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»Wedance round in a ring and suppose,
But the Secret sits in the middle and knows.«

Robert Frost-

The detour matrix of a graph and its invariants (polynomial, spectrum
and Wiener-like index) are discussed. Methods for computing these quan-
tities are presented. Some comparisons with the distance matrix of a graph
are given.

The detour matrix is briefly mentioned and defined by Buckley and Harary in
their book on the distance in graphs.š Harary also delivered a talk on this matrix
in the Department of Marine Sciences at The Texas A&MUniversity in Galveston
on April 4th, 1994. This talk stimulated us to report our work on the detour matrix,
its polynomial and spectrum.

Definition of the detour matrix
The detour matrix LI= LI(G)of a labeled connected graph G is a real symmetric

N xN matrix whose (ij)-entry is the length of the longest path from vertex i to ver-
tex j. This definition is just opposite to the definition of the traditional distance ma-
trix, often used in the (chemical) graph theory, whose entries are the shortest paths

* Reported in part at MATHlCHEMlCOMP1994, and International Course and Conference on the Interfaces
between Mathernatics, Chemistry and Computer Science, Dubrovnik, Croatia: June 27 - July 1, 1994.
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hetween the vertices in the graph.l- 3-9 It is evident that the distance matrix and
the detour matrix are identical matrices for a tree. As an example, the detour matrix
of alaheled graph G, corresponding to the carhon skeleton of spiropentane, is given
in Figure 1.
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Figure 1. The detour matrix of a labeled graph G corresponding to spiropentane.

The detour matrix can he computed using the followingprocedure. The detour
matrix can he defined as follows:

(1)

where Zmax is the distance of the longest possihle path in a graph G, while BI is an
auxiliary matrix defined as:

BI = {O if there is a path hetween vertices

1 otherwise

and j of length ~
(2)

This procedure is related to Hosoya's approach to the computation of the dis-
tance matrix from the adjacency matrix of a graph.!" The computation of the detour
matrix using the ahove procedure is fairly simple.

The detour matrix for a complete graph has a simple form, i.e., all off-diagonal
elements are equal to the degree of a vertex, while the diagonal elements are, of
course, equal to zero.
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The detour polynomial
The characteristic polynomial n(G, x) of the detour matrix of a graph G is defined

as:

n(G; x) = det Ix I - .11 (3)

where I is the N x N unit matrix. Wewill call this polynomial the detour polynomial.
The coefficient form of the detour polynomial is given by:

N

n(G;x) =0 - L cn0-n (4)
n=l

or

(5)

We computed the coefficients of the detour polynomial by means of the modified
Le Verrier-Faddeev-Frame (LVFF)method.n-Is The modified LVFFmethod works as
follows:

N

cn = (l/n) L (L1nh (6)
n=l

(7)

(8)

(9)

The procedure starts with the diagonalization of the detour matrix by means of
the Householder-QL methodI9,2o and, then, the LVFF meth~d is carried out with L1n
and B; matrices in the diagonal form. We give in Table I the computation of the de-
tour polynomial for a graph G already used in Figure l.

In Figure 2, a number of a simple cyclic graphs are depicted. The corresponding
detour polynomials are listed in Table II.

From Table II we learn that there are nonisomorphic graphs that may posses
the same detour polynomial, such as the pair of graphs labeled 18 and 20 in Figure
2. This observation indicates that the detour polynomials are not more discriminat-
ing than the characteristic polynomials or distance polynomials.
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TABLE I

Computation of the detour polynomial of the spiropentane graph G
by the modified Le Verrier-Faddeev-Frame method

