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The function mentioned in the title will be leisurely derived in two
different ways. The apparatus used in the proofs consists of easy
bijections and some generating functionology.

DEFINITIONS, CONVENTIONS AND NOTATIONS

All the geometric objects studied in this paper are assumed to lie in the
x-y plane. When counting such objects, we make no difference between the
two of them that can be transformed one into another by a translation.

A cell is a closed unit square whose vertices have integer coordinates.
Let P be a finite union of cells. For i E Z, let Pi be the union of those

cells of P whose left side has abscissa i. If nonempty, the set Pi is said to
be a column of P. P is a column-convex set if each column of P is an unbro-
ken line of cells. P is a polyomino (or animal) if the interior of P is con-
nected. Needless to say, P is a column-convex polyomino if it is both a col-
umn-convex set and a polyomino. See Figures 1 and 2.

Notation 1. If a polyomino P has kl horizontal edges and k2 vertical
edges, we write Re(P) = kl and Ve(P) = k2.

Definition 1. Let Q be some family of polyominoes. By the perimeter gen-
erating function (perimeter st, pgf) of Q we mean the formal sum

pgf(Q) = I xHe(p)yVe(P).
PEf2

The perimeter+ area gf of Q is the gf that has the same variables as the pe-
rimeter st: plus a third variable q = area.
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He(P)=12

Ve(P)=22

Figure 1. A polyomino. Figure 2. A column-convex polyomino.

The set of all column-convex (c-e) polyominoes will be denoted .9', and
the perimeter gf of gJ will be denoted G. Further, we put

INTRODUCTION

(1)

Polyomino enumeration and/or generation problems arise in several
chemical and physical contexts. Some examples are the study of molecular
aggregates on catalyst surfaces, and of the thermodynamic properties of a
polymer in dilute solution (Muller et az.i); modelling of a fluid which perco-
lates through a medium having random properties (Stauffer and Aharony.š
Bousquet-Mćlou"); the solution of Baxter's lattice-gas model (Dhar4).

In its full force, the enumeration of polyominoes is a very difficult open
problem. Nevertheless, a few asymptotic bounds are known. As an example,
let us quote a result of Klarner and Rivest.P

Let an denote the number of polyominoes whose area is n. The sequence
<al> a§/2, ak/3, ••• > converges, and its limit M satisfies 3.87 < M < 4.65.

On the other hand, various special kinds of polyominoes have been
counted, with respect to perimeter, area and/or other properties. For a sur-
vey of these exact enumerations, see Viennot. 6 For some of the current pro-
gress in this field, see Bousquet-Melou.l-'' as well as Svrtan and Feretić.?

The c-c polyominoes are undoubtedly quite a remarkable special class of
polyominoes. Their importance is due to two factors. First, the c-e polyomi-
noes are relatively numerous, so that their perimeter + area gf exactly re-
produces many of the early term s of the perimeter + area gf for all polyomi-
noes. Second, the area gf (P6lya, 10 'Iemperley '"), perimeter gf and perimeter
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+ area gf (Bousquet-Melon") of the c-c polyominoes are all given by reason-
ably simple expressions. (The area gf just mentioned is a function of two
variables: x = horizontal edges and q = area.)

The first person who tackled the c-c polyominoes perimeter enumeration
was H. N. V. Temperley!' in 1956. Let gr be the perimeter gf for the c-c
polyominoes whose left-hand column contains exactly r cells. Taking account
of the various possible overlaps between adjacent columns, Temperley found
the following set of equations:

1
r-1 [ y2(r-s) - y2r 1

g; = x2 y2r + ~ 2· 1_y2 + (r - s - 1) .y2(r-s) . gs +

(2)
co [ y2 y2r 1 1

+E 2· 1= y2 + S - r + 1 .gs (r E N) ..

By doing a few things of the type »subtract the equation for y2gr from that
for s-;». hence he got the difference equation

In Eqs. (2)-(3) the initial values g1, g2, ... are not known, so at first glance
it is not clear how to get the solution. However, Temperley found a method
to do the job and solved a similar, but simpler system for the c-c polyominoes
area gf. Applying the same method to Eq. (2) involves an extensive calcula-
tion which Temperley, who certainly had no computer algebra at that time,
left undone. Only many years later (in 1990) Brak et al.12 employed Mathe-
matica to solve Eq. (2) in the case x = y. The general case x 1:- y was solved
shortly thereafter by Lin,13 who used Reduce.

