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Recently, the problem of drawing graphs has become a hot subject in
mathematical and computer sciences. In the present paper, two of the
graph drawing algorithms, namely those of Kamada-Kawai and Fruchter-
man-Reingold, are for the first time applied to chemistry in their original
two dimensional (2D) versions as well as in their generalized three dimen-
sional (3D)version developed by us. In addition, the algorithm based on the
adjacency matrix eigenvectors has been also tested.

All three algorithms in their 2D and 3D versions have been tested on
a series of molecules, especially on fullerenes and toroidal pure carbon
cages, the so-called torusenes. The conforrnations obtained offer a rather
good guess of starting geometries for more sophisticated methods. The
drawings obtained by the Fruchterman-Reingold algorithm are superior to
those generated by the Kamada-Kawai algorithm.

In addition, all molecular graphs studied have also been represented by
the so-called Schlegel diagrams for whose generation a novel algorithm was
developed. Schlegel diagrams are important for identifying and analyzing
the topological properties of large spatial carbon clusters.

INTRODUCTION

When representing molecules with graphs, the individuality of constituent at-
oms and the character of chemical bonds is mostly suppressed but the connectivity
is emphasised in its pure form.
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Atoms are represented by vertices of graphs, which are conveniently depicted as
points, and chemical bonds by edges which are drawn as straight lines. As the po-
sitions ofpoints are completely arbitrary, there is an infinite number ofways to draw
a given graph.

However, by imposing some aesthetic or other criterion, the admissible number
of ways of drawing a graph is reduced. Recent1y the problem of drawing graphs be-
came a hot subject in mathematical and computer sciences. A series of international
conferences on the subject have been organized annually since 1992.1This topic has
important applications in key computer technologies, such as software engineering,
database design and visual interfaces. Further applications can be found in archi-
tectural and circuit design, project management, in mathematical fields such as com-
putational geometry, topological graph theory, ordered sets, and many others. How-
ever, graph drawing algorithms have been developed primarily for presentations of
graphs in plane.

In the present paper, two of the graph drawing algorithms+' are for the first
time applied to chemistry in their original 2D version as well as in their generalized
three dimensional version developed by us. Also, the algorithm based on the adja-
cency matrix eigenvectors has been tested. Moreover, the algorithm to present the
so-called Schlegel diagram of a polyhedron is developed.

All the above algorithms belong to the class of the so-called spring embedding
algorithms." They are all descendants of Eades' algorithm." Since all of them give
aesthetically acceptable drawings, we name them NiceGraph models. The methods
have been successfully implemented and form a part of the package Vega developed
at the IMFMlTCS in Ljubljana.

The methods developed here are not a substitute for more advanced quantum-
chemical methods but they rather offer a noble guess of plausible starting geome-
tries for more sophisticated methods. As they are simple to apply, we recommend
them for quick determination of moleculear geometries, especially when many iso-
mers of a given molecule have to be searched. This is, for instance, the case of fuller-
ene molecules which are the object of intensive current research in chemistry, phys-
ics and material sciences."

THE ALGORITHMOF KAMADAANDKAWAI

Let G = (V,E) be a graph with n = IVI vertices and m = lEI edges. The graph-
theoretical distance dij between vertices Vi and Vj is the smallest number of edges
between Vi and Vj. Distances dij are integers ranging from 1 for the first neighbours
up to diameter D, the largest distance in a graph.

Let us make a drawing of graph G in three dimensional Euclidean space. Toeach
vertex vi' a point r:= (xvyvz) is asociated in 3D-space. The Euclidean distance Dij
= Ir:- ry is associated with a pair of vertices Vi and vj" The quantity (Dij - diY meas-
ures the deviation of the Euclidean from the graph-theoretical distance. Overall de-
viation of the Euclidean with respect to graph-theoretical distances in a graph G is
given by

where summation goes over all possible pairs of vertices.
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According to Kamada and Kawai, a graph is modelled as a system of balls
and springs. If so, the energy function E could be understood as the elastic en-
ergy associated with a particular drawing s: -:... ,r!J of graph G. The contri-
bution ki/Dij - diY/2 is the elastic energy of a spring of the force constant k where
d plays the role of the equilibrium distance.

The problem of graph drawing is reduced to finding positions of vertices (balls)
in such away that the energy of a system of springs becomes minimal.

