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The reduced graph model is applied to the enumeration of
Kekule structures for several classes of large benzenoid hydro-
carbons.

The reduced graph model has been introduced as an alternative way to'
represent benzenoid-type networks and is used in the various combinatoriaI
problems of benzenoid hydrocarbons.r" The essence of this model is as follows.

Let G be a connected graph (benzenoid system) in an infinite hexagonal.
planar lattice H. Three disjunctive sets of parallel edges arranged in rows are
present in the lattice H. We can arbitrarily choose one of them and call it
vertical and the remaining two we can denote (in two different ways) as left
and right diagonal. The hexagonal lattice H with edges assigned as vertical •.
left diagonal, and right diagonal is named the oriented lattice H. HorizontaI
rows of hexagons in the oriented lattice H are called levels of the lattice II.
The oriented hexagonal lattice H may be transformed into the trigonal planar
lattice T according to the following transformation rules:

V (T) = {vertical edges of H} (1)'

E (T) = {(VI' v2) I either VI' v2 belong to the same ring in H
or are connected by a diagonal edge} (2).

V (T) and E (T) are vertices and edges of the trigonal lattice T.

Following rules (1) and (2) each graph G in H is easily transformed into
a graph R (G) that is a part of T and is called a reduced graph. We demon-
strate in Figure 1 the transformation of a hexagonal network H into a trigo-
nal network T, and simultaneously change the representation of a given

* Reported in part at the IUPAC International Symposium on the Applications
of Mathematical Concepts to Chemistry (Dubrovnik, Croatia, September 2-5, 1985).
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benzenoid hydrocarbon from the benzenoid graph? G to the reduced graph
R (G).

H

G

T

R (G)

Figure 1. Transformation of a hexagonal network H into a trigonal network T,
and the benzenoid graph G into the corresponding reduced graph R (G).

The graph theoretical aspects of the reduced graph model are discussed
in detail elsewhere.š." This model has so far found the greatest use in the
enumeration and generation of Kekule structures of benzenoid and benzenoid-
-like systems.t=." In the present work we wish to report the appllcation of
the reduced graph model to the enumeration of Kekulć structures of certain
-classes of large benzenoid hydrocarbons. There is a continuing inter est in
counting Kekule valence structures of large hexagonal systems,9-14because it
has been shown that very large benzenoid hydrocarbons can be examined
using theories that require only counts of Kekule structures as input.15-19

Kekulć structures are conveniently depicted by Kekule graphs." Kekule
graphs are isomorphic to I-Iactors.u The l-factor of G is a graph F such that:
(i) F is a spanning subgraph of G, i. e. V (F) = V (G).
(ii) The components of F are only Kz graphs, i. e. F is a disconnected graph.

We will now consider the l-factors of G in the oriented lattice H. It
appears that whenever we determine which of the vertical edges belong to
the l-factors and which do not, this completely determines the assignment of
all other (diagonal) edges. We therefore need to work only with the vertices
of the reduced graph R (G). rf we have a horizontal edge in R (G) with no
triangle above (and/or below), we can add a dummy vertex above (and/or
below) and thus create an upper (and/or lower) triangle. After doing the above
whenever necessary, we obtain the complete reduced graph of G, CR (G). As
an example, we give in Figure 2 the complete reduced graph of pyrene.

A sequence of adjacent edges in T, formed only by diagonal edges, is
-ealled a vertical path. The count of (pairwise disjunctive) paths over the
(labelled) complete reduced graph CR (G) corresponds to the number of
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Figure 2. The reduced graph R (C) and the complete reduced graph CR (C) of the
pyrene graph C. Dummy vertices in CR (C) are labelled by a and i

l-factors K (G) of G (i. e. the number of Kekule structures of the corresponding
benzenoid hydrocarbon):

K (C) = path count.

We will not consider any other paths in eR (G).