G

(1) The detour spectrum of G: {11.40312, - 1.40312, -2, -2, -6}

i

(3) [(B1)ii = (L11)ii - (Cl I)L = {11.40312,-1.40312, -2, -2, -6}
t -1, ...,5

[(L12h= (L1)ii (B1)iiL = {130.03114, 1.96875,4,4, 36}
, -1, ...,5

C2 = (1/2) L (L10ii = 88
i

(4) [(B2h = (L12)ii - (c2I) 1_ = {42.03114,-86.03125, -84, -84, -52}
, -1, ...,5

[(L13\i = (L1)ii (B0iiL = {479.28613, 120.71217, 168, 168, 312}
, -1, ...,5

C3 = (1/3) L (L13)ii = 416
i

(5) [(B3)ii = (L13)ii - (c3I) L = {63.28613, -295.28783, -248, -248, -104}
, -1 •...,5

[(L14)ii = (L1)ii (B3hL = {721.65933, 414.32426, 496, 496, 624}
l-1 .....5

c4 = (1/4) L (L1Jii = 688
i

(6) [(B4)ii = (L14)ii - (c4I) 1_ r. = {33.65933, -273.67574, -192, -192, -64}
L -1, ...•0

[(L15)ii = (L1);i (BJiiL = {384,384, 384, 384, 384}
, -1, ...,5

c5 = (1/5) L (L15)ii = 384
i

(7) [(B5)ii = (L15)ii - (c5I) L = {O, O, O, O, O}
, -1, ...,5

(8) The detour polynomial of G

p(G,x) = x6 - 88 X4 - 416 x3 - 688 X2 - 384x
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Figure 2. A selectian of simple cyclic graphs.



58 D. AMIĆ AND N. TRINAJSTIĆ

TABLE II

Detour polynomials for a selectionof simple cyclicgraphs depictedin Figure 2

Cyclic Coefficientsof the polynomial
graph

Co Cl C2 C3 C4 C5 C6 C7 Cs

1 1 O -12 -16
2 1 O -44 -144 -138
3 1 O -31 -76 -44
4 1 O -49 -180 -180
5 1 O -54 -216 -243
6 1 O -125 -840 -2035 -1694
7 1 O -86 -412 -656 -320
8 1 O -68 -256 -312 -112
9 1 O -66 -256 -304 -112
10 1 O -54 -212 -280 -112
11 1 O -139 -1008 -2679 -2464
12 1 O -88 -416 -688 -384
13 1 O -106 -668 -1536 -1216
14 1 O -98 -508 -862 -444
15 1 O -86 -426 -699 -336
16 1 O -146 -1096 -3040 -2944
17 1 O -106 -668 -1536 -1216
18 1 O -153 -1184 -3408 -3456
19 1 O -103 -576 -1080 -594
20 1 O -153 -1184 -3408 -3456
21 1 O -160 -1280 -3840 -4096
22 1 O -160 -1280 -3840 -4096
23 1 O -144 -984 -2368 -2304 -768
24 1 O -97 -608 -1508 -640
25 1 O -506 -7348 -43972 -126272 -165328 -75840
26 1 O -432 -5256 -26237 -64600 -77268 -35632
27 1 O -157 -1012 -2404 -2368 -768
28 1 O -132 -704 -1348 -1040 -272
29 1 O -153 -1000 -2384 -2304 -768
30 1 O -109 -584 -1176 -992 -272
31 1 O -305 -3536 -16848 -36992 -30720
32 1 O -161 -1032 -2504 -2592 -912
33 1 O -298 -3368 -15396 -31744 -24144
34 1 O -372 -4176 -17984 -37600 -40128 -20736 -4096
35 1 O -321 -3856 -19296 -45312 -41216
36 1 O -375 -5000 -28125 -75000 -78125
37 1 O -273 -2960 -13000 -25792 -18960

The coefficients of the detour polynomial exhibit regularities similar to those
that the coefficients of the distance polynomial also posses. The first two coefficients
of the detour polynomial are, of course, equal to one and zero, respectively. The Cl-

coefficient is equal to zero because of the relationship:

N

Cl =I Xi = tr LI = O
i = 1

(10)
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The third coefficient (C2) of the detour polynomial is equal to the half-sum of the
squares of the matrix elements:

c2 = (1/2) L L (.d2)ij (11)
i j

The last coefficient (CN) of the detour polynomial is, as it is usual for all types of
characteristic polynomials,given in terms of the determinant ofthe corresponding matrix:

