Delta Number, D_{Δ}, of Dendrimers

Mircea V. Diudea, ${ }^{\text {a,* }}$ Gabriel Katona, ${ }^{\text {a }}$ and Bazil Pârv ${ }^{\text {b }}$
${ }^{2}$ Department of Chemistry, Babeş-Bolyai University, 11 Arany Janos Str, 3400 Cluj, Romania
${ }^{\mathrm{b}}$ Department of Computer Science, Babes-Bolyai University, 1 Kogalniceanu Str., 3400 Cluj, Romania

Received February 16, 1996; revised July 10, 1996; accepted July 18, 1996
General formulas for the calculation of a novel Wiener-type number, $D_{\Delta},{ }^{1}$ in regular dendrimers are proposed. They are derived on the basis of the novel matrix $\boldsymbol{D}_{\Delta},{ }^{1}$ by using progressive vertex degrees and orbit numbers ${ }^{2}$ as parameters. Relations of D_{Δ} with the well known Wiener, ${ }^{3} W$, and hyper-Wiener, ${ }^{4} W W$, numbers, and a new relation (based on the \boldsymbol{D}_{P} matrix ${ }^{1}$) for estimating $W W$ in dendrimers are also given.

INTRODUCTION

Wiener ${ }^{3}$ has defined his »path number" W, as »the sum of distances« between all pairs of vertices i and j in an acyclic graph G. He calculated W by summing up the »bond contribution« of all edges e in G. Randic ${ }^{4}$ extended this definition to "path contributions", resulting in the hyper-Wiener, WW, number. Condensing the two descriptors, one can write

$$
\begin{equation*}
I=I(\mathrm{G})=\sum_{e / p} I_{e / p}=\sum_{e / p} N_{\mathrm{L}, e / p} \cdot N_{\mathrm{R}, e / p} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
N_{\mathrm{L}, e}+N_{\mathrm{R}, e}=N(\mathrm{G}) \tag{2}
\end{equation*}
$$

[^0]In the above relations, N_{L} and N_{R} denote the number of vertices lying to the left and to the right of edge/path e / p and the summation runs over all edges/paths in the graph. The meaning of I, cf. Eq. (1), is the number of all »external« paths that include all the paths, of length e/p, in acyclic graphs.

Edge/path contributions $I_{e / p}$ are just the entries in the Wiener matrices, W_{e} and $W_{p}{ }^{5,6}$ Thus, I is the half sum of entries in these matrices

$$
\begin{equation*}
I=(1 / 2) \sum_{i} \sum_{j}\left[W_{e / p}\right]_{i j} \tag{3}
\end{equation*}
$$

I being W for W_{e} and $W W$ for W_{p}. Lukovits et al. ${ }^{7-9}$ derived formulas for calculating I in cycle-containing graphs.

A second main definition of I is based on the distance matrix, \boldsymbol{D}, as Hosoya ${ }^{10}$ and Diudea ${ }^{1}$ proposed

$$
\begin{equation*}
I=(1 / 2) \sum_{i} \sum_{j}\left[D_{e / p}\right]_{i j} \tag{4}
\end{equation*}
$$

where $\boldsymbol{D}_{\boldsymbol{e}}$ is just the classical \boldsymbol{D} matrix and $\boldsymbol{D}_{\boldsymbol{p}}$ is the »distance path«matrix. ${ }^{1}$ The meaning of $I, c f$. Eq. (4), is the number of all »internal« paths, of length e / p, included in all the shortest paths in the graph. Eq. (4) is valid both for acyclic and cyclic structures.

Another definition relates W to the eigenvalues of Laplace-Kirchhoff matrix, $\boldsymbol{x}_{\boldsymbol{i}}{ }^{11-14}$

$$
\begin{equation*}
W=N \sum_{i=2}^{N} l / x_{i} \tag{5}
\end{equation*}
$$

a relation valid only for acyclic structures. For other definitions, modifications and computational methods of W, see Refs. 15,16 .