(a) pyrene

Path count
abdgi
a b e g i
abehi
acegi
acehi
acfhi

(3)

a

$c

d e f

9 h

(b) bisanthene
o b c

CRIGI o p

CR(C)

Figure 3. The vertical path count for the complete reduced graph corresponding
pyrene and bisanthene

K (C) = 6

Path count
adhko-beilp-cfjmr
adhko-beilp-cfjnr
adhko-beilp-cgjmr
adhko-beilp-cgjnr
adhko-bfilp-cgjmr
adhko-bflip-cgj nr
adhko-bfimp-cgjnr
adhlo-beimp-cfjnr
adhlo-beimp-cgj ar

K (C) = 16

adhko-beimp-cfjnr
adhko-beimp-cgjnr
aehko-bfilp-cgjmr
aehko-bfilp-cgjnr
aehko-bfimp-cgjnr
aehlo-beimp-cfjnr
aehlo-beimp-cgjnr

The theorem and its proof on which the above is based is presented else-
where." The roots of this procedure can be found in an early piece of work
by Gordon and Davison.P

The reduced graph model strongly reminds that of Sachs'" who has
established a one-to-one correspondence between the set of l-factors and the
set of perfect path systems in hexagonal structures.

We should note that: (i) Ii G possesses l-factors, then the number of
vertices on the top and bottom levels of eR (G) must be the same and (ii) lf
G possesses l-factors, then eR (G) must have at least n vertices on each
level, where n = the number of vertices on the uppermost level of eR (G).
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(a) pyrene
a

*~0i
acegi

(b) bisanthene

o p

adhlo-beimp-cfjnr
Figure 4. Generation of the Kekule structures from the vertical paths in CR (G)

The vertical path count (and the Kekulć structure count) for two graphs
already presented in Figure 1 and Figure 2 is given in Figure 3.

There are many independent methods available for obtaining the Kekule
structures counts for pyrene and bisanthene.s! Both molecules may be found
in Tables of benzenoid hydrocarbons published recently.P and both values
from Figure 3 agree with those in these Tables.

Since the (pairwise disjunctive) vertical paths in Cl: (G) correspond to
l-factors, these paths can easily be transformed into Kekulć structures. The
generation procedure is based on the following simple rule: The points in the
vertical path in Cli. (G) correspond to single bonds in a given Kekulć structure
of a benzenoid hydrocarbon. Examples are given in Figure 4. The generation
procedure consists of three steps:

(i) First a given vertical path in eR (G) will be presented.
(ii) eR (G) with a given vertical path will then be transformed into a

structure with allocated single bonds corresponding to the position of the
particular vertical path in eR (G), and (iii) This structure will be transformed
into the corresponding Kekule structure by adding the miss ing double bonds.

When we try to enumerate l-factors of a given complex graph, we may
use previously determined values of the l-factors of its constituent graphs.
Hence, we partition a complex graph at some convenient vertical path (we
can assume that asingle vertex represents a path of length one) into two or
more fragments with a known number of l-factors. Then, the total value of
the l-factors of G represents the combination of the known values of the
l-factors of the constituent fragments, from which are exc1uded those values
which correspond to paths having points in common. The procedure can be
carried out, of course, only in such cases where there is no path going from
one fragment to another.
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If we denote by K (A), K (B), ... , K (i) the total numbers of paths belong-

ing to fragments A, B, ... , imaking up G, and by P (A), p (B), ... , P (i) the
paths passing through the fragmentation points (L e. path correction), then
the express ion for calculating K (G) is given by:

K (G) = :n; K (i) - path correction (4)

The path correction depends on the number of constituent fragments
making up the composite benzenoid hydrocarbon. Below we give formulae
for several cases of interest. Cases for three and more fragments will be
derived by utilizing the formula for the case of two fragments.

(a) Path correction for the case of two constituent fragments and asingle
point of connection

0:-J
G

Path correction = P (A) . P (B) (5)

An example of this case is shown in Figure 5.

