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The Szeged index (Sz) of unbranched catacondensed benzenoid
(UBCB) hydrocarbons is examined. An efficient method for the cal-
culations of their Sz is put forward. Among the UBCB molecules
with a fixed number of hexagons, the linear polyacene has a rnaxi-
mal and the helicene a minimal Sz.

INTRODUCTION

In this paper, we are concerned with the Szeged index of unbranched
catacondensed benzenoid (UBCB) hydrocarbons.! The Szeged index is a re-
cent1y proposed'' structural descriptor, based on the distance s between the
vertices of the molecular graph.š-?

The molecular graphs of UBCB hydrocarbons (which we will call »un-
branched catacondensed benzenoid graphs«, UBCB graphs) are composed of
hexagons. Two hexagons have either one common edge (and are then said
to be adjacent) or have no common vertices at all (in which case they are
not adjacent). No three hexagons share a common vertex. Each hexagon is
adjacent to two other hexagons, with the exception of the »terrninal hexa-
gons- to which asingle hexagon is adjacent. A UBCB system has exact1y two
terminal hexagons. .

The above defined UBCB graphs correspond not only to geometrically pla-
nar, but also to non-planar, helicenic benzenoid hydrocarbons. (We mention in
passing that not only the helicenes.f but a significant number of other known
benzenoid hydrocarbons exist in highly nonplanar, even chiral conformations'').
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The set of all UBCB graphs with h rings is denoted by Ch. It is easy to
see that every graph U from Ch has p(U) = 4h + 2 vertices and q(U) = 5h
+ 1edges.

In order to introduce the concept of the novel Szeged index, and to see
its conceptual relation to the long-known Wiener index, consider an arbi-
trary connected graph G. If u and u are vertices of G, then the number of
edges in the shortest path connecting them is said to be their distance and
is denoted by d(u,u).

Let e = (u,u) be an edge of graph G. Denote by nu = nu(e) and nu = nu(e)
the number of elements of the vertex sets Bu(e) = {w I d(w,u) < d(w,u)} and
Bu(e) = {w I d(w,u) < d(w,u)}, respectively. Recall that nu(e) is the number of
the vertices of G which lie closer to one endpoint of the edge e (namely to
vertex u) than to its other endpoint (namely to vertex u). Analogously, nu(e)
counts the vertices that lie closer to u than to u.

The sum W(G) of distance s between all pairs of vertices of graph G is
the Wiener index (Wiener number), one of the oldest and best studied topo-
logical descriptors of molecular structure.3,4,7,8 A classical result in the the-
ory of the Wiener index4,7-9 state s that

(1)
e

where the summation goes over all edges e = (u,u) of G. Formula (1) holds
only for trees ( = connected acyclic graphs) and is, in a general case, violated
when G is cyclic. (The cyclic graphs for which Eq. (1) is obeyed have been
recently characterized.l? These graphs are of little relevance for the chemi-
cal graph theory).

The obvious advantage of formula (1) is that it provides a decomposition
of the Wiener index into bond-contributions. Indeed, the natural interpreta-
tion of the quantity unu is that it is the increment associated with the chemi-
cal bond, represented by edge e.

Finding the bond-contributions to the Wiener index of cyclic molecules
is a much more difficult task which was approached only recently.11,12The.
expressions obtained for the respective increments are, however, quite cum-
bersome and not easy to be used in practice.P

A different and somewhat unorthodox way out of this difficulty was pro-
posed by one of the authors.š Namely, Wiener's formula (1) served as a mo-
tivation for introduction of a new distance-based graph invariant, called
»Szeged index-.l" defined as

(2)
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where G is now any connected graph. Evidently, Sz and W coincide in the
case of trees. It was eventually established2,10,l5-18 that Sz possesses a num-
ber of interesting properties. For example, the equality Sz(G) = W(G) holds
if and only if every block of G is a complete graph.l" In cyclic bipartite
graphs, Sz(G) is always greater than W(G).2 In the general case (of cyclic
molecular graphs), the behaviour of Sz and W seem to be quite dissimilar.

However, for certain classes of benzenoid molecules, remarkable analo-
gies between the properties for Sz and W were discovered. 15,17 In this paper,
we make one more step in this direction by showing that, in the class of
UBCB hydrocarbons, the Szeged index achieves its maximal and minimal
value for linear polyacenes and helicenes, respectively. These are precisely
the same UBCB species for which the Wiener index is maximal and mini-
ma1.19

In order to find the UBCB systems that are extreme with respect to the
Szeged index, some preparations are needed.