Klein, Lukovits and Gutman ${ }^{17}$ have decomposed $W W$ by a relation equivalent to

$$
\begin{equation*}
W W=\left(\operatorname{Tr}\left(\boldsymbol{D}_{e}{ }^{2}\right) / 2+W\right) / 2 \tag{6}
\end{equation*}
$$

where $\operatorname{Tr}\left(\boldsymbol{D}_{e}{ }^{2}\right)$ is the trace of distance matrix raised to the second power. Relation (6) is valid for cycle-containing graphs when W is evaluated by the Hosoya ${ }^{10}$ relation (4).

Wiener-type numbers are seen ${ }^{17}$ as approximate measures of the expansiveness of graphs. They show good correlation with various physico-chemical and biological properties ${ }^{18-21}$ of organic compounds.

In this paper, general formulas for evaluating the novel number D_{Δ} in dendrimers are derived and exemplified on several types of regular dendrimers. Relations of D_{Δ} with W and $W W$ and a novel relation (based on the \boldsymbol{D}_{P} matrix ${ }^{1}$) for calculating $W W$ in dendrimers are also given.

NOVEL WIENER-TYPE NUMBER, D_{Δ}

Diudea ${ }^{1}$ has recently given a novel definition for $W W$. Accordingly, it can be calculated by using the \boldsymbol{D}_{P} matrix ${ }^{1}$

$$
\begin{equation*}
W W=\sum_{i<j}\left[\boldsymbol{D}_{\boldsymbol{P}}\right]_{i j}=\sum_{i<j}\binom{\left[\boldsymbol{D}_{e}\right]_{i j}+1}{2} \tag{7}
\end{equation*}
$$

The expansion of the right member enabled decomposition of WW into two terms

$$
\begin{equation*}
W W=W+D_{\Delta} \tag{8}
\end{equation*}
$$

where W is the Wiener number and the last term is the »non-Wiener« part of the hyper-Wiener number, denoted D_{Δ}

$$
\begin{equation*}
D_{\Delta}=\sum_{i<j}\left[\boldsymbol{D}_{\Delta}\right]_{i j}=\sum_{i<j}\binom{\left[\boldsymbol{D}_{e}\right]_{i j}}{2} \tag{9}
\end{equation*}
$$

where D_{Δ} is the »Delta« matrix, defined according to Eq. (9). D_{Δ} means the number of all paths (larger than unity) included into all the shortest paths in the graph.

In matrix form, $W W$ can be written as

$$
\begin{equation*}
\sum_{i<j}\left[\boldsymbol{D}_{\boldsymbol{P}}\right]_{i j}=\sum_{i<j}\left[\boldsymbol{D}_{\boldsymbol{e}}\right]_{i j}+\sum_{i<j}\left[\boldsymbol{D}_{\Delta}\right]_{i j} \tag{10}
\end{equation*}
$$

Relations (7) to (10) are valid for any graph, since they are based on $\boldsymbol{D}_{\mathrm{e}}$ matrix.

The number D_{Δ} can be related to the $\operatorname{Tr}\left(\boldsymbol{D}_{e}{ }^{2}\right)$ by

$$
\begin{equation*}
D_{\Delta}=\left(\operatorname{Tr}\left(\boldsymbol{D}_{\boldsymbol{e}}^{2}\right)-2 W\right) / 4 \tag{11}
\end{equation*}
$$

Note that the subscript Δ does not refer to the »detour" matrix, Δ, of Amić and Trinajstic (Ref. 21a) but simply suggest the difference between $W W$ and W.

W, D_{Δ} AND $W W$ NUMBERS IN REGULAR DENDRIMERS

Dendrimers are hyperbranched macromolecules, synthesized by repeatable steps, either by » divergent growth « or »convergent growth« approaches (see Ref. 2). These rigorously tailored structures are mainly organic compounds but inorganic components can be also included. ${ }^{22,23}$ They show a spherical shape, which can be functionalized, ${ }^{24-28}$ for various purposes. Reviews in the field are available. ${ }^{29-31}$

Some definitions in dendrimer topology are needed:
The vertices of a dendrimer, except for the external end points, are branching points. The number of edges emerging from each branching point is called ${ }^{2}$ progressive degree, p (i.e. the edges that enlarge the number of points of a newly added orbit). It equals the classical degree, k, minus one: $p=k-1$. If all the branching points have the same degree, the dendrimer is called regular. Otherwise, it is irregular.

