CCA-1901	YU ISSN $0011-1643$
UDC 541	
Conference Paper	

The Conjugated-Circuit Model Revisited*

Nenad Trinajstić and Dejan Plavšić

The Rugjer Bošković Institute, P.O.B. 1016, 41001 Zagreb, Croatia, Yugoslavia and
Douglas J. Klein
Department of Marine Sciences, Texas A\&M University, Galveston, TX 77553, USA

Received February 6, 1989
Two formulae for computing resonance energies of benzenoid hydrocarbons within the conjugated-circuit model are considered. The first is Randić's original formula developed in 1976 and the second is the result of the analysis of the foundations of the conjugated-circuit model in terms of the Simpson-Herndon model Hamiltonians. Both formulae produce very similar resonance energies. This analysis thus justifies Randićs initial choice of circuits and their parameters.

A dozen years ago Randić introduced a resonance-theoretical model named the conjugated-circuit model ${ }^{1}$ which was motivated from an empirical point of view elaborating Armit-Robinson-Clar aromatic sextet ideas. ${ }^{2,3}$ This model has been used rather successfully for the study of aromaticity and conjugation in a great variety of π-electronic systems such as benzenoid and nonbenzenoid hydrocarbons, ${ }^{1,4-6}$ corannulenes, ${ }^{7}$ benzoannelated annulenes, ${ }^{8}$ helicenes, ${ }^{5,9}$ macrocyclic benzenoid systems, ${ }^{10}$ benzenoid polymers, ${ }^{11}$ polycyclic conjugated hydrocarbon (di)cations and (d)anions, ${ }^{12}$ the lowest excited states of polyacenes, ${ }^{13}$ Möbius structures, ${ }^{14}$ heterocyclic conjugated systems, ${ }^{15}$ buckminsterfullerene and elemental carbons. ${ }^{16}$

A graph theoretical analysis of Kekulé valence structures led to the concept of conjugated circuits. ${ }^{1,17,18}$ A conjugated circuit of lenght 21 is a cycle of $2 l$ edges alternating between single and double bonds within a Kekulé structure. Conjugated circuits are used for the computation of π-electron resonance energies, $R E$. Below we give, for example, the $R E$ expression for benzenoid hydrocarbons ${ }^{1}$

$$
\begin{equation*}
R E=\frac{1}{K} \Sigma \varrho_{\mathrm{n}} \#^{(4 \mathrm{n}+2)} \tag{1}
\end{equation*}
$$

where K is the number of Kekule structures, the ρ_{n} are parameters which decrease in magnitude nearly geometrically with increasing $n^{1,15 a}$ and $\#(4 n+2)$

[^0]is the total number of $4 n+2$ conjugated circuits summed over all Kekulé structures. Note that ρ_{n} measures the extent to which a specific conjugated circuit of size $4 n+2$ influences the thermodynamic stability of the conjugated molecule. There are several sets of ρ_{n} parameters (with truncation at different n values) available in the literature. ${ }^{1,15 a, 19}$ In addition, the conjugated-circuit model turns out to be closely related ${ }^{20}$ to Herndon's so-called »structureresonance theory«, ${ }^{21}$ so that parametrization from this approach might also be used. For the ρ_{n}, expressed in eV, Randić originally gave ${ }^{1}$
\[

$$
\begin{equation*}
R E=\frac{1}{K}\left(0.869 \#^{(6)}+0.246 \#^{(10)}+0.100 \#^{(14)}+\ldots\right) \tag{2}
\end{equation*}
$$

\]

Representative shapes of the first three lowest conjugated circuits that are used by Randic are depicted in Figure 1.

