element. In our example we want to
express K (<pro) = [Sm (G)JJ,2 (according to the new numbering of Wj); therefore
it is sufficient to consider only SI. Its characteristic polynomial is:

if> (SI; },)= (),_1)2 = 22 - 2}. + 1

yielding a shorter recursion than (12):

K (CPm)- 2 K (CPm-l) + K «(Pm- 2) = O, m 2:: 2 (17)

The ini tial conditions for K (if>ro) are already given by eqn. (12). It must be
noted that this recursion is generally valid only for Ym and its subgraphs
related by SJ, and not for others, especially not for K (wm). Quite acciden-
tally, in this example the recurrence relation (17) holds for all elements of
S (Ym) and also for its trace, K (wm), because the polynomial in (16) is the
minimal polynomial of S (G).

Let us derive now an explicit formula for K <Pm)' Since if> (S[; A) has
degenerate zeros: AI = A2 = 1, the following expression hclds'":

(16)

(18)

Cl and C2 are calculated from the two equations obtained for K (<Po) = O and
K (<Pl) = 1 They give: Cl = O, C2 = 1, and finally the well known result" is
reproduced: K (<Pm) = m.

Example 2. - The next example is depicted in Figure 3a. The corespond-
ing G and X are given in Figure 3b. Let us recall now that K (G - R (Wj)-

- D (Wd) = O whenever R (Wj) n D (Wkl r= <P, and K (G) = 1 when G is an
empty graph, because these situations appear several times in writing down
S (G). G has an odd number of vertices, and we do not expect that S (C)
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Figure 3.

can have a block-diagonal form (actually it can, but it is a special case, inde-
pendent of previous considerations). But if we want to evaluate only K (Ym)
and K (wm), we may freely take doubled C as the new monograph C2, shown
in Figure 3c. Namely, for odd m K (Ym) and K (wm) are obviously zeros,
because the respective polygraphs have an odd number of vertices. So we
have to express K (Ym) and K (wm) only for even rn, and we rather take C2

as the monograph. It has an even number of vertices, and consequently it
will be possible to present S (C2) in a preferred block-diagonal form, Figure
3d. S (C2) may be calculated from S (C) according to: S (C2) = S (Y2) = S2 (C).
We recommend the following procedure to determine all blocks in S matrix:
let us understand S as an adjacency matrix of some graph, and let us draw
it (weights of its edges and loops are unimportant). It is easy to identify
separate components in the drawing, and to carry out the appropriate re-
numbering of S.

Next, we take C2 as the monograph, and m in Ym and Wrn refers to ito
The characteristic polynomial of S (C2) is:

ifJ (S (G2); .1,)= },S - 6 .1,6+ 10.1,4-- 6 },2 + 1 = W -1)2 . (.1,2 - 4 .1,+ 1)]2 (19)

Because S (C2) is a hermitian matrix, it can be transformed to a diagonal
form with diagonal values being equal to zeros of ep (S (C2); A) it enables
us to write immediately the minimal polynomial for S (C2)13, and its zeros:
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Then the recurrence relation for K (wm) reads as:

K (wm) - 5 K (wm_l) + 5 K (wm_2) - K (wm_3) = 0, m 2: 3

K (wo) = 8, K (wI) = 12, K (w2) = 32 (21)

The explicit formula follows from (13) taking into account the degeneracy
of Ah ,1.2 and ,1.3 as the roots of the characteristic polynornial:

(22)

For K (Ym) we consider only the first block in S (G2), denoted by SI. The

characteristic polynornial and its zeros read as:

Since it is also the minimal polynomial of S (G2), the recurrence relation
for K (Ym) is equal to that for K (wm), but with different initial conditions:

K(ym)-5K(Ym_l) + 5K (Ym_2)-K (Ym-3) = 0, m 2: 3

K (Yo) = 1, K (YI)= 3, K (Y2) = 11 (24)

The explicit formula for K (Ym) has the following torm'", since there is
no degeneracy in zeros of 1> (SI; ,1.):

(25)

By solving the system of three equations, for K (Yo), K (YI) and K (Y2), the
following result has been obtained: Cl = (3 + y3;6, C2 = (3 - y3)/6, and
C3 = O. Substitution into eqn. (25) gives:

(26)

The fact that K (Ym) can be expressed in terms of only AI and ,1.2 means
also that the shortest recursion for K (Ym) is not (25), but one derived from
the polynomial:

(27)

Let us prove ito The general expression for a recursion relation on K (rfJm) is:
r
~ aj' K (1pm-) = 0, m 2': r
i=O

(28)

By the following we want to determine the coefficients aj. Let us assume:
n

K (Il'm) = ~ ej' At, }'j ~ }'j if i ~ j, and ej ~ 0, Aj ~ ° for all j (29)
i=O

Substitution into (28) gives:
r r Il n n
~ aj K (1pm-) - ~ aj ~ cj J.