K (G) = K (A) . (K (B) - P (A) . P (B) (li)

G

Path count
acf- bdg
acf- beg=
adf- beg*

K (A) = 3

B

eR (G)

P (A) = 2

Figure 5. to be continued
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Figure 5. continued
Path count
a'b'd'g'ej 'l'n'p'*
a'b'd'g'e'j'm'n'p'"
a'b'd'g'ej'm'o'p'*
a'b'd'g'I'j'I'n'p'
a'b'd'g'I'['m'n'p'
a'b'd'g'i'j'm'o'p'
a'b'd'g'i'k'm'n'p'
, a'b'd'g'i'k'm'o'p'
a'b'f'g'ej 'l'n'p'*
a'b'f'g'ej'm'n'p'*
a'b'f'g'ej'm'o'p'* .
a'b'f'g'i'j 'l'n'p'
a'b'r'g'i'['m'n'p'
a'b'r'g'i'['m'o'p'
a'b'r'g'i'k'm'n'p'
a'b'f''g'ik'm'o'p'
a'b'f'h'i'j 'I'n'p'
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a'b'f'h'i'j 'm'n'p'
a'b'f'h'i'j'm'o'p'
a'b'f''h'I'k'm'n'p'
a'b'f'h'i'k'm'o'p'
a'c'f'g'ej 'l'n'p'*
a'c'f'g'ej'm'n'p'*
a'c'f'g'ej'm'o'p'*
a'c'f'g'i'j 'l'n'p'
a'c'f'g'i'j'm'n'p'
a'c'f'g'i'j'm'o'p'
a'c'f'g'I'k'm'n'p'
a'c'f'g'i'k'm'o'p'
a'c'f'h'I'j'I'n'p'
a'c'f'h'i'j'm'n'p'
a'c'f'h'i'j'm'o'p'
a'c'f'h'i'k'm'n'p'
a'c't'h'I'k'm'o'p'

Q'

p'

B

P (B) = 9K (B) = 34
K (C) = 3 . 34 - 2 . 9 = 84

Figure 5. Application of formula (6)

(b) Path correction for the case of three constituent fragments and two
single points of connection

In order to derive the path correction for three constituent fragments
making up G, we will use the above formula for the case of two fragments,

Path correction = Pl (Sl) . Pl (S2) (7)

K (C) = K (Sl) . K (S2) - Pl (Sl) . Pl (S2) (8)

Next, we need to substitute convenient expressions for Pl (Sl), P2 (S2), K (Sl),
and K (S2) to produce the explicit formula for this case.

~~=~~ 00
Pl (S2) = Pl (A) . K (C) (10)

Then, the path correction is given by:
Path correction = Pl (A) , Pl (B) • K (C) (11)

The Kekule structure counts for fragments Sl and S2 are as follows:

K(Sl) = K(B)

K (S2) = K (A) . K (C) - P2 (A) . P2 (C)

By introducing (11), (12) and (13) into (8) we obtain finally:

l

(12)

(13)
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K (G) = K (A) . K (B) . K (C) -P2 (A) . P2 (C) . K (B) -Pl (A) . Pl (B) . K (C) (14)'

Note, that no vertical path should go through both points 1 and 2 in G. An
example illustrating this case is shown in Figure 6.

o '

b'

b

e

9

C B C

CR(G) Path count

a'b'd'e'g'
a'b'd'f'g'
a'c'd'e'g'
a'c'd'f'g'
a'c'bf'g'e=

d
A

Path count

abd*
acd~

K(A) = 2
Ps (A) = 1

K (G) = 2 . 5 . 5 - 1 . 1 . 5 -1 . 1 . 5 = 40

K(C) = 5
K(B) = 5
Pb (C) = 1
P. (B) = 1

Figure 6. Application of formula (14)

(c) Path correction for the case of four constituent fragments and three
single points of connection

~
~

A procedure similar to that outlined above is adopted in this case,.
although the derivations are somewhat more complicated. The results obtained
are as follows:

Path correction = -Pl (A) . Pl (B) . P3 (C) . P3 (D) -I-Pl (A) . Pl (B) . K (C) . K (D) -I-

-I- P2 (A) . P2 (C) . K (B) . K (D) -I- P3 (C) . P3 (D) . K (A) . K (B) (15)<

K (G) = K (A) . K (B) . K (C) . K (D) -I- Pl (A) . Pl (B) . P3 (C) . P3 (D)-

- Pl (A) . Pl (B) . K (C) . K (D) - P2 (A) . P2 (C) . K (B) . K (D)-

- P3 (C) . P3 (D) . K (A) . K (B) (16).