TABLE III

Detour spectra for a selection of simple cyclicgraphs given in Figure 2

Cyclic Detour spectrum
graph

XI X2 X3 X4 X5 X6 X7 Xs

1 4 -2 -2
2 8 -2 -2 -4
3 6.6 -0.9 -2 -3.7
4 8.5 -2 -3 -3.5
5 9 -3 -3 -3
6 14 -2.4 -2.4 -4.6 -4.6
7 11 -0.9 -2 -2.8 -5.6
8 9.9 -0.6 -1.6 -2 -5.6
9 9.8 -0.8 -1.1 -2.7 -5.2
10 9.0 -0.7 -2 -2 -4.3
11 14.8 -2.4 -3.4 -4.4 -4.6
12 11.4 -1.4 -2 -2 -6
13 12.9 -2 -2.9 -4 -4
14 12.1 -1 -2 -3.3 -5.8
15 11.4 -0.9 -1.9 -3.4 -5.2
16 15.2 -2.6 -4 -4 -4.6
17 12.9 -2 -2.9 -4 -4
18 15.6 -3 -4 -4 -4.6
19 12.5 -1 -3 -3 -5.6
20 15.6 -3 -4 -4 -4.6
21 16 -4 -4 -4 -4
22 16 -4 -4 -4 -4
23 14.9 -0.8 -1.1 -2 -5.2 -5.8
24 12.5 -0.9 -2 -2 -3.6 -4
25 28.7 -1 -2 -4 -5.5 -6 -10.1
26 26.0 -1.4 -2 -2.5 -3.6 -4.7 -11.8
27 15.3 -0.6 -1.6 -2 -3.1 -0.8
28 13.8 -0.6 -0.9 -2 -2.4 -7.9
29 15.2 -0.8 -1 -2.6 -3.2 -7.6
30 12.7 -0.5 -1.5 -2 -2 -6.7
31 22.4 -2.4 -4 -4 -5.4 -6.6
32 15.5 -0.7 -2 -2 -2.5 -8.3
33 22.0 -2 -3.1 -4.'1 -6 -6.2
34 24.1 -0.6 -0.7 -1.3 -2 -2.3 -7.1 -10.1
35 23 -4 -4 -4 -4 -7
36 25 -5 -5 -5 -5 -5
37 21.1 -2 -2.9 -5 -5.2 -6
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(12)

The detour polynomial of a complete graph KN with N vertices can be given in
a closed form:

(13)

where D is the degree of a vertex.

The spectrum of the detour matrix

The spectrum of the detour matrix will be called for short the detour spectrum.
The detour spectra of cyclicgraphs depicted in Figure 2 are given in Table III.

The detour spectrum is made up of one positive and N-I negative elements. This
particular distribution of elements of the detour spectrum is a result of the structure
of the detour polynomial, that is, all coefficients, but the first coefficient, have a
negative sign. The sum of elements of the detour spectrum is, of course, equal to
zero. Note that the sum of squares of the elements in the detour spectrum is equal
to the trace of .12.

TABLE IV

The Wiener index W and the Wiener-like index (o for simple cyclic graphs from Figure 2

Cyclic
W (o

Cyclic W (ograph graph

1 3 6 20 12 39
2 8 16 21 12 40
3 8 13 22 12 40
4 7 17 23 28 44
5 6 18 24 23 37
6 15 35 25 38 100
7 16 28 26 37 90
8 17 24 27 29 45
9 16 24 28 31 40
10 15 22 29 27 45
11 14 37 30 28 37
12 14 28 31 25 67
13 14 32 32 27 45
14 15 30 33 24 66
15 14 28 34 70 94
16 13 38 35 23 69
17 13 32 36 21 75
18 13 39 37 23 63
19 13 31



ON THE DETOUR MATRIX 61

The Wiener-like index Q)

The Wiener-like index (iJ is defined in the same way as the Wiener number W,21
that is, as the half sum of the elements of the detour matrix .1:

co = (1/2) :L :L (L1)i)
)

(13)

In Table IV,we give the Wiener index W and the Wiener-like index (iJ for graphs
given in Figure 2.