SaME MORE DEFINITIONS

Let e = (x,y) be an arbitrary, but fixed, edge of a graph U from the class
Ci, We define for every edge e = (x,y) the set E1(e) = E1(e) I u) = {(u,v) I u
E B/ej and v E By(e)}. It is clear that if (U,V) E E1(e), then d(v,y) = d(u,x).
Note that x,y) belongs to E1(e). With every edge e = (x,y) of U in Clp we as-
sociate three subgraphs: Rx, Ry and Rxy, also consisting of hexagons. Rxy is
spanned by the vertices belonging to those hexagons of U whose some (two)
edges are from E1(e). Consequently, Rxy belongs to the class Chxy' where h-.:y
= IE1(e)1 - 1. The subgraph Rx is spanned by those vertices of U which lie
closer to X than to y. Similarly, Ry is spanned by the vertices of U whose
distance to y is smaller than the distance to x. Note that the vertex sets of
Rxy and Rx, as well as ofRxy and Ry, have non-empty intersections, i.e., some
vertices of U belong simultaneously to s, and Rxy or to Ry and R-.:y. The ver-
tex sets of R; and Ry are, of course, disjoint. Besides, R; and Ry may be dis-
connected. Let hx and hy be the number of hexagons of R, and Ry, respec-
tively. Then, h.; + hy + hxy = h. In Figure 1, examples are given for graphs

b)
u=.cg '"':V~~.

• • • Ub •••

Figure 1. Two unbranched catacondensed benzenoid systems used to illustrate the
concept of subgraphs R«, Ry and Rxy; for details see text.
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from Ch (two possible configurations). Here, A and B stand for arbitrary
fragments; in particular, they may be absent. In both cases, the subgraph
Ruu consists of the hexagons numbered 1 to k. In case (a), R; = A and Ru =
B. In case (b), R; consists of fragments A and B (and is disconnected)
whereas Ru is empty ti.e., Ru is without vertices).

A subgraph RXY is said to be a segment of U if hxy ~ 2. Then, hxy is called
the length of the segment. Therefore, a segment of U is isomorphic to the
line ar polyacene having at least two hexagons. Every segment share s a
hexagon with its neighbouring segment. The terminal segment has only one
neighbouring segment.

CALCULATION OF THE SZEGED INDEX
FROM VERTEX DISTANCES

The distance of a vertex u in a (connected) graph G, d(u) = d(uIG), is the
sum of distances between vertex u and all other vertices of G. We need the
following simple lemma.

LEMMA 1. Let G be a connected bipartite graph and u and u be its ad-
jacent vertices. Then, d(uIG) - d(uIG) = nu - nu, and nu + nu = p(G). Further,
if G is a UBCB graph, then d(uIG) - d(uIG) = 4(hu - hu)'

Proof. Let e = (u,u) E E(G. Then, d(uIG) = LWEBJe) d(w,u) + LWEB.,(e) d(w,u)

= LwEB.,ce) (d(w,u) - 1) + LWEB,,(e) (d(w,u) + 1) = d(uIG) - nu + nu' Since G has
no cycles of odd length, nu + nu = p(G). If G belongs to Ch, then d(uIG) -

d(uIG) = nu - nu = (P(Ru)/2 + 4h) - (P(Ruu)l2 + 4hJ = 4(hu - hu)'

It was shown-" that, in a bipartite graph, the Szeged index can be ex-
pressed through distance s of the vertices. This allows us to present Sz of a
UBCB graph by a polynomial depending only on the number of hexagons of
some of its subgraphs.

LEMMA 2. Let U he a UBCB graph with p vertices and q edges. Then

Sz(u) = ~(p2(U)q(U) - I (d(ulu) - d(U1U»)2j =
~ (u,u)EE(U)

(3)
= (2h + 1)2(5h + 1) - 4 I (hu - hJ2 .

(u,u)EE(U)

Proof. From Lemma 1, we have nu = (P(U) + d(ulU) - d(ulU))/2 and nu = (p(u)
- d(ulU) + d(ulU))/2. Formula (3) is obtained by combining the above rela-
tions with definition (2) of the Szeged index.
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Eq. (3) implies that, in order to obtain the extreme values of Sz(U) for
UBCB graphs with a given number of hexagons, we need to get the maximal
and the minimal values of the auxiliary function:

I f(u,u) =
(u,u)EE(U)

I (hu - hu)2 .
(u,u)EE(U)

In the subsequent section, we describe in detail the possible values of /tu, u).