An illustrative example for this case is given in Figure 7.
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o Bc A

K (A) = K (B) = K (C) = K (D) = 6
Pi (A) = Pi (B) = Pi (C) = Pi (D) = 1, i = 1, 2, 3
.K (G4) = 6 . 6 . 6 . 6 + 1 . 1 . 1 . 1 - 1 . 1 . 6 . 6 - 1 . 1 . 6 . 6 - 1 . 1 . 6 . 6 = 1189

Figure 7. The Kekule structure count (application of formula (16)) for tetrameric
structure G4 made up from pyrene units G.

"The cases with more fragments (5 and more) may be studied in a similar
manner. However, in these cases the formulae for counting Kekule structures
-become unwieldy.

For polymeric systems, such as the tetramer in Figure 7, one may obtain
.a rather simple enumeration formula. Let S be a structure with one triangle
on the top level and one triangle on the bottom level, and two single points
-of connection (labelled as 1 and 2) on opposite sides of the monomer such
that there is no vertical path going through both these points. Let LN be a
-chain made out of N copies of S by connecting point 2 of S on the left hand
.side with point 1 of S on the right hand side. The Kekule structures count
KN for LN, i. e. for an N-meric system GN, is given by:

(17)

where Pi is the number of all paths going through point i. Ii PI = P2 = 1,
then Eq. (20) reduces to

KN = KN_I' KI - KN_2 (18)

Note that Ko = 1 by definition.
For linear polymers, for example, made up of pyrene units the Kekule

.structures count is, because of KI = K (G) = 6, given by:

KN = KN_I' 6-KN_2

KI =6

K2 = 62-1 = 35

K3 = 63 - 2 . 6 = 204

K4 = 64 - 3 . 62 + 1 = 1189

Ks = 65 - 4 . 63 + 3 . 6 = 6930

r
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K6 = 66 - 5 . 64 + 6 . 62 - 1 = 40392
K7 = 67 - 6· 65 + 10 . 63 - 4· 6 = 235416

Ks = 68 - 7 . 66 + 15 . 64 - 10 . 62 + 1 = 1372105
K9 = 69-8.67 + 21.65-20, 6:3+ 5·6 = 7997214

K10 = 610 - 9 . 68 + 28 . 66 - 35 . 64 + 15 • 62 - 1 = 46611179

As another example let us consider linear polymers made up of 5.6,12.13-
-dibenzoperopyrene monomeric units. The graph G corresponding to the mo-
nomer and the related complete reduced graph, S (G) = eR (G), are shown
in Figure 8.

G

S(GI=CR(G)
K(G) = 20

Figure 8. Benzenoid graph and the corresponding complete reduced graph of 5.6,12.13-
-dibenzoperopyrene

The Kekule structure counts for this class of linear polymers, because
of Kl = K (G) = 20, are given by:

KN = KN_1 . 20 - KN_2

Kl = 20
K2 = 202 - 1 = 399

K3 = 203 - 2 . 20 = 7960
K4 = 204 - 3 . 202 + 1 = 158801

Ks = 205-4.203 + 3·20 = 3168060
K6 = 206 - 5 . 204 + 6 • 202 - 1 = 63202400

K7 = 207 - 6 • 205 + 10 • 203.- 4 . 20 = 1260880128
Ks = 208 -7 . 206 + 15 • 204 -10 . 20 + 1 = 25154400256

K9 = 209 - 8 . 207 + 21 . 205 -I- 20 . 204 - 5 . 20 = 501830385664
K10 = 2010 - 9 . 208 + 28 . 206 - 35 • 205 - 15 . 20 + 1 = 10011281457152
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SAŽETAK

Primjena modela reduciranih crteža. Prebrojavanje Kekuleovih struktura za neke
klase velikih benzenoidnih ugljikovodika

P. Kfivka, S. Nikolić i N. Trinajstić

Model reduciranog crteža (grafa) upotrijebljen je za prebrojavanje Kekuleovih
struktura nekih klasa velikih benzenoidnih ugljikovcdika.
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