It is reasonable to assume that ki) are inversely proportional to di/

ki} = Kldi}

where K is an arbitrary positive constant.
The minimum of E is determined by:

3E .3E 3E- = O, - = O, - = O, i = 1,2, ... , n
(}Xi ~i azi

i.e. by the system of 3n non-linear equations. We solve these equations numerically.
For each vertex Vi the quantity

is calculated.
In each step of the algorithm, the vertex vi with the maximum !1i is chosen and

E is considered as the function of only three variables XjJYi and Zi. By applying the
Newton method, the related equations become linear and we have to solve the linear
system in three variables until !1i becomes less than some threshold value E. After
that, the next maximal !1i is found and the procedure is repeated. In other words,
only one point is moved at each iteration.

By omitting the third coordinate z, the two dimensional version of the algorithm
is derived. Indeed, the 2D version was first developed. The 2D and 3D versions of
the Kamada and Kawai algorithm will be denoted in further text by KK2 and KK3,
respectively.

Time complexity for the calculation of the graph-theoretical distance s is O(n3).
In the first step of the algorithm, all !1i have to be calculated. Time complexity for
this is O(n2). Time complexity for each followingstep is O(n) since values !1i only have
to be updated.

THE ALGORITHMOF FRUCHTERMANAND REINGOLD

In this model, the graph is again modelled as a physical system. Repulsive forces
are calculated between each pair of vertices and attractive forces are calculated be-
tween each pair of adjacent vertices. Forces are used to calculate velocity for every
time quantum (instead of acceleration as it is usual in physical systems). The aim
of the algorithm is to find the static equilibria, i.e. the state with zero resultant
forces for all vertices. The 2D and 3D versions of the Fruchterman and Reingold al-
gorithm will be denoted in further text by FR2 and FR3, respectively.
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If d is the distance between the two vertices, then the attractive force ta is cal-
culated as

and the repulsive force tr is calculated as

Here, k denotes the optimal distance between the vertices calculated at the begin-
ning of the algorithm as

k = C ~arealnumber of vertice

where the constant C is found experimentally. It is easy to see that for the path of
length two, k is the distance where the forces would cancel out each other while in
a general graph, k is the average distance where the resultant forces for all vertices
equal zero.

In each step of the algorithm, the resultant forces of all vertices are calculated
and all vertices are moved in the directions of the resultant forces. The displace-
ments are controlled by the temperature parameter T and by the borders of the area.
Vertices cannot be displaced outside the frame and the size of displacement Ou of ver-
tex v with the resultant force Fu is

In each step, the temperature is reduced using some cooling function.
One step of the algorithm has time complexityO(n2 + m).

THE ALGORITHMFOR DRAWINGSCHLEGEL DIAGRAMS

Schlegel diagrams are planar representations of polyhedral graphs and, there-
fore, they are suitable for representing fullerenes. These diagrams clearly show the
connectivity of atoms in fullerenes.

A graph can be modelled as a system of balls and elastic bands where the ver-
tices of the outer face are fixed on a regular polygon.We seek for the state of static
equilibria. This algorithm is derived from the Fruchterman and Reingold algorithm
by deleting all repulsive forces and fixing the vertices of an outer face.

Some further modifications were made in order to obtain: better figures. If we
want to end with approximately equally arranged faces, bands close to the periph-
eral ring should be stronger than the bands in the middle of the figure. Otherwise,
we end with a large number of crowded small faces in the middle and large faces
on the border of the figure. For this purpose, periphericity Pu' of a vertex v is intro-
duced as the length of the shortest path between the vertex and the outer face.

The size of the attractive force between vertices u and v is calculated as

ta = d2 exp[A 2Pmax - Pu - Pu]
Pmax
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where Prnax is the maximum periphericity in the graph and constant A is found experi-
mentally. Like in previous algorithms FR2 and FR3, the resultant forces of all vertices
are calculated in each step and the vertices are displaced in the directions of the resul-
tant forcesfor an amount equal to the minimum of the forceand temperature T.

The algorithm can be applied to non-planar graphs as long as the peripheral ring
is specified. In such cases, this algorithm often provides a better insight into the eon-
nectivity of vertices.

The Schlegel diagram algorithm will be denoted in further text by SCH. One
step of the algorithm has time complexity O(m).