UBCB SYSTEMS EXTREMAL WITH RESPECT
TO THE SZEGED INDEX

The edge set E(U) of a UBCB graphs can be divided into two disjoint
subsets,

E(U) = E/U) u Ern(U),

where Et<U) = {e = (u,u) : IE1(elU)1 = 2} and Ern(U) = {e = (u,u) : IE1(eIU)1 >
2}, IE(U)I = lE/U)l + IEm(U)I. Note that JEl(elU)1 > 2 if and only if a subgraph
Ruu forms a segment. The case JEl(elU)1 = 2 corresponds to Ruu with only one
hexagonal ring.

We first calculate /tu,u) for the edges belonging to Et(U). Suppose that
the hexagons of U are numbered consecutively from 1 to h.

PROPOSITION 1. Let U E Ci, If e = (u,u) E Et(U) and e belongs to the
i-th hexagon of U, then

/tu,U) = «h - i) - i - 1»2 = (h - 2i + 1)2 .

Proof. Let e = (u,u) E E/U). It is dear that E1(elU) is an edge cut of U, i.e.
after deleting all edges of E1(elU) from U, we obtain two disconnected com-
ponents. One of these components has i-I hexagons and the other has h
- i hexagons.

Below we establish the extreme values of /tu,u) when (U,U) is any edge
of a UBCB graph. In order to do this, ·we simply substitute i = 1, 2, ..., h
into the formula of Propostion 1.

COROLLARY 1. If e = (u,u) E Et(U), then

(a) max /tu,u) = (h - 1)2, if and only if e belongs to a terminal hexagons
of U;

(b) max f(u,u) = (h - 3)2, otherwise.

(c) min f(u,u) = O, if and only if hu is odd and e belongs only to the cen-
tral hexagon of U;

(d) min /tu,u) = 1, otherwise.
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Every UBCB graph has exactly two terminal hexagons, i.e., it has 8
edges pertaining to case (a). Every such graph with odd hu was exactly one
central ring, i.e., it has 2 or 4 edges for which f(u,u) has the value given un-
der (c).

Consider now the edges of En/U). Let e E Em(U). Recall that for every
edge e' E E1(e), E1(e) = E1(e'). Then, we can associate E1(e) with the corre-
sponding segment S . Denote this set by Em(S). Hence, the set En/U) is pre-
sented as the union of mutually disjoint subsets.

where the union goes over all segments of the UBCB graph U.
PROPOSITION 2. If e = (u,u) E Ei(U), then

if S belongs to Ua (see Figure 1);
if S belongs to Ub (see Figure 1).

This immediately implies
COROLLARY2. Let e = (U,U) E Em(S). Then

(a) max f(u,u) = h - 2)2. This value is achieved on every segment with
k = 2 hexagons, provided U is of type Ub (see Figure 1).

(b) min f(u,u) = o. This value is only achieved on a segment with k - hu.

We are now ready to find the UBCB graph with the maximal (rninimal)
value of Sz. Let e = (U,U) E Em(U), e' = (u',u') E Et(U), and let e' not belong
to a terminal hexagon of U. By Propositions 1 and 2, we have

max f(u',u') = (h - 3)2 < max f(u,u) = (h - 2)2 .

If hu is odd, we require that e' does not belong to the central ring. Then,

min f(u,u) - O < min f(u',u') = 1

Hence, we are interested in a UBCB graph for which

(4)

Every nonterminal segment with k hexagons has 4k - 4 edges from Et and
k + 1 edges from Em. Every terminal segment with k hexagons has 4k - 2
edges from Et and k + 1 edges from Em. We thus arrive at:
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PROPOSITION 3. Among UBCB graphs with a fixed number of hexa-
gons the helieene graph has the minimal value of (4). The line ar polyaeene
graph has the maximal value of (4).

THEOREM. Among the UBCB hydroearbons with a fixed number of
hexagons, helieene has the minimal value of the Szeged index and the linear
polyaeene has the maxim al value of the Szeged index. These benzenoid sys-
tems are unique.

EXTREMAL VALUES FOR THE SZEGED INDEX

From the results obtained in the preeeding seetion, it is easy to ealculate
Sz for the extremal UBCB graphs.

By direct eounting, we establish that the linear polyaeene Lpa.; with h
hexagons has h + 1 edges from Em(Lpah and 4h edges from E/Lpah). Therefore,

h

SZ(Lpah) = (2h + 1)2(5h + 1) - 4 I (h. - 2i + 1)2 .
i=l

Simplifying this expression, we obtain the maximal value of Sz as a eubie
polynomial in h:

SZ(Lpah) = (44h3 + 72h2 + 43h +3)/3.