In the meantime (1984), M. P. Delest14 derived the function G(x,x) by a
different approach, namely by means of the algebraic language (or DSV, i.e.
Dyck-Schiitzenberger-Viennot) methodology.l" Delest's proof also resorts to
computer algebra.

The function G(x,y) was definitively unmasked in 1993, when Svrtan and
Feretic-" found the formula given in Theorem 1 below. (The previously
known formulas for G were more complicated.) Svrtan and Feretic derived
the function G(x,y) both by the algebraic language and by the Temperley ap-
proach. It is interesting to mention that in these two derivations all the algebra
was done by hand. In the algebraic language approach, which involves estab-
lishing and then solving an algebraic equation for the function to be found,
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much work was saved by noticing that the function L = (1 - 3H) / (1 - H)
satisfies the simple biquadratic equation

(4)

The Temperley equations were tamed by prof. Svrtan, who devised an effi-
cient new method for their solution. Incidentally, this new method can han-
dle the q-enumeration (the perimeter + area enumeration) as welL Some as-
pects of Svrtan's method were streamlined and further developed by
Bousquet-Melon."

Very recently Feretic'? has, in a sense, reduced the algebraic-language
derivation of G(x,y) by a factor of four.

The present paper .explores the possibilities of deriving the function G
in still more popular ways. So first we shall see what Feretic's!" proof looks
like when the algebraic languages are replaced by the so-called wall
polyominoes. Then we move on to another derivation of G, which is new, and
is, in a sense, complementary to the derivation presented before it.

OTHER DEFINITIONS, CONVENTIONS AND NOTATIONS

Let P be an arbitrary column-convex (c-c)polyomino. The top left corner
of the first column of P is called the north-west pole of P and is denoted by
NW(P). The bottom right corner of the last column ofP is the south-east pole
of P (notation: SEep»~.

Imagine a plane figure T obtained by appending a vertical segment of
d E No lattice units to the south-east pole of a c-c polyomino P. We say that
T is a tailed polyomino (a tapo, for short). Naturally, the appended segment
is termed the tail of T. By the columns of a tapo T we mean the columns
of the underlying c-c polyomino P. The north-west pole of T is defined by
NW(T) = NW(P), while the south-east pole SE(T) is defined as the lower end-
point of the tail of T. See Figure 3.

Now suppose that, for some n EN, n - 1 arbitrary tapoes T1, ... , Tn_1 and
a tapo with a null tail 'I'; are given. Let Tv ..., Tn be disposed in a way that,
for 2 ~ i ~ n, the north-west pole of T, coincides with the south-east pole of
Ti-1·

In a situation like this we say that the union S = u T, is a stapo (sequence
ls:is:n

of tailed polyominoes). The tapoes T1, ... , Tn are termed the parts of S. By the
columns of a stapo we mean the columns of its parts. See Figure 4. Observe
that the one-part stapoes are c-c polyominoes.

It is useful to adopt the following convention:
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Figure 5. A wall polyomino. Co(W) = 17, Ve(W) = 42
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Convention 1. Let a tapo T be obtained by appending a tail of length d
to a c-e polyomino whose vertical perimeter is 2v (i.e. which has 2v vertical
edges). Then T has 2v + 2d vertical edges.

By the vertical perimeter of a stapo we mean the sum of the vertical pe-
rimeters of its parts.

With this convention, in the sequel we shall apply Notation 1 and Defi-
nition 1 not only to the polyominoes, but also to the tapoes and stapoes.

Notation 2. Let P be a c-e polyomino, a tapo or a stapo. The number of
columns of P will be denoted Co(P). (Of course, Co(P) is one half of He(P).)
The minimal and the maximal ordinates of the ith column of P will be writ-
ten Yi(P) and Yi(P), respectively. The height of that column, i.e. the number
of cells contained in it, will be denoted hi(P).

We denote the set of all tapoes by /7, and the set of all stapoes by _07.
Next, we put 1= pgf(J' ). As to the function pgf(Y), it is equal to H of Eq. (1)
(this is proved in section »Some easy remarks«).

A column-convex polyomino whose hottoms of columns all have the same
ordinate is called a wall polyomino. See Figure 5.

Definition 2. For Q a family of wall polyominoes, we put

wgf(Q) = I xCo(W) y Ve(W) •

WED

We denote the set of all wall polyominoes by '1Fand we put K = wgf( ~).