THE ALGORITHMBASED
ON THE ADJACENCYMATRIXEIGENVECTORS

Another model being accepted by some fullerene research groups7-9 is based on
the consideration of the eigenvectors Xi, X;, ... ,x,;, of the adjacency matrix A of a
graph with n vertices. Eigenvalues are ordered as: Al ~ A2 ~ .... Three consecutive
eigenvectors, like X;, X; and ~ are taken to build n x 3 matrix B = [X;, X;, ~]. By read-
ing the i-th row ofB, (X2i' X3i, X4) as the 3D-coordinates of vertex i and running over
all i's, in many cases a rather decent 3D-drawing of G is achieved. In the case when
a graph is not regular, the results are generally better if the Laplacean matrix of a
graph is taken instead of its adjacency matrix. lO

Adjacency matrix eigenvectors algorithm will be abbreviated AME in further
text. Standard numerical algorithms that are available for Mathematica users were
employed (Eigensystem, GramSchmidt).

RESULTS

The basic information on a graph is the connectivity of its vertices. Here, it is
given by the adjacency matrix of a graph from which the graph-theoretical distances
are calculated.

The starting configuration of points in Euclidean space, if not otherwise speci-
fied, is given at random. It could also be drawn on the screen by using graphical
interface or given by some rule. For instance, graph G of the snub cube could be de-
picted!' as a rotagraph COiC6 +I {2,6},{3,5},{1,1},{1,2},{6,2},{6,3},{5,3},{5,4},{4,4}}), i.e.
by repeating four times the cycle of length 6 with the connectivity between neigh-
bouring paths given as in Figure 1. Its SCH, AME, KK2, KK3, FR2 and FR3 draw-
ings are depicted in Figure 2.

Figure 1. The graph of the snub cube represented as a rotgraph.
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Figure 2. The Schlegel (SCH), adjacency matrix eigenvectors (AME), Kamada-Kawai 2D (KK2)
and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D (FR3) NiceGraph drawings of the
snub cube graph.

Note that the drawings obtained by the optimization in 2D-space look like 2-di-
mensional projections of optimized 3D-drawings. The same also applies to other
graphs.

The starting Schlegel diagram of the celebrated icosahedral Ih: C60 fullerene and
its NiceGraph drawings are depicted in Figure 3.

SCII AME

Fit! FR:J

Figure 3. The Schlegel (SCH), adjacency matrix eigenvectors (AME),Kamada-Kawai 2D (KK2)
and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D (FR3) NiceGraph drawings of the
buckyball (Ih : C60) graph.
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Figure 4. The Schlegel (SCH), adjacency matrix eigenvectors (AME), Kamada-Kawai 2D (KK2)
and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D (FR3) NiceGraph drawings of the
C72 fullerene, a leapfrog of C24.

The ScWegeldiagram and the NiceGraph drawings of the C72 fullerene, a leap-
frogI2 of the C24 cage, are shown in Figure 4.

The example depicted in Figure 5 represents Schlegel and NiceGraph configu-
rations of the C28 cage (of Td symmetry) which is the smallest fullerene so farI3 to
form in substantial abundance.

SCII AME

Figure 5. The Schlegel (SCH), adjacency matrix eigenvectors (AME), Kamada-Kawai 2D (KK2)
and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D (FR3) NiceGraph drawings of the
Td : C28 fullerene.
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This cage behaves as a tetravalent species, trapping a tetravalent atom inside
the cage to make endohedral fullerenes such as Ti@C28,U@C28, ete. Its tetravalence
is exhibited also by reacting at the four tetrahedral vertices on the outside of the
Ti C28 cage to form e.g. C28H4•

Formally, the fullerenes are defined as 3-valent (3-regular) graphs having only
pentagons and hexagons as faces. Ifthe use ofheptagons is allowed too, Euler's poly-
hedron formula gives:

ks = h.; + 12(1 - g)

where k5 and h-, denote the number of pentagons and heptagons, respectively. The
number of hexagons, k6' is arbitrary. g denotes the genus of the surface at which G
is embedded, i.e. g = 0, 1, and 2, for the sphere, torus and pretzel, respectively. The
toroidal, pure carbon cages have recently received considerable attention.P-l"

The above formula for k7 = 0, g = ° gives ks = 12, i.e. exactly 12 pentagons are
needed to give a spherical fullerene. For atorus (g = 1), one has:

Two cases are possible. The first, in which k5 = k7 = 0, gives toroidal polyhexes,
i.e. the toroidal fullerenes composed solely from hexagons. It is easy to see that:
3n = 2m = 6k6. The FR3 NiceGraph drawing of the toroidal polyhex with k6 = 120
is depicted in Figure 6a.