j
m-I = ~ ej ~ aj J..m-I =Ji=O i=O j=l j=l i=O

n r n
~ Cj· At-' ~ aj' J.t' == ~ },{,-,. ej . Q <J) = °

j=l i=O j=l
(30)
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where Q (,1) stands for the polynomial in Aj represented by the iner sum-
mation part. Let us write the last equation in (30) for m = r, r + 1, ... , 2r - 1,
treating Cj Q (,1.) as unknowns. The homogenous system of r linear equations
is obtained, having a nontrivial solution only if its determinant equals zero.
The value of this determinant (also called Vandermonde's determinant) is
known-":

D = II (Ai -J)
l::5i <i::5 n

(31)

Taking into account the assumptions made in (29), it is clear that D is not
equal to zero. Therefore, only the trivial solution remains, and regarding
the assumption Cj ,e 0, for all j, made also in (29), the final result Q (Aj) = 0,
for all j, follows. It is actually the only requirement that eqn. (28) puts on
Q (,1.), i. e. on the coefficients ai. The minimal Q (J,) which satisfies this eon-
ditions is:

So we proved
polynomial in

n
Q (A) = II (A-Aj)

i=l
that the shortest recursion for K (Ym)
(27), and reads as:

K (Ym) - 4 K (Ym-l) + K (Ym-2) = 0,

(32)

indeed derives from the

m~ 2 (33)

The initial values were given earlier, with eqn. (24). It would be very
interesting to know why is some cases (not so rare) the recursions shorter
than those obtained from the characteristic and minimal polynomial of S
matrix exist, and particularly to devise a simple and straightforward pro-
cedure for finding them. Until now it has been found that the symmetry
of the monograph, together with the way of its linking, plays a significant
role, but the subject is not yet completely understood.

In the next two examples some cases with more complex structure will
be considered.

a)

~ ...

~

Figure 4.

Example 3. - The polygraph is depicted in Figure 4a. Its monograph,
shown in Figure 4b, has a variable length, depending on how many (;2

units it involves. First, we shall deduce S (G). FolIowing eqn. (3) we obtain:
S (G) = S (G1) • SO(G2) (34)
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Extending the results from Example 1, SJ}(G2) is obtained:

'p TIT2 T[ T2

'p l 1 n O O

1
SI S2 O O O

S" (G2) =
O O 1 OSI

S O O O 1. "

After multiplication by S (GI), eqn. (34), S(G) follows:

'p TIT2 TI 1"2~l 5 5n+l O O

1~ s, + s, + s,
SI S2 4 4n+l O O

S(G) =
s, O O 1 O

S2 O O O 1

"The characteristic polynomials we need, and their roots, read as:

rp (SI; J,) = J,2 - (4n + 6) J, + 1

(35)

(3fj)

J.I = 2 n + 3 + 2 V n2 + 3 n +2, J'2 = 2 n -I- 3 - 2 V n2--I- 3 n -I- 2 (37)

rp (S (G); J.) = J,4 - (4 n + 8) J,3 + (8 n -I- 14) J.2 - (4 n -I- 8) Je -I- 1 (38)

·,1.1 and ,1.2 are the same as above, )'3 = ,1.4 = 1

.A closer look into S (G) reveals that the minimal polynomial of S (G) is:

,U (S (G); Je) = rp (S I; J.) . rp (S2; J.) = [},2 - (4 n -I- 6) J. -I- 1] . (J. - 1) =
= J.3 - (4 n + 7) J,2 -I- (4 n -I- 7) J.-l (39)

'Therefore, recursion for K (wIll,n) is:

K (wm,n) _. (4 n -I- 7) K (com_l,n) -I- (4 n + 7) K (Wm-2,n) - K (Wm-3.n) = O,

m 2: 3, K (wO,n) = 4, K (wI,n) = 4 n -I- 8, K (c02,n) = ]6 n2 -I- 48 n -I- 36 (40)

Recursion for K (<Pro,n) follows from (37):

K ('Pm,n) - (4 n -I- 6) K ('Pm-I,n) + K (?-'m-2,n) = O, m 2: 2,

K ('PO,n) = O, K ('PI ,n) = 5 n + 1 (41)

Following the procedure presented in the two previous examples, the explicit
formulas can also be derived. They read as:

K (wm,n) = (2n + 3 -I- 2 V n2 + 3n -I- 2)'" -I- (2n + 3 -- 2 V n2 -I- 3n + 2)'" -I- 2 (42)

K ('Pm,n) = (5n + 1) [(2n -I- 3 -I- 2 V n2 + 3n + 2)'" - (2n + 3-

-2 vn2 -I- 3n -I- 2)"']/(4 vn2 -I- 3n + 2) (43)

Example 4. - The polygraph, Hm,n, considered in this example is
depicted in Figure 5a. Figure 5b shows the monographs G1 and G2 which
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Figure 5.

build up Hm,n' S (Gl) and S (G2) are written in Figure 5c. The way of eon-
necting G" G2, and so on, is described by the notation of their linking
vertices and by the convention: rl of one unit is always linked to Sl of
another, r2 to S2, and vice versa. One must consider it when C (G1) and S (G2)

are created. Following eqn. (4) and the given sequence of monographs Gl
and G2 in Hm,n, K (Hm,n) may be written as:

(44)