10

14

Figure 1. Representative shapes of the first three lowest conjugated circuits.
Recently we analyzed the foundations of the conjugated-circuit model ${ }^{22}$ in terms of the Simpson-Herndon model Hamiltonians. ${ }^{21,23}$ Via derivation from the Pauling-Wheland VB model ${ }^{4}$ we found
$R E=\frac{3 J}{2 K}\left(\frac{39}{64} \#^{(6)}+\frac{9}{64} \#^{(10)}+\frac{3}{64} \#^{(14 a)}+\frac{3}{128} \#^{\left(144^{b)}\right.}+\frac{7}{64} \#^{\left(144^{c)}\right.}+\ldots\right)$
or by using for the exchange parameter the following value ${ }^{21 b, 26}$

$$
\begin{equation*}
J=1.857 \mathrm{eV} \tag{4}
\end{equation*}
$$

eq. (3) is finally given as
$R E=\frac{1}{K}\left(1.697 \#^{(6)}+0.392 \#^{(10)}+0.131 \#^{\left(144^{2}\right)}+0.065 \#^{\left(144^{6)}\right.}+0.305 \#^{\left(144^{e}\right)}+\ldots\right)$
Eq. (5) is somewhat different from Randic's original $R E$ expression (2) and (by derivation ${ }^{22}$) leads to $R E$ values close to those of Pauling-Wheland resonance theory.

Eqs. (3) and (5) indicate, for example, that there are three types of conjugated circuits of size 14. These are shown in Figure 2.

Figure 2. Shapes of three types of conjugated circuits of size 14.

Randić in his initial work did not independently differentiate between these three types of conjugated circuits which are of the same size 14 but of different shape.

Eqs. (3) and (5) have some appealing features. For example, they fulfil the minimum condition for the intrinsic consistency of ρ_{n} parameters ${ }^{18,19}$

$$
\begin{equation*}
\varrho_{1}>\varrho_{2}>\varrho_{3} \tag{6}
\end{equation*}
$$

The ratio of ρ_{2} to $\rho_{1}\left(\rho_{2} / \rho_{1} \cong 0.23\right)$ is also rather close to the value (0.28) of Randić. ${ }^{1}$

In this work we wish to reinvestigate Randić' original $R E$ in terms of the difference between the shapes of the conjugated circuits of size 14 . We will also truncate the set of $4 n+2$ circuits at size $14(n=3)$. In considering only the smallest three conjugated circuits, we followed the empirical ${ }^{1}$ and semiempirical ${ }^{22}$ findings that only the smallest circuits make appreciable contributions to the RE. Eq. (5) may consequently be rewritten as

$$
\begin{equation*}
R E=\frac{1}{K} \varrho_{1} \#^{(6)}+\varrho_{2} \#^{(10)}+\varrho_{3 \mathrm{a}} \#^{\left(144^{\mathrm{a})}\right.}+\varrho_{3 \mathrm{~b}} \#^{\left(\mathbf{1 4}^{\mathrm{b})}\right)}+\varrho_{3 \mathrm{c}} \#^{\left(144^{\mathrm{c}}\right)} \tag{7}
\end{equation*}
$$

Parameters $\rho_{\mathrm{n}}, n=1,2,3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}$ can be determined by »inversion« from the SCF π-MO REs of benzene (B), naphthalene (N), anthracene (A), phenanthrene (Ph) and pyrene (Py). These values are available from Dewar and de Llano ${ }^{27}$

$$
\begin{align*}
R E(\mathrm{~B}) & =0.869 \mathrm{eV} \\
R E(\mathrm{~N}) & =1.323 \mathrm{eV} \\
R E(\mathrm{~A}) & =1.600 \mathrm{eV} \tag{8}\\
R E(\mathrm{Ph}) & =1.933 \mathrm{eV} \\
R E(\mathrm{Py}) & =2.098 \mathrm{eV} .
\end{align*}
$$