The second case, k5 = k7 * 0, gives the azulenoid cages. The FR3 NiceGraph
drawing of the torus with ks = h ; = 10 (k6 = 100) is depicted in Figure 6b.

o
(a) (b)

Figure 6. Fruchterman-Reingold 3D (FR3)NiceGraph drawings of (a) the toroidal polyhex with
120 hexagons and (b) the azelunoid cage with 10 pentagons, 100 hexagons and 10 heptagons.

In the above cases, it is evident that the NiceGraph algorithms are capable of
recognizing the genus of the surface in which the graph has to be embedded.

DISCUSSION

The algorithms presented in this paper give reasonably plausible geometries of
fullerenes and other molecular graphs. The drawings obtained by the Fruchterman-
Reingold algorithm are superior to those generated by the Kamada-Kawai algo-
rithm.
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However, the final NiceGraph configurations are not necessarilly »nice«, i.e. the
final drawings do not necessarily exhibit the geometrical symmetry indicated by the
automorphism group of a graph. This is especially true of graphs with a large num-
ber of vertices. One possible way to remedy this deficiency would be to make the
threshold values in computations smaller, but this would increase computation time.
Another approach, which is now under development, is to use the knowledge of the
automorphism group of a graph in building up the proper geometrical symmetry of
the final drawing. 14

All algorithms presented here are written in Turbo Pascal and implemented in
a system for manipulating discrete mathematical structures Vega.l?

The NiceGraph program in its present form does not discriminate between the
individuality of atoms and chemical bonds. However, the results for the C28H4 cage
show that its plausible geometry is nevertheless achieved. The example of the
biphenylene molecule is instructive too. Its KK NiceGraph drawings, where carbon
and hydrogen atoms are treated on an equal footing, rotate one ring with respect to
another but by an incorrect angle of 90°.

Future development s of the program in which the individuality ofvarious chemi-
cal bonds will be reflected by appropriate changes in graph-theoretical distance s are
highly desirable. It would be especially interesting to study the changes in the ge-
ometry of fullerenes in which a number of carbons is substituted by boron, nitrogen,
and other atoms.

A systematic comparison of geometries obtained by the mathematical models like
the NiceGraph, the eigenvectors of the adjacencymatrix, and more realistic, physically
based models like molecular mechanics, semiempirica1and ab initio quantum-chemical
models as well as with the experimental data is under way by the present authors.l"

CONCLUSIONS

The NiceGraph model, proposedhere for applications in chemistry, is easy to apply.
The only input data are the connectivity tables of a molecule and the starting coor-
dinates of atoms are taken at random. The final NiceGraph configuration is aestheti-
cally acceptable and represents a plausible starting geometry for applying some more
realistic model, like molecular mechanics. The present model is especially recommend-
able when a large number of isomers have to be searched, as it is the case of fullerenes.
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SAŽETAK

NiceGraph program i njegove primjene u kemiji

Tomaž Pisanski, Bor Plestenjak i Ante Graovac

Problem risanja grafova postaje uzbudljiva tema matematike i računarskih znanosti. U
ovom radu se po prvi puta u kemiji primjenjuju dva postojeća algoritma za risanje grafova,
naime, algoritmi Kamada-Kawaija i Fruchterman-Reingolda, i to u njihovu izvornom dvodi-
menzijskom (2D), i u od nas poobćenom trodimenzijskom (3D) obliku. U radu je dalje testiran
već poznati algoritam zasnovan na vlastitim vektorima matrice susjedstva.

Sva tri algoritma u njihovim 2D i 3D verzijama su testirana na seriji molekula, posebno
na fullerenima i toroidnim čisto ugljikovim kavezima. Dobivene konformacije predstavljaju pri-
lično dobre početne geometrije za točnije račune, s time da su crteži dobijeni Fruchterman-
Reingoldovim algoritmom superiorni onima dobijenim algoritmom Kamada-Kawai.

Sve molekulne grafove prikazali smo također tzv. Schlegelovim dijagramima za čije smo
generiranje razvili vlastiti algoritam.