The helieene Heli; with h hexagons has 2(h - 2) edges from Et for hexagons
i = 2, 3, ... h - 1 and 8 edges from Et for the terminal hexagons. Henee, all
other 3h - 3 edges belong to Em. Then,

Sz(Helh) = (2h + 1)2(5h + 1) - 4(3h - 3)(h - 2)2 -
h-l

- 4 . 2 I Ch - 2i + 1)2 - 4 . 8(h - 1)2 .
i=2

Then, the minimal value of Sz is

Sz(Helh) = (16h3 + 204h2 - 157h + 99)/3.

CALCULATING THE SZEGED INDEX FOR
AN ARBITRARY UBCB GRAPH

The previous analysis provides us with a simple way to ealculate the
Szeged index of an arbitrary graph from eh. We derive a formula depending
on the number and type of segments.
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Let U E Ch have n segments. Define the vector of segments' lengths L(U)
= (ll> l2' ... , ln), where li ~ 2 is the number of hexagons in the i-th segment
Si' i = 1, 2, ... n. The second vector M(U) = (ml' m2, ... , mn) describes the
mutual relati on of the segments. Alabel mi = (S), either O or 1, is assigned
to every segment Si' We first choose ml = m2 = O. Consider the segment Si
and draw a line through the centre s of the hexagons of Si-I' Then, mi = mi-2
if Si and Si-2 lie on the same side of the line, and mi ef. mi-2 otherwise. For
example, the segments marked A and B in Figure 1 have distinct labels in
U; and the same lables in Ui;

In order to make our notation compact, we further assume that mo = m2

and mn+l = mn-l'

Suppose now that L and Mare arbitrary integer and binary n-dimen-
sional vectors, respectively, and li ~ 2 for all i. It is dear that they uniquely
determine a graph from Ch for some h ~ 2. Then, of course, L and M com-
pletely determine also the Szeged index of the corresponding graph.

PROPOSITION 4. The Szeged index of a VBCB system U is computed
from the respective vectors L and M in the following manner:

n

z=L

- 4 t, [4~ (h - 2r + 1- 2A,)' + 2(h - 21, + 1- 2A,),) - 24(h - 1)'

n ~l n

where h = I li - n + 1, h, = mi-l + mil and Ai = I lj - i + 1, Bi = I lj - i + l.
i=l j=l j=i+1

n

Proof. We first observe that U has I li - n + 1 hexagons. Denote by Ai and
i=l

Bi the number of hexagons in the graphs that are obtained after deleting
the edges of segment Si (the edges belong only to S).

Based on our previous results we can write

n

I {(u,u) = I I {(u,u) + I ((U,u) .
(u,v)EE(U) i=l (u,v)EEm(S) (u,v)EE,(U)

Let (u,u) E Em(S). Applying Proposition 2, we have

I {(U,u) = (li + l)(Ai + (-lt'i-l +mi+lB)2.
(u.v)EE([J)
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Let (u,u) E EP]). Segment Si has the hexagons labeled by Ai + 1, Ai + 2,
... , Ai + li' Sinee IE/Si+l) n Em(Si)1 = 2 (provided n > 1), we use for the eal-
eulation the sets E'tCS[) = E/S[) and E't(Si+l) = Et(Si+l) / Em(S) for 1 :c;: i s n
- 1. Then,

n

I f(u,u) = I I f(u,u) =

z=L (u,u)EE,'(S)

= ~[4 E (h - 2(A, + r) + 1)'+ 2(h - 2(A, + I,)+ 1)')+ 6(h - 1)'.

The latter term eorresponds to the edges ofEtCU) from the terminal hexagons.
As an illustration, we apply formula (5) to ealculate the Szeged index of

the UBCB system U with two segments. Let the lengths of the segments be
hl and h2 (see Figure 2).

Figure 2. An unbranched catacondensed benzenoid system with two segments.

In this ease, L(U) = (hVh2) amd M(U) = (0,0). Henee, h = hl + h2 - 1, A
= (Al,A2) = (0, hl - 1) and B = (BVB2) = (h2 - 1, O).Substituting these values
baek into (5), we have

hCl

- 4(4 I (h - 2r + 1)2 + 2(h - 2hl + 1)2) -
1'=2
h1-l

- 4(4 I (h - 2r - 2hl + 3)2 + 2(h - 2hl - 2h2 + 3)2) - 24(h - 1)2
1'=2

from whieh it straightforwardly follows:

Sz(U) = (44(hr + h~) + 120hlh2)(hl + h2) - 48(hr + h~) -

- 120hlh2 + 43(hl + h2) - 36)/3 .
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UBCB GRAPHS WITH COINCIDING SZEGED
AND WIENER INDICES

In this section, we answer in the affirmative the following question: Are
there pairs ofUBCB graphs such that the Szeged index of one coincides with
the Wiener index of the other?