A ONE-TO-ONE MAPPING OF THE STAPOES
INTO WALLPOLYOMINOES

Let S he a stapo with c columns. The stapo S is incident on c + 1 of the
vertical lattice lines. Let these lines he lo, ... , le' and let the contrihution of
S n li to the vertical perimeter of S be denoted by vi(S). Clearly,

and

Further, a little thought shows that for i E C - 1 we have*

whether or not S n li contains a tail of S. The total vertical perimeter of S
is therefore given by

'" The symbol k denotes the set of integers {1, 2, 000, k}o
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(5)

e-l
+L (I Yi+1(S) - Yi(S) 1+ IYi+l(S) - y/S) I) o

z=L

Owing to the geometry of our stapo S, the numbers Yi(S) - Yi(S) (i Ef) and
YJS) - Yi+l(S) (i E C - 1) are all positive. Hence there exists a wall polyomino
<p(S), with 2c - 1 columns, such that the ISt, 2nd, 3rd, 4th, 000, 2c - 1th column
of <p(S) contain

cells, respectively, We readily find

The numbers vi(<P(S)) (i = 0, 000, 2c - 1) add up to the expression on the right
side of Eq. (5)0 This means that S and <p(S) have the same number of vertical
edges.

For c, vEN, let

YeU = {S E ,9': He(S) = 2c, Ve(S) = 2v}

and
'Weu = {W E W: Co(W) = 2c - 1, Ve(W) = 2v} o

So far we have shown that <pmaps Y"eu into 'Weu o But it is quite easy to prove
a stronger result:

Proposition 1. <p is a bijection between ,9"eu and ;W~uo

As an example, the reader may verify that <p takes the stapo of Figure
4 into the wall polyomino of Figure 50

Let goeu be the set formed by those elements of Y"eu which are c-e
polyominoes. A little thought shows that <p map s .9 eu onto the set, say
W;u, of those W E Weu which satisfy the additional requirement



748 s. FERETIĆ

(6)

We have to eount the sets W;u (that is, .9cu), but the requirement Eq.(6) does
not look very handy. However, we need not worry, beeause the stapoes will
do the hard work for us.

SOME EASY REMARKS

Notation 3. Let fbe a series in powers of z. By the symbol <z">fwe mean
the eoeffieient of z" in the series f

For d E No, let '''/d be the set of tapoes whose tail is exaetly dunits long.
Cutting the tails is a 1-1 mapping of {T E ,rd: Re(T) = 2c, Ve(T)= 2u} onto
{P E ,9'): Re(P) = 2c, Ve(P)= 2v - 2d}. Renee,

for all c, u E N. In other words, pgf(Jd) = y2d G. Reealling Eq.Cl), we find

(7)

Let Y/n be the set of n-part stapoes. An n-part stapo is, in substanee, a se-
quenee of n - 1 tapoes and one c-c polyomino. Renee, pgf(Yn) = Hn-1G, and
we find

I=pgf(uYn)=L ]P-lG = l~H'
n;,! n~l

(8)

Now it is eonvenient to put

I
J=-l 2'-y

(9)

The funetion Jean be interpreted as the perimeter gf for the generalized
stapoes whose last part, too, is allowed to have a tail. From Eqs. (1), (8),
and (9) it follows that

H
J=l_H' (10)
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so that 1
H=l-l+J' (11)

Let I = ~ . [K(x,y) - K(-x,y)] . (12)

By Proposition 1, for c, u EN we have IWeul = 1.5I"eul, so that

(13)

Both I and I have only that kind of term s where both x and y are raised to
even powers. Eq.(13) therefore implies

1=1. (14)

Now, instead of attacking the pgf G directly, we shall rather take the easier
route of first deriving the function K. With K in our hands, we shall succes-
sively obtain I, I, J, H and G from Eqs. (12), (14), (9), (11) and (1).

DERIVATION OF K

In order to derive an algebraic equation for K, we shall partition the set
'.J!.F. of all wall polyominoes into some classes and study how the wgfs of
these classes relate to K = wgf( '.J!.F).

i) Let Wa = {W E '11': W has no one-cell columns}.
There is a bijection between '11' and Wa : with U E '11' we associate the

polyomino W E Wa> produced by putting one additional cell on the top of
each column of U. (See Figure 6.a). We have Ve(W) = Ve(U) + 2, which im-
plies

(15)

Each W E W \ Wa possesses at least one one-cell column. The leftmost one-
cell column of such a W will be denoted tJ:(W).

ii) Let '.J!.F~ = {W E '11' \ Wa: tJ:(W)is both the leftmost and the rightmost
column of W}.