Using the results from the previous example for Sm (G2), after the multipli-
cation denoted in square brackets, K (Hm,n) becomes:

r

m-l-ž mn-l-žn-l-I O

1f
m-l-I mn+n+l O

K (Hm,n) = tr
O O 1

O O O

and finally we obtain:

(45)

K (fPm,n) = X3y3 + 6x2y2 + 9xy + 4, X == m + 1, y == n + 1 (46)

K (Hm,m) = x6 + 6x4 + 9x2 + 4, x == m + 1 (47)

As mentioned in the introduction, the method can also serve to examine
the effect of eventual defects present in otherwise regular polymers. It is
demonstrated by the following example.
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ExampLe 5. - Let the polygraph be as in Figure 6a. The defect is a
linking inversion between two neighbouring monographs. It divides the poly-
graph into two fragments: one before inversion, with m units, and the

1 2

o
n

b) c)
0 r; li r;r..

~ (m+1)lm"Q 2 O Im mlm
G= 0 O 1

S2 O O O -r mim (m~)Tm
r
l S(G)=s, 1 Sm= Im Im

O O O 1 O O Im Im
Sl

X={(r1'S1),(r2's~}
-r-

S,~ O O 1 O O O Im Im

\-n=[1+(-1)m]/2 I ~=[l-{-1P1/2

Figure 6.

other after it, with nunits. These two parts are strictly regular, but mutu-
ally misconnected. G and X are given in Figure 6b, with S (G) and S'" (G)
in Figure 6c. rf there would be no defect, we could write:

S (Ym,n) = sm (C) . sn (C)

To obtain S (Ym,n) for Ym,n with the linking inversion, it is sufficient to
exchange the second and the third row in S" (G) in the above expression.
The reason for this is the fact that TI and Tz of the left fragment Ym are
Iinked to Sz and SJ, respectively, of the right fragment Yn' Therefore, Xi
describing the linking defect, is: Xi = {(TJ, Sz), (TZ, s.)}, and Wz and W3 are:
Wz = {(TJ, Sz)}, W3 = {(Tz, SI)}' S (Ym,n) equals:

s (rmo) ~ l im Im (m-l-I) im
mi., j l in In (n+l) In

ni, 1im im mi., (m~l) im . O O in in

O O Im Im In in nin (n~l) In
(48)

O O im Im O O In In

with im = (1 + (- 1)m)/2, im = (1 - (- 1)m)/2. Since the polygraph under eon-
sideration is in fact Ym,n - TZ, we read from the above product only its
1,3-element. Bere are the results:

K (Ym,n - TZ) = O if m + n = even

K (Ym,n - TZ) = m + n + 1 if m = even, n = odd

K (Ym,n - rz) = r2) = mn + n + 1 if m = odd, n = even

r

(49)
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The results for even (m + n) can be easily understood when the total number
of vertices is counted for Ym,n - 1'2' It is 7 (m + n) -1 = odd, and certainly
K = O. The result in the next formula shows that the position of the linking
inversion has no effect on K if m = even, n = odd, while the last expression
shows a quite different result: K (Ym,n - 1'2) is greatly affected by the position
of the inversion when m = odd, n = even.

CONCLUSION

Through the elaborated examples we have shown how the solving of
the enumeration problem of Kekulć structures in one-dimensional polymers
has become a routine work. The presented method is quite general, efficient
and simple to use. It can be used in a variety of systems with more or
less complex regularity. Practically, K of all patterns whose size varies in
any prescribed way, but in only one dimension, can be successfully evaluated
or investigated using this method.

Nevertheless, it has a strong limitation: it is applicable only to one-
-dimensional polymers. One may try to treat the two-dimensional networks,
by gradually increasing the size of the monograph. But, simultaneously, the
number of links between them increases and the order of S (G) matrix grows
exponentially. Some work on it has already been done [16], but we feel that
there should also be an efficient and more general method, similar to the
described one. This work is in progress.
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SAZETAK

Prebrojavanje Kekulćovih struktura u jednodimenzionalnim polimerima

D. Babić i A. Graovac

Prikazana je nova metoda za prebrojavanje Kekuleovih struktura u jednodi-
menzijskim polimernim ugljikovodicima. Jednodimenzijskim polimerom nazvan
je polimer čija veličina, s obzirom na broj monomernih jedinica, varira u samo
jednoj dimenziji. Metoda je potpuno općenita, ali i dalje efikasna i jednostavna za
upotrebu. Posebno je korisna za određivanje broja Kekuleovih struktura, K, li

polimerima s pravilnom strukturom, tj. s jednakim monomerima i uniformnim
međusobnim povezivanjem. U tom slučaju metoda daje rekurzivnu relaciju i ekspli-
citnu formulu koja omogućuje izračunavanje K za zadani polimer s bilo kojim bro-
jem monomera. Složeniji regularni sistemi, kao i oni s nepravilnošću u strukturi,
mogu se također uspješno obrađivati.

Mogućnosti primjene pokazane su na nekoliko primjera, a razmotreni su i
neki specifični detalji metode, kao npr. najniži red rekurzije.

r