The $R E$ expressions for these five benzenoid hydrocarbons are as follows

$$
\begin{gather*}
R E(\mathrm{~B})=\left(2 \varrho_{1}\right) / 2 \\
R E(\mathrm{~N})=\left(4 \varrho_{1}+2 \varrho_{2}\right) / 3 \\
R E(\mathrm{~A})=\left(6 \varrho_{1}+4 \varrho_{2}+2 \varrho_{3 \mathrm{a}}\right) / 4 \tag{9}\\
R E(\mathrm{Ph})=\left(10 \varrho_{1}+4 \varrho_{2}+2 \varrho_{3 \mathrm{~b}}\right) / 5 \\
R E(\mathrm{Py})=\left(12 \varrho_{1}+8 \varrho_{2}+4 \varrho_{3 \mathrm{~b}}+2 \varrho_{3 \mathrm{c}}\right) / 6
\end{gather*}
$$

Combination of (8) and (9) gives the numerical values for the $\rho_{\mathrm{n}}(\mathrm{n}=1,2,3 \mathrm{a}$, 3b, 3c) parameters

$$
\begin{gather*}
\varrho_{1}=0.869 \mathrm{eV} \\
\varrho_{2}=0.247 \mathrm{eV} \\
\varrho_{3 \mathrm{a}}=0.099 \mathrm{eV} \tag{i0}\\
\varrho_{3 \mathrm{~b}}=-0.006 \mathrm{eV} \\
\varrho_{3 \mathrm{c}}=0.104 \mathrm{eV}
\end{gather*}
$$

Thus, eq. (7) with the above parameter set becomes

$$
\begin{equation*}
R E=\frac{1}{K}\left(0.869 \#^{(6)}+0.247 \#^{(10)}+0.099 \#^{\left(14^{42)}\right.}-0.006 \#^{\left(14^{(b)}\right)}+0.104 \#^{\left(14^{4}\right)}\right. \tag{11}
\end{equation*}
$$

This equation also fulfils the minimum conditions for the intrinsic consistency of ρ_{1}, ρ_{2} and ρ_{3}, whilst the ratio ρ_{1} / ρ_{2} is 0.28 as expected because ρ_{1} and ρ_{2} are the same in Randic's original work ${ }^{1}$ and here. Also, up to a scale factor: this expression is similar to that of eq. (5).

A further point of some difference occurs in Randic's use ${ }^{1}$ of the so-called »linearly independent« conjugated circuits. This distinction makes a single modification in the present description with \#(14b) always being half as great as we would otherwise take it. Thence, if one used this modified value in eqs. (9), one would obtain $\rho_{3 \mathrm{~b}}=-0.012 \mathrm{eV}$ in eqs. (10) and (11); but continuing to use these modified $\rho_{3 b}$ and $\#,{ }^{(14 b)}$ the product would be unchanged so that the REs computed therefrom would also be unchanged.

Randić's original $R E$ expression and (11) will differ for those benzenoid hydrocarbons which contain $14 b$ and $14 c$ conjugated circuits such as, for example, anthanthrene (dibenzo[def,mno]chrysene) shown in Figure 3.

Figure 3. Diagram corresponding to anthanthrene.
Anthanthrene, a known benzenoid hydrocarbon, ${ }^{28}$ has 10 Kekulé structures and the following circuit count: $\#^{(6)}=24, \#(10)=18, \#(14 a)=4, \#(14 b)=8$ and $\#(14 \mathrm{c})=4$. The two $R E$ expressions are as follows

$$
\begin{gather*}
R E(\text { Randić })=\frac{1}{10}\left(24 \varrho_{1}+18 \varrho_{2}+12 \varrho_{3}\right)=2.648 \mathrm{eV} \tag{12}\\
R E(\text { this work })=\frac{1}{10}\left(24 \varrho_{1}+18 \varrho_{2}+4 \varrho_{3 \mathrm{a}}+8 \varrho_{3 \mathrm{~b}}+4 \varrho_{3 \mathrm{c}}\right)=2.607 \mathrm{eV} \tag{13}
\end{gather*}
$$

Here Randić's $\#^{(14)}$ has been taken as $\#(14 \mathrm{a})+(1 / 2) \#(14 \mathrm{~b})+\#(14 \mathrm{c})$ because of his use of »linearly independent« conjugated circuits. Thence, though the introduction of this modified count makes no difference in our $R E$ of eq. (11) via inversion, it does make a slight diference in Randić's original scheme.