A dendrimer is called homogeneous if all its radial chains (i.e. chains that start from the core and end in an external point) have the same length. ${ }^{31}$ In graph theory, they correspond to the Bethe lattices. ${ }^{32}$

It is well known ${ }^{33}$ that any tree has either a monocenter or a dicenter (i.e. two points joined by an edge). Accordingly, the dendrimers are called monocentric and dicentric, respectively. Examples are given in the Figure. The numbering of orbits (generations ${ }^{2,31}$) starts with zero for the core and ends with r (i.e. the radius of dendrimer, or the number of edges from the core to the external nodes).

A regular monocentric dendrimer, of progressive degree p and generation r is herein denoted by $\mathrm{D}_{p, r}$ whereas the corresponding dicentric dendrimer by $\mathrm{DD}_{p, r}$.

Figure. Monocentric (a) and dicentric (b) regular dendrimers

In a previous work, ${ }^{34}$ we reported the following relations for calculating $W W$ in regular dendrimers

$$
\begin{align*}
& W W\left(\mathrm{D}_{p, r}\right)=\left\{2 p^{2 r}\left(p^{2}-1\right)^{2} r^{2}+p^{2 r}\left(p^{2}-1\right)\left(p^{2}-8 p-5\right) r\right. \\
& \left.+(p+1)\left(p^{r}-1\right)\left[p^{r}\left(p^{2}+10 p+3\right)-2\right]\right\} / 2(p-1)^{4} \tag{12}
\end{align*}
$$

$$
\begin{gather*}
W W\left(\mathrm{DD}_{p, r}\right)=\left\{4 p^{2 r+2}(p-1)^{2} r^{2}+4 p^{2 r+2}(p-4)(p-1) r+p^{2 r+2}\left(p^{2}-3 p+16\right)\right. \\
\left.-p^{r+1}\left(p^{2}+10 p+5\right)+(p+1)\right\} /(p-1)^{4} \tag{13}
\end{gather*}
$$

These relations were obtained according to Eq. (6), by using the $L C$ (layer matrix of cardinality). ${ }^{35}$ By the layer counter, $j=\mathrm{D}_{i u}$, the matrix $L C$ is related to the distance matrix, their entries being the distance degrees and it itself a collection of distance degree sequences. The $L C$ matrix (with the column $j=0$ omitted) of a regular dendrimer, in the line form, ${ }^{34}$ can be written as

$$
\begin{gather*}
A=(2-z)\left\{(p+1) p^{(j-1)} ;(1-z) p^{r}\right\} \\
j=1,2, \ldots, r \tag{14}\\
B=(2-z) p^{(s-z)}(p+1)^{z}\left\{(p+1) p^{(j-1)} ; E\right\} \\
j=1,2, \ldots, r-s \\
s=1,2, \ldots, r-2 \tag{15}\\
C=(2-z) p^{(s-z)}(p+1)^{z}\{(r-s)(p+1) ; E\} \\
s=r-1, r \tag{16}\\
j=r-s+1 \quad j=r-s+2 k \quad j=r-s+2 k+1 \quad j=r+s \\
E=\left\{\left(p^{(r-s)}\right)_{j} ;\left(p^{(r-s+k)}\right)_{j} ;\left(p^{(r-s+k)}\right)_{j} ;\left(z p^{r}\right)_{j}\right\} \\
k=1,2, \ldots, s-z \tag{17}
\end{gather*}
$$

where A, B and C denote the type of rows (starting from the core) within the $L C$ matrix of a dendrimer and E is a common part within several rows of $\boldsymbol{L C}$. Parameter z enables the use of Eqs. (14) to (17) (and the following ones) both for monocentric ($z=1$) and dicentric ($z=0$) dendrimers.