The set '.J!.F~ contains just one element: the one-cell polyomino. Hence
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Co(U)=4
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Co(W)=4
Ve(W)=12

Co(W)=5
Ve(W)=12

Co(W)=5
Ve(W)=12

1

I
Co(U,)=2
Ve(U,)=l!

Figure 6. The bijections used in establishing Eq. (20).
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iii) Let 'lry = {WE '/Y \ '/Ya: tf(W) is the leftmost, but is not the rightmost
column of W}.

Suppose we take a polyomino U E '/Y and paste an additional one-cell
column on its left side. We then get a polyomino W E ~ such that Co(W) =
Co(U) + 1 and Ve(W) = Ve(U). (See Figure 6.b).

In fact, this adjoining-a-column operation is a bijection between 'ir and
'/Yy. Thus,

wgf( '/Yy) = x . wgf( 11) = xK . (17)

iv) Let 7P'il = {WE '/Y \ '/Ya: tf(W) is the rightmost, but is not the leftmost
column of W} .

With U E '/Ya we associate the polyomino W produced by adjoining one
one-cell column on the right side of U. (See Figure 6.c). We have W E :To,
Co(W) = Co(U) + 1 and Ve(W)= Ve(U). Again, the pasting operation just de-
fined is actually a bijection between '/Ya and 'iro . Thus

(18)

v) Let 'ire = {WE '/Y \ '/Ya: tf(W) is neither the first nor the last column
ofW}.

The columns of a given W E '/Ye that lie strictly to the left of tf(W) form
a polyomino, say Ul>which belongs to '/Ya. On the other hand, 11(W) and the
columns to the right of it form a polyomino U2 which is an element of 'fry.
(See Figure 6.d). We have Co(W) = Co(U1) + Co(U2) and Ve(W) = Ve(U1) +
Ve(U2) - 2. Further, the decomposition just described is a bijection between
'ire and the cartesian product '/Ya X '/Yy • From these remarks we conclude
that

wgf( '/Ye) = y2 wgf( 7yJ .wgf(~) = xJ(2 . (19)

Clearly, {7Ya' 7Y1l, W~,:W;;,7Ye} is a'partition of W. Using Eqs. (15)-
(19),wenowfind

The above equation for K can be rewritten as

(21)

Proposition 2. The wgf of the wall polyominoes is given by



752 s. FERETIĆ

(22)

Pro of. Eq. (22) was obtained from the solution of quadratic Eq. (21) by
rearranging the discriminant.

Remark. I know of no reference for the result of Proposition 2. The wall
polyominoes themselves appear in the papers of Privman and Švrakić18 and
Bertoli et al., 19 but these papers deal with some other aspects of polyomi-
nology, namely with the area enumerationlš and random generation.l?

FUNCTION G

As announced before, now we rapidly advance through Eqs. (12), (14),
(9), (11), and (1) finding the functions I, I, J, H and G one after the other.
Thus we get:

Theorem 1. The perimeter gffor the column-convex polyominoes is given
by

G(x,y) = (1 - y2) r1 - 4 j. (23)

6 - ~(1-x)2 -~- ~(1 +x)2 +~
1- y2 1-y2

ANOTHER DERIVATION OF G

As we shall now see, the formula for G can as well be derived without
recourse to the tapoes and stapoes. This simplification is, however, pur-
chased at a price: the wall polyominoes need to be studied in more depth.

Let us first recapitulate same facts from section »A one-to-one mapping
of the stapoes into wall polyominoes«. For c, u EN, we defined the sets

.9 eu = {P E .9: He(P) = 2c, Ve(P) = 2u} and

We: = {W E 'Jr: Co(W) = 2c - 1, Ve(W) = 2v,

h2/W) < h2i-1(W) + h2i+1(W) 0fi E C - 1)} .

With P E goeu we associated the wall polyomino ((J(P) which has 2c - 1 col-
umns, and whose Pt, 2nd, 3rd, 4th, ... , 2c - 1th column contain
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cells, respectively. The correspondence <p proved to be a bijection between
[j?cu and ;W;u·

Now it is time for some new definitions and notations.

Definition 3. Let W be a wall polyomino.
i) By the even columns of W we mean the 2nd, 4th, 6th, ... of the columns

ofW.

ii) Let 1 < j < Co(W). When h/W) z hj_l(W) + hj+l(W), the lh column of
W is an extra high (xhigh) one, and it has h/W) - hj_l(W) - hj+l(W) extra cells
(xcells).