In comparing Randić's REs with those obtained by eq. (11), we selected 17 benzenoid hydrocarbons from Dewar and de Llano's list ${ }^{27}$ and calculated their REs by both formulae. These REs are reported in Table I.

Both sets of $R E$ values are similar and close to the $R E s$ computed by Dewar and de Llano. ${ }^{27}$ We compared both sets of RES to one another and to the REs of Dewar and de Llano via linear regression

$$
\begin{equation*}
R E(\text { model } \mathrm{I})=p R E(\text { model } \mathrm{II})+q \tag{14}
\end{equation*}
$$

In Table II the statistical parameters for the linear relationships between $R e$ (Randić) and RE (this work), RE (Randić) and RE (Dewar-de Llano) and $R E$ (this work) and $R E$ (Dewar-de Llano) are given.

TABLE I
Resonance energies (in eV) of selected benzenoid hydrocarbons

Molecule	RE(Randić)	RE(this work)	RE(Dewar-de Llano) ${ }^{27}$
Benz[a]anthracene	2.311		
Benzo[c]phenanthrene	2.506	2.295	2.291
Chysene	2.506	2.478	2.478
Triphenylene	2.708	2.670	2.483
Dibenz[a,j]anthracene	2.986	2.949	2.654
Dibenz[a,h]anthracene	2.985	2.949	2.948
Benzo[b]chysene	2.808	2.808	2.948
Dibenz[a,c]anthracene	3.111	3.085	2.823
Dibenzo[c,g]phenanthrene	3.092	3.049	3.058
Benzo[c]chrysene	3.092	3.049	3.072
Picene	3.092	3.049	3.071
Dibenzo[b,g]phenanthrene	2.828	2.808	3.071
Benzo[e]pyrene	2.905	2.856	2.822
Benzo[a]pyrene	2.585	2.550	2.853
Benzo[ghi]perylene	3.150	3.109	2.584
Anthranthrene	2.648	2.607	3.128
Coronene	3.502	3.415	2.665
		3.524	

TABLE II
The leasts-squares parameters for linear relationships (14)

$\begin{array}{l}\text { Linear } \\ \text { relationship }\end{array}$	n^{a}	p	Statistical parameters				
$\begin{array}{l}R E \text { (this work) }\end{array}$	17	$0.9632(\pm 0.0990)$					

$a_{n}=$ the number of points
$b_{r}=$ the correlation coefficient
$c_{\mathrm{sD}}=$ the standard deviation
$d_{\mathrm{F}}=$ the ratio between the variances of values by the two models considered
It appears that $R E$ (Randić) and $R E$ (this work) reproduce well the SCF π-MO REs, and RE (Randić) and RE (this work) are linearly correlated with a high value (0.9996) of the correlation coefficient (see Figure 4.)

Figure 4. A plot of $R E$ (this work) vs $R E$ (Randić).
This result also supports Randic's initial selection of the three lowest conjugated circuits and his choice of parameters. Therefore, we recommend both ways (e. g., Randic's and eq. (11)) for further use in the chemistry of benzenoid hydrocarbons. However, it is nice to know that this truly empiricai model can be justified by rigorous development from the VB model. Our associated Simpson-Herndon model ${ }^{22}$ may have applications to further properties. ${ }^{29}$

Acknowledgements. - DP and NT are grateful to the Republic of Croatia Science Fund and DJK to the Robert A. Welch Foundation of Houston, Texas for financial support. We thank Dr Sonja Nikolić (Zagreb) for helpful discussions.