Thus, the $L C$ matrix can serve as a basis for evaluating the Wiener-related numbers. By taking into account the layer counter j, expansion of the above $\boldsymbol{L} \boldsymbol{C}$ matrix offers the parameters in Eq. (8): W, D_{Δ} and $W W$ (denoted by I in Eq. (18))

$$
\begin{equation*}
I=\left(A_{\mathrm{I}}+B_{\mathrm{I}}+C_{\mathrm{I}}\right) / 2 \tag{18}
\end{equation*}
$$

W number:

$$
\begin{gather*}
A_{W}=(2-z)\left[\sum_{j=1}^{r}(p+1) p^{(j-1)} j+(1-z) p^{r}(r+1)\right] \tag{19}\\
B_{W}=(2-z)(p+1)^{z} \sum_{s=1}^{r-2}\left[p^{(s-z)}\left(\sum_{j=1}^{r-s}(p+1) p^{(j-1)} j+E_{W}\right)\right] \tag{20}\\
C_{W}=(2-z)(p+1)^{z} \sum_{s=r-1}^{r} p^{(s-z)}\left[(r-s)(p+1)+E_{W}\right] \tag{21}\\
\quad E_{W}=p^{(r-s)}(r-s+1)+z p^{r}(r+s) \\
+\sum_{k=1}^{s-z} p^{(r-s+k)}[(r-s+2 k)+(r-s+2 k+1)] \tag{22}
\end{gather*}
$$

Evaluation of sums in Eqs. (19) to (22) results in the following analytical relations for $\mathrm{D}_{p, r}(z=1)$ and $\mathrm{DD}_{p, r}(z=0)$, respectively

$$
\begin{align*}
& W\left(\mathrm{D}_{p, r}\right)=(p+1)\left[p^{2 r}\left(p^{2}-1\right) r-p^{2 r}(2 p+1)+2 p^{r}(p+1)-1\right] /(p-1)^{3} \tag{23}\\
& W\left(\mathrm{DD}_{p, r}\right)=\left[\begin{array}{c}
4 p^{(2 r+2)}(p-1) r+\left(4 p^{(r+1)}-1\right)(p+1) \\
+p^{(2 r+2)}(p-7)
\end{array}\right] \tag{24}
\end{align*}
$$

D_{Δ} number:

$$
\begin{gather*}
A_{D_{\Delta}}=(2-z)\left[\sum_{j=1}^{r}(p+1) p^{(j-1)} j(j-1) / 2+(1-z) p^{r}(r+1) r / 2\right] \tag{25}\\
B_{D_{\Delta}}=(2-z)(p+1)^{z} \sum_{s=1}^{r-2}\left[p^{(s-z)}\left(\sum_{j=1}^{r-s}(p+1) p^{(j-1)} j(j-1) / 2+E_{D_{\Delta}}\right)\right] \tag{26}\\
C_{D_{\Delta}}=(2-z)(p+1)^{z} \sum_{s=r-1}^{r} p^{(s-z)} E_{D_{\Delta}} \tag{27}\\
E_{D_{\Delta}}=p^{(r-s)}(r-s+1)(r-s) / 2+z p^{r}(r+s)(r+s-1) / 2+
\end{gather*}
$$

Evaluation of sums in Eqs. (25) to (28) results in the following analytical relations:

$$
\begin{align*}
& D_{\Delta}\left(\mathrm{D}_{p, r}\right)=\left\{2 p^{2 r}\left(p^{2}-1\right)^{2} r^{2}-p^{2 r}\left(p^{2}-1\right)\left(p^{2}+8 p+3\right) r\right. \\
& \left.\quad+(p+1)\left(p^{r}-1\right)\left[p^{r}\left(5 p^{2}+8 p+1\right)-2 p\right]\right\} / 2(p-1)^{4} \tag{29}
\end{align*}
$$

$$
\begin{align*}
D_{\Delta}\left(\mathrm{DD}_{p, r}\right) & =\left\{4 p^{2 r+2}(p-1)^{2} r^{2}-12 p^{2 r+2}(p-1) r+p^{2 r+2}(5 p+9)\right. \\
& \left.-p^{r+1}\left(5 p^{2}+10 p+1\right)+p(p+1)\right\} /(p-1)^{4} \tag{30}
\end{align*}
$$