It was shown/ that for a (cyclic) graph G, Sz(G) > W(G). (For UBCB
graphs we could have established this strict inequality by direct comparison of
the extremal values of Sz and W). Because of this, if Sz(U1) = W(U2) then Ul
and U2 cannot be isomers, i.e. they must have different numbers of hexagons.

In class Ch' the graphs Lpa.; and Heli; have also extremal Wiener indices,
the W values of both Lpa and Hel are cubic polynomials in h.

PROPOSITION 5.19 The extremal values of the Wiener index for the
graphs from Ch are equal to Wmin(h) = W(Hel) = (8h3 + 72h2 - 26h + 27)/3
and Wmax(h) = W(Lpah) = (16h3 + 36h2 + 26h + 3)/3.

The following useful result determines the possible values of the Szeged
indices of UBCB graphs.P The analogous property of W has been known for
some time. 19

PROPOSITION 6.15•19 Let Ul> U2 E eh. Then, Sz(U1) == Sz(U2) (mod 8)
and W(U1) == W(U2) (mod 8).

In view of Proposition 6, we define the following two sets: sz(h) = {Szmin(h)
+ 8k lk = 0,1...., (SzmaxCh) - SZmin (h»/8} and EwCh) = {W min(h) + 8k I k = 0,1,...,
(Wmax(h) - Wmin(h»/8}. It is dear that the necessary conditions for coinciding
indices are EwCh1) n Esz(h2) *- ° and Wmin(h1) == SZnmin(h2) (mod 8).

We have to distinguish between three cases:

(a) Wmin(h1) :o; SZmin(h2) :o; W max(h1) :o; SZmax(h2)

(b) SZmin(h2) :o; W min(h1) :o; SZmax(h2) :o; W max(h1)

(c) SZmin(h2):o; Wmin(h1) :o; Wmax(h1) :o; SZmax(h2).

Table I shows the first few admissible valu es of parameters h1 and h2
for each of the cases (a), (b) and (c).

TABLE I

Number of hexagons of the VECE systems with coinciding Szeged and Wiener in-
dicecs; for details see text.

(a)
h1(W) 13 19 20 21 26 27 28 29 33 34
h2(Sz) 10 14 16 18 20 22 24 26 26 28

(b) h1(W) 12 18 23 24 29 30 31 35 36 37
h2(Sz) 8 12 14 16 18 20 22 22 24 26

(c)
h1(W) 25 32 38 44 45 50 51 56 57 58
h2(Sz) 18 24 28 32 34 36 38 40 42 44
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UBCB systems with given values of Sz and W.

value
Sz=W

Nw
h = 12

Nw
h= 12

1
1
1
3
1
2
2
1
3

8537
8553
8585
8633
8697
8721
8897
9161

Nsz
h=8

7969
8121
8225
8377
7401
8449
8457
8481
8505

2
2
2
1
3
2
4
6
2

value
Sz=W

2
2
1
1
2
1
1
1

1
2
4
5
4
5

14
32

Table II contains amore detailed information on graphs with given values
of the indices and the minimal number of hexagons. Here, Nsz and Nw de-
note the number of elements of degeneracy classes for Sz and W, respectively.

Figure 3. 'Two unbranched catacondensed benzenoid systems with 8 haxagons, ha-
ving equal Szeged indices (Sz = 7969); this is the same value as the Wiener index
of [12]helicene.

Two UBCB systems with h = 8 and Sz = 7969 are depicted in Figure 3.
This value of the Szeged index is equal to othe Wiener index of the helicene
with h = 12, i.e., W)Held = Wmin(12) = 7969.
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SAŽETAK

o Szegedskom indeksu nerazgrananih katakondenziranih
benzenoidnih molekula

Andrey A. Dobrynin i luan Gutman

Ispitivan je Szegedski indeks (Sz) nerazgrananih katakondenziranih benzenoid-
nih (UBCB) ugljikovodika. Predložena je efikasna metoda za računanje Sz za te su-
stave. Među UBCB molekulama s fiksiranim brojem šesterokuta, linearni poliacen
ima najveću, a helicen najmanju vrijednost Sz.