REEERENCES AND NOTES

1. M. R andić, Chem. Phys. Lett. 38 (1976) 68.
2. (a) J. W. Armit and R. J. Robinson, Chem. Soc. 1922, 827.
(b) J. W. Armit and R. J. Robinson, Chem. Soc. 1925, 1604.
3. E. Clar, The Aromatic Sextet; Wiley; New York, 1972.
4. (a) IM. R a ndić, J. Amer. Chem. Soc. 99 (1977) 444.
(b) M. R andić, Tetrahedron 33 (1977) 1905.
(c) M. R andić, Int. J. Quantum Chem. 17 (1980) 549.
5. M. Randić, B. M. Gimarc, and N. Trinajstić, Croat. Chem. Acta 59 (1986) 345.
6. IV. Randić, V. Solomon, S. C. Grossman, D. J. Klein, and N. Trinajstić, Int. J. Quantum Chem. 32 (1987) 35.
7. IM. Randić and N. Trinajstić, J. Amer. Chem. Soc. 106 (1984) 4428.
8. (a) H. Vogler and N. Trinajstić, Theoret. Chim. Acta 73 (1988) 437.
(b) H. Vogler and N. Trinajstić, J. Mol. Struct. (Theochem) 164 (1988) 325.
9. M. Randić, B. M. Gimarc, S. Nikolić, and N. Trinajstić, Gazz. Chim. Ital. 119 (1989) 1.
10. M. Randić, L. L. Henderson, R. Stout, and N. Trinajstić, Int. J. Quantum Chem.: Quantum Chem. Symp. 22 (1988) 127.
11. (a) D. J. Klein, G. E. Hite, and T. G. Schmalz, J. Comput. Chem. 7 (1986) 443.
(b) W. A. Seitz, G. E. Hite, T. G. Schmalz, and D. J. Klein, in Graph Theory and Topology in Chemistry; R. B. King and D. H. Rouvray, Eds.; Elsevier: Amsterdam, 1987; p. 458.
(c) D. J. Klein, T. Živković, and N. Trinajstić, J. Math. Chem. 1 (1987) 309.
12. (a) M. R andić, J. Phys. Chem. 86 (1982) 3970.
(b) M. Randić and F. Nettleton, Int. J. Quantum Chem.: Quantum Chem. Symp. 20 (1986) 203.
(c) M. Randić, D. Plavšić, and N. Trinajstić, J. Mol. Struct. (Theochem) 185 (1989) 249.
13. M. Randić, D. Plavšić, and N. Trinajstić, J. Mol. Struct. (Theochem) 183 (1989) 29.
14. M. Randić and H. E. Zimmerman, Int. J. Quantum Chem.: Quantum Chem. Symp. 20 (1986) 185.
15. (a) M. R andić, N. Trinajstić, J. V. Knop, and Z̆. Jeričević, J. Amer. Chem. Soc. 107 (1985) 849.
(b) M. Randić and N. Trinajstić, Sulfur Reports 6 (1986) 379.
(c) S. Nikolić, N. Trinajstić, and A. Jurić, Heterocycles 26 (1987) 2025.
(d) M. Randić, S. Nikolić, and N. Trinajstić, Coll. Czech. Chem. Comm. 53 (1988) 2023.
(e) M. Randić, B. M. Gimarc, S. Nikolić, and N. Trinajstić, J. Mol. Struct. (Theochem) 181 (1988) 111.
16. (a) D. J. Klein, T. G. Schmalz, G. E. Hite, and W. A. Seitz, J. Amer. Chem. Soc. 108 (1986) 1301.
(b) T. G. Schmalz, W. A. Seitz, D. J. Klein, and G. E. Hite, Chem. Phys. Lett. 130 (1986) 203.
(c) D. J. Klein, W. A. Seitz, and T. G. Schmalz, Nature 323 (1986) 705.
(d) M. Randić, S. Nikolić, and N. Trinajstić, Croat. Chem. Acta 60 (1987) 595.
(e) T. G. Schmalz, W. A. Seitz, D. J. Klein, and G. E. Hite, J. Amer. Chem. Soc. 110 (1988) 1113.