WW number:

$$
\begin{gather*}
A_{W W}=(2-z)\left[\sum_{j=1}^{r}(p+1) p^{(j-1)} j(j+1) / 2+(1-z) p^{r}(r+1)(r+2) / 2\right] \tag{31}\\
B_{W W}=(2-z)(p+1)^{z} \sum_{s=1}^{r-2}\left[p^{(s-z)}\left(\sum_{j=1}^{r-s}(p+1) p^{(j-1)} j(j+1) / 2+E_{W W}\right)\right] \tag{32}\\
C_{W W}=(2-z)(p+1)^{z} \sum_{s=r-1}^{r} p^{(s-z)}\left[(r-s)(p+1)+E_{W W}\right] \tag{33}
\end{gather*}
$$

TABLE

Topological Data for Regular Dendrimers

p	r	W		D_{Δ}		WW	
		$\mathrm{z}=0$	$\mathrm{z}=1$	$\mathrm{z}=0$	$\mathrm{z}=1$	$\mathrm{z}=0$	$\mathrm{z}=1$
1	1	10	4	5	1	15	5
	2	35	20	35	15	70	35
	3	84	56	126	70	210	126
	4	165	120	330	210	495	330
	5	286	220	715	495	1001	715
2	1	29	9	18	3	47	12
	2	285	117	382	120	667	237
	3	1981	909	4214	1626	6195	2535
	4	11645	5661	34534	14766	46179	20427
	5	62205	31293	239046	108630	301251	139923
3	1	58	16	39	6	97	22
	2	1147	400	1695	462	2842	862
	3	16564	6304	38982	12684	55546	18988
	4	207157	82336	677910	240348	885067	322684
	5	2392942	975280	10093917	3762066	12486859	4737346

$$
\begin{gather*}
E_{W W}=p^{(r-s)}(r-s+1)(r-s+2) / 2+z p^{r}(r+s)(r+s+1) / 2+ \\
\sum_{k=1}^{s-z} p^{(r-s+k)}[(r-s+2 k)(r-s+2 k+1) / 2+(r-s+2 k+1)(r-s+2 k+2) / 2] \tag{34}
\end{gather*}
$$

Evaluation of sums in Eqs. (31) to (34) leads to Eqs. (12) and (13) presented above, thus proving that the two ways for calculating the number $W W$ are correct. Values for the three numbers in regular dendrimers with $p=1-3$ and $r=1-5$ are listed in the Table.

Note that the relations for W (Eqs. (23) and (24)) are equivalent to the relations reported by Gutman et al. ${ }^{36}$ and Diudea ${ }^{37}$ and give identical numerical values. For $p=1$, dendrimers reduce to line graphs (i.e. normal alkanes)

Analytical relations and their numerical evaluation were made using the MAPLE V Computer Algebra System (Release 2).