We shalI write 'Jr' for the set of those wall polyominoes which have an
odd number of columns.

For rENo, let ;W'(r) = {W E 'Jr': W has precisely r xhigh even columns}.
For r E N and d e No, let ;W'(r,d) = {W E ;W'(r): W has d xcells in its rth

xhigh even column}.
And now we start crossing the wall polyomino waters. For c, V EN we

have

which implies G = x . wgl'Jt?'(O» . (24)

Let r E N and dE No. With Ul E 'Jt?"'(r- 1) and U2 E ;;r(O) we associate
the polyomino W = IjI(Ul>U2), generated by the following two-step procedure:

i) Create the one-column polyomino X consisting of i + j + d cells, where
i and j are the heights of the last column of Ul and of the first column
of U2, respectively.

ii) Put Ul> U2, and the new creature X side by side, in the order Ul - X "
- U2. Level the bottoms, the n glue these three polyominoes into one
polyomino. This latter polyomino is the output of the procedure, i.e. it is W.

We have W E 'Jr'(r,d), Co(W) = Co(Ul) + Co(U2) + 1 and Ve(W) =
Ve(Ul) + Ve(X) + Ve(U2) - 2i - 2j = Ve(Ul) + Ve(U2) + 2d. The polyomino
Ul (resp. U2) can now be recognized as that part of W which lies to the left
(resp. right) of W's rightmost xhigh even column. See Figure 7.

The correspondence ljI is, in fact, a bijection between the cartesian prod-
uct ;W'(r - 1) x ;W'(O) and the set ;W'(r,d). So we have
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x

Ul ,-'.,:'1' .

,-.(\ •... &
~'.., - - - - - - - - .:

jlhe d cells
which in W
become xcells

'1i; U,EW'(O)
,. --

( ' ! ~..'.' & --·-r --- ..__.. B .
Uz

& B-r-···...---. ..--..
; ,
: ... ------'

rth xhigh even

columnofW
I

WEW'Cr.d)

Figure 7. The correspondence between '1I"(r - 1)x '11"(0) andW'(r,d).

wgf(W'(r,d))=xy2d· wgf(W'(r-l))· wgf(W'(O)), (25)

from which follows that

wgf( W'(r)) = I wgf( W'(r,d)) = wgf( '7f'(r - 1)) . ~2 wgf( Jr'(O)) _ (26)
1-y

deo

Iteration of Eq.(26) gives

wgf(W'(r)) = wgf(W'(r - 2))· [~Wgf(W'(O))]2 = ...
1- y

(27)

... = wgf(W'(O)). [~Wgf('7f'(O))]r
1 -y
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Observe that Eq. (27) holds for r = O as well. Next we sum over r ~ O to
find

wgr( »: ')= I wgf( »: 'er)) = wgr( 'li'" '(O))

reo 1 - ~ wgr( 'li'" '(O))
1-y

(28)

Renee wgr( »: '(O)) = wgr( 'li'" ')

1+~wgr('lI'"')
1-y

(29)

The formula for wgre )W') follows immediately from Proposition 2:

wgr( 'lI'"') = ~ . [K(x,y) - K(-x,y)] = (30)

2(1 - y2) _ ~(1_ x)2(1 - y2)2 _ 4xy2(1 _ y2) _ ~(1+ x)2(1 _ y2)2 + 4xy2(1 _ y2)
4x

Theorem 1 can now be re-established with ease: we just need to combine
Eqs. (24), (29) and (30).
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SAŽETAK
Prebrojavanje vertikalilO konveksnih poliominoa

prema opsegu na svima pristupačan način

Svjetlan Feretić

Nedavno (1993.) su o vertikalno konveksnim (vk-) poliominoima sa zadanim op-
segom dobiveni novi rezultati, znatno jednostavniji od dotadašnjih. Do tih se novih
rezultata došlo na dva načina: preko algebarskih jezika i preko Temperleyevih jed-
nadžbi. Nešto kasnije (1995.) se ustanovilo da prebrojavanje pomoću algebarskih je-
zika postaje lakše ako se vk-poliominoe shvati kao poseban slučaj takozvanih stapoa.
U ovom se radu nastojalo taj olakšani dokaz učiniti još pristupačnijim, i zbog toga
su algebarski jezici zamijenjeni zid-poliominoima. Na kraju rada pokazano je i to da
se, uz malo pažljivije proučavanje zid-poliominoa, do rezultata o vk-poliominoima .
može doći i bez korištenja stapoa.