17. N. Trinajstić, Chemical Graph Theory; CRC: Boca Raton, FL, 1983; Vol. II, Chapter 3.
18. M. Randić and N. Trinajstić, J. Amer. Chem. Soc. 109 (1987) 6923.
19. M. Randić, S. Nikolić, and N. Trinajstić, in Graph Theory and Topology in Chemistry; R. B. King and D. H. R ouvray, Eds.; Elsevier; Amsterdam, 1987, p. 429.
20. L. J. Schaad, B. A., Jr., Hess, Pure Appl. Chem. 54 (1982) 1097.
21. (a) W. C. Herndon, J. Amer. Chem. Soc. 95 (1973) 2404.
(b) W. C. Herndon and NI. L., Jr., Ellzey, J. Amer. Chem. Soc. 96 (1974) 6631.
(c) W. C. Herndon, J. Amer. Chem. Soc. 8 (1974) 225.
(e) W. C. Herndon, Israel J. Chem. 20 (1980) 270.
22. D. J. Klein and N. Trinajstić, Pure Appl. Chem., in press.
23. (a) W. T. Simpson, J. Amer. Chem. Soc. 75 (1953) 597.
(b) W. T. Simpson and C. W. Looney, J. Amer. Chem. Soc. 76 (1954) 6285.
(c) W. T. Simpson, Theories of Electrons in Molecules; Prentice-Hall: Englewood Cliffs, NJ, 1962.
24. (a) L. Pauling, J. Chem. Phys. 1 (1933) 280.
(b) L. Pauling and G. W. Wheland, J. Chem. Phys. 1 (1933) 362.
(c) L. Pauling and G. W. Wheland, J. Chem. Phys. 1 (1933) 606.
(d) L. Pauling and G. W. Wheland, J. Chem. Phys. 2 (1934) 482.
(e) L. Pauling, The Nature of the Chemical Bond; 2nd edition, Cornell University Press: Ithaca, 1948.
(f) G. W. Wheland, The Theory of Resonance; 6th printing, Wiley: New York, 1953.
25. (a) W. A. Seitz, D. J. Klein, T. G. Schmalz, and M. A. Garciá-- B a c h, Chem. Phys. Lett. 115 (1985) 139.
(b) D. J. Klein, T. G. Schmalz, G. E. Hite, A. Metropoulos, and W. A. Seitz, Chem. Phys. Lett. 120 (1985) 367.
26. (a) C. de Llano, Ph. D. Thesis; The University of Texas: Austin, 1968.
(b) M. J. S. Dewar and C. de Llano, J. Amer. Chem. Soc. 911 (1969) 789.
27. J. R. Dias, Handbook of Polycyclic Hydrocarbons. Part A: Benzenoid Hydrocarbons; Elsevier: Amsterdam, 1987.
28. D. J. Klein, work in progress.

SAZ̈ETAK

Kritičko razmatranje modela konjugiranih krugova

N. Trinajstić, D. Plavšić i D. J. Klein

Razmatrane su dvije formule za računanje rezonancijskih energija benzenoidnih ugljikovodika u okviru modela konjugiranih krugova. Prvu formulu predložio je 1976. Randić, dok je druga rezultat analize modela konjugiranih krugova u okviru Simpson-Herndonovog hamiltoniana. Obje formule daju vrlo slične rezonancijske energije, što potvrđuje ispravnost modela konjugiranih krugova kao i vrijednosti odgovarajućih parametara što ih je predložio Randić.

[^0]: * Reported in part at the IUPAC International Symposium on Electronic Structure of Molecules and Crystals (Cavtat, Croatia: August 19 - September 3, 1988).