Index (iJ for the complete graph KN with N vertices and M edges is given by:

w = N (N - 1) = M D (14)

where D = N-I for complete graphs. In the case of the Wiener index, the expression
for computing W for complete graphs is simpler, that is:

(15)

It is interesting to note that Wand (iJ are not particularly intercorrelated quantities.
The linear correlation W us. (iJ «(iJ = a W + b) for 37 graphs from Figure 2 was the
poorest (r = 0.79) and the exponential relationship «(iJ = a Wb) produced the best cor-
relation coeficient (r = 0.86), but still far from the values for strongly intercorrelated
quantities. The potential of the Wiener-like index (iJ is still unknown and is presently
under investigation.

Acknowledgement. - This work was supported by the Ministry of Science and Technology
of the Republic of Croatia through Grant No. 1-07-159. We thank referees for their constructive
comments.

REFERENCE S
1. R. Frost, The Road Not Taken, Henry Holt and Co., New York, 1971, p. 214.
2. F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley,Redwood City, CA, 1990, p. 213.
3. F.Harary, Graph Theory, 2nd printing, Addison-Wesley, Reading, MA, 1971, p. 203.
4. D. H. Rouvray, in: Chemical Applications of Graph Theory, A. T. Balaban (Ed.), Academic

Press, London, 1977, p. 175.
5. N. Trinajstić, Chemical Graph Theopry, CRC, Boca Raton, FL., 1983, Vol. 1, p. 44.
6. 1. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Ver-

lag, Berlin, 1986, p. 27.
7. O. E. Polansky, in: Chemical Graph Theory . Introduction and Fundamentals, D. Bonchev

and D. H. Rouvray, Abacus Press/Gordon & Breach, New York, 1991, p. 41.
8. Z. Mihalić. D. Veljan, D. Amić, S. Nikolić, D. Plavšić, and N. Trinajstić, J. Math. Chem. 11

(1992) 223.
9. N. Trinajstić, Chemical Graph Theory, 2nd revised edition, CRC Press, Boca Raton, FL., 1992,

p.52.
10. H. Hosoya, private communication to NT (June 17, 1991).
11. U. J. J. Le Verrier, J. Math. 5 (1840) 95.
12. U. J. J. Le Verrier, ibid. 5 (1840) 220.
13. V N. Faddeeva, Computational Methods of Linear Algebra, Dover, New York, 1959.
14. D. K. Faddeev and 1.S. Sominskii, Problems in Higher Algebra, Freeman, San Francisco, 1965.



62 D. AMIĆ AND N. TRINAJSTIĆ

15. P. S. Dwyer, Linear Computations, Wiley,New York, 1951, p. 225.
16. K. Balasubramanian, Theoret. Chim. Acta 65 (1984) 49.
17. P. Krivka, Ž Jeričević, and N. Trinajstić, Int. J. Quantum Chem.: Quantum Chem. Symp. 19

(1986) 129.
18. T. Živković,J. Comput. Chem. 11 (1990) 217.
19. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
20. W.-JI. Press, B. P. Flannery, S. A. Teukolsky, and W.T.Vetterling, Numerical Recipes - The

Art of Scientific Computing, Cambridge University Press, Cambridge, 1990.
21. H. Hosoya, Bull Chem. Soc. Japan 44 (1971) 2332.

SAŽETAK
o matrici zaobilaznih udaljenosti

Dragan Amić i Nenad Trinajstić

Razmatrana je matrica zaobilaznih udaljenosti grafa i njezine invarijante (polinom, spek-
tar i numerički indeks nalik Wienerovu broju). Prikazane su metoda računanja matrice zaobi-
laznih udaljenosti i njezinih invarijanti. Dane su također i neke usporedbe s matricom uda-
ljenosti grafa.