REFERENCES

1. M. V Diudea, J. Chem. Inf. Comput. Sci. 36 (1996) 535-540.
2. M. V. Diudea, MATCH 30 (1994) 79-91.
3. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17-20.
4. M. Randić, Chem. Phys. Lett. 211 (1993) 478-483.
5. M. Randić, X. Guo, T. Oxley, and H. Krishnapriyan, J. Chem. Inf. Comput. Sci. 33 (1993) 709-716.
6. M. Randić, X. Guo, T. Oxley, H. Krishnapriyan, and L. Naylor, J. Chem. Inf. Comput. Sci. 34 (1994) 361-367.
7. I. Lukovits and W. Linert, J. Chem. Inf. Comput. Sci. 34 (1994) 899-902.
8. I. Lukovits, Croat. Chem. Acta 68 (1995), 99-103.
9. I. Lukovits and I. Gutman, MATCH 31 (1994) 133-144.
10. H. Hosoya, Bull. Chem. Soc. Japan 44 (1971) 2332-2339.
11. B. Mohar, D. Babić, and N. Trinajstić, J. Chem. Inf. Comput. Sci. 33 (1993) 153-154.
12. I. Gutman, S. L. Lee, C. H. Chu, Y. L. Luo, Indian J. Chem. 33A (1994) 603-608.
13. N. Trinajstić, D. Babić, S. Nikolić, D. Plavšić, D. Amić, and Z. Mihalić, J. Chem. Inf. Comput. Sci. 34 (1994) 368-376.
14. M. Kunz, MATCH 32 (1995) 221-234.
15. S. Nikolić, N. Trinajstić, and Z. Mihalić, Croat. Chem. Acta 68 (1995) 105-129.
16. I. Gutman, Y. N. Yeh, S. L. Lee, and Y. L. Luo, Indian J. Chem., Sect. A 32 (1993) 651-661.
17. D. J. Klein, I. Lukovits, and I. Gutman, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52.
18. H. Wiener, J. Phys. Chem. 52 (1948) 2636-2638.
19. S. Nikolić, M. Medić-Šarić, and J. Matijević-Sosa, Croat. Chem. Acta 66 (1993) 151-160.
20. S. Mendiratta and A. K. Madan, J. Chem. Inf. Comput. Sci. 34 (1994) 867-871.
21. I. Gutman, J. Serb. Chem. Soc. 58 (1993) 745-750.

21a. The »detour« matrix, Δ, of Amić and Trinajstić (CCA, 68 (1995) 53-62) is identical to the »maximum path" matrix, MP, of Ivanciuc and Balaban (MATCH 30 (1994) 141-152).
22. S. Achar and R. J. Puddephatt, Angew. Chem. 106 (1994) 895-897.
23. G. R. Newcome, C. N. Moorefield, J. M. Keith, G. R. Baker, and G. H. Escamilla, Angew. Chem. 106 (1994) 701-703.
24. P. J. Dandliker, F. Diederich, M. Gross, C. B. Knobler, A. Louati, and E. M. Sanford, Angew. Chem. 106 (1994) 1821-1824.
25. K. L. Wooley, C. J. Hawker, and J. M. Frechet, Angew. Chem. 106 (1994) 123-126.
26. D. Seebach, J.-M Lapierre, K. Skobridis, and G. Greiveldinger, Angew. Chem. 106 (1994) 457-458.
27. N. Launay, A.-M. Caminade, R. Lahana, and J.-P. Majoral, Angew. Chem. 106 (1994) 1682-1684.
28. M. R. Bryce, W. Devonport, and A. J. Moore, Angew.Chem. 106 (1994) 1862-1864.
29. J. Issberner, R. Moors, and F. Vogtle, Angew. Chem. 106 (1994) 2507-2514.
30. H. B. Mekelburger, W. Jaworek, and F. Vogtle, Angew. Chem. 104 (1992) 1609-1614.
31. D. A. Tomalia, A. M. Naylor, and W. A. Goddard III, Angew. Chem., Int: Ed. Engl. 29 (1990) 138-175.
32. K. Balasubramanian, J. Math. Chem. 4 (1990) 89-102.
33. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
34. M. V. Diudea, and B. Pârv, J. Chem. Inf. Comput. Sci. 35 (1995) 1015-1018.
35. M. V. Diudea, J. Chem. Inf. Comput. Sci. 34 (1994) 1064-1071.
36. I. Gutman, Y. N. Yeh, S. L. Lee, and J. C. Chen, MATCH 30 (1994) 103-115.
37. M. V. Diudea, MATCH 32 (1995) 71-84.

SAŽETAK

Delta lbroj, D_{Δ}, dendrimera
Mircea V. Diudea, Gabriel Katona i Bazil Pârv
Predložene su formule za račun novog indeksa, D_{Δ}, Wienerova tipa, koje su izvedene uz pomoć pripadne matrice uporabom progresivnih stupnjeva čvorova i brojeva orbita kao parametara. Izvedena je veza indeksa $D_{\Delta} \mathrm{s}$ poznatim Wienerovim, W, i hiper-Wienerovim, $W W$, indeksima, te jedna nova relacija za procjenu indeksa u dendrimerima.

[^0]: * Author to whom correspondence should be addressed.

