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A new algorithm, called convex analysis, has been developed
to deduce the chiral contribution of the common secondary stru-
ctures directly from experimental circular dichroism (CD) curves
of a large number of proteins. The analysis is based on CD data
reported by Yang et aU Test runs were performed on sets of arti-
ficial protein spectra created by the Monte Carlo technique using
poly-u-Iysine based component spectra. Application of the de-
composition algorithm for the created sets of spectra resulted in
component spectra [B (2, i)] and weights [C (i, k)] with excellent
Pearson correlation coefficients (r).2 The algori thm, independent
of X-ray data, revealed that the CD spectrum of a given protein
is composed of at least four independent sources of chirality. Three
of the computed component curves show remarkable resemblance
to the CD spectra of known protein secondary structures. This
approach yields a significant improvement compared to the eigen-
vector analysis of Hennessey and Johnson." The new method is a
useful tool not only in analyzing CD spectra but also in treating
other decomposition problems where an additivity constraint is
valid.

INTRODUCTION

Circul ar dichroism (CD) spectroscopy has been widely us ed for the ana-
lysis of the secondary structure of proteins due to its sensitivity in distin-
guishing the presence and proportion of cc-helical, ~-pleated sheet and unor-
dered conformations.t-" Alternative approaches have been developed to define
the spectral contribution of the basic components. Computation was performed
by using reference spectra derived from model polypeptidesš" or proteins.2,8-H

t This work was supported by the Institute of Science Management and Infor-
matics, Ministry of Education, Budapest, Hungary, and the National Science Foun-
dation, Washington, D. C. USA, DMB 87 13193.
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Provencher and Glčckner-" analyzed the experimental CD curves as linear
combinations of the spectra of proteins whose structure was determined by
X-ray diffraction. Hennessey and Johnson" used basically the same approach,
but applied an eigenvector method of multicomponent matrix analysis.!" The
variable selection method-" added the flexibility of the Provencher and
GlOckner approach to the original analysis by Hennessey and Johnson. The
latter methods avoid difficulties arising from the selection of suitable reference
spectra, but have the disadvantages which are characteristic of all methods
deriving basis spectra from proteins of known secondary structure.!

Making use of a new algorithm, an approach was developed, called eon-
vex constraint analysis, to deduce the spectral contribution of the common
secondary structures directly from experimental CD curves of a large number
of proteins. *

EXPERIMENTAL
Data Basis

The analysis is based on CD data published by Yang et aLl The first set
of data summarized in Table VIlI of this excellent review gives the mean residue
ellipticities of eighteen proteins in the wavelength range of 240--':"190nm (Chang
et aU). Table IX contains 6.0 data of fifteen proteins and one helical polypeptide
(poly-t-glutamic acid) which were measured over the range of 260-178 nm and
previously used as the basis of the analysis of Hennessey and Johnson." The CD
parameters of poly-u-ghrtamlc acid were excluded from the analysis reported here.

Method of Analysis
The circular dichroism (CD) of proteins is measured as a function of the

wavelength. By keeping all the other factors constant and neglecting the chiral
contribution of non-peptide chromophores, this function will depend only on the
chiroptical properties of the various secondary structures. The experimental CD
spectra are represented by functions A 00, k), where J. stands for the wavelength
and k is the serial number of the protein. By assuming additivity of the chiral
contribution of conformations like u-helix, p-pleated sheet, turns, etc.

p
A (7.,k) = ~ B (J., i) C (i, k) + noise, (1)

i=l

where P is the number of the allowed conformational components, B O., i) is the
CD of the ith component at wavelength A, and C (i, k) is the weight (proportion) of
the ith component in the kth protein.

The Convex Constraint Analysis of CD Curves
Let us denote the investigated proteins by SJ, ••. , SI.) where N is the number

of proteins. We shall suppose that
p

a) ~ C (i, k) = 1,
i=l

k = 1,2, ... ,N

b) C (i, k) 2: O, i = 1, 2, ... , p

c) the noise is proportional with

N M N
E (Jo) = 1/2N (~ A2 (J., k) + I/M ~ ~ A2 (JOj' k),

le=l j=l le=l

where Al < 22< ... < 2M are discrete wavelengths.

(2)
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The first step in the calculation is the factor analysis on the weighted covari-

ance function.
fti

Q (k, n) = ~ l/E 0.) [A 0.,;, k) - A (J.)] [A (Aj)] [A (Aj, k) - A (Aj)] (3)
j=l

where
N

A (i..) = (l/N) ~ A (A, k).
Je=l

Let us denote the eigenvalues of Q (k, n) by

(4)

e (1) 2= e (2) 2= •.• 2= e (N - 1) 2= e (N) = o.
The variance of the noise is then estimated by

N-l
02 (P) = (l/DF) ~ e (k),

k=p+l
(5)

where
DF = M (N - 1) - P (N + M - 1- P). (6)

If the number of components or facto rs (P) is chosen apriori and P is small
enough, it is more economic to use the so-called QR algorithm for calculating
the main facto rs. It is based on the following well-known facto For given matrices
Q, R the difference

(7)
is minimized by

i. e. II Q-RU W 2= II Q-RNoI12 (8)

which holds true for any U, where the norm is the usual l2-norm:18

M N
II A W = ~ ~ A2 (Aj, k)

j=l k=1

Constraints a) and b) are necessary but not sufficient. As amatter of fact
they are not real constraints because one can substitute the components B (A, i),
C (i, k) with

(9)

p
B (», i) = ~ B O" n) S-1 (n, i)

n=1
(10)

p
C (i, k) = ~ S (i, n) C (n, k)

n=l

where S is an arbitrary invertible matrix.
For the sake of uniqueness it is proposed to use a transformation matrix

here with the largest possible determinant which is equivalent to embedding
the points

{C (n, k), n = 1, ... , P}, k: = 1, .. " N

of the P-dimensional Euclidean space in a simplex of the smallest volume. The
embedding procedure can be performed by a volume-minimizing algorithm detailed
in the Appendix.

Returning to Eq. (1), one can approximate B (i.., j) for example, with a Gaus-
sian function
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and create a complete set of {m (1), er (1), ... m CL), er CL)} wbere l is a well chosen
value. This will generate

A.n I
L [B (J., j) - L gi ul CJ2 -7 min

A.~A.l i=1

as a function to be minimized with a common curve fitting procedure.

Test Runs

Test runs were performed to evaluate the new algorithm. C (i, k)'s were chosen
by the Monte Carlo technique, but the P summit s of the simplex were pin-pointed
with the vector C (1, O,... , O),... C (O, 0, ... ,1), and a varied number of B (J., i)'s
with different P's were used (Table I). In series of test runs for P = 3 the CD
spectra of «-helix, ~- and unordered forms of poly-r-Iysine" were used as B (J., il.
For P = 4 the CD spectrum of a type I ,8-turn model'" was also added to the data
base. Application of the decomposition algorithm for the created sets of A (J., k)'s
resulted in C's and B's (Eq. 1) with correlation coefficients (1') higher than 0.9.

Correlation coefficients (- 1 ~ r ~ 1) near 1 indicate the success of the de-
composition.? When the summit s were not. fixed so strictly,

I-v I-v I-v
C (v, --- , . , ,,---), ' , ., C (---, ' , "v)

P-I P-I P-I

where v, the pin-pointing coefficient, is 0.75, the correlation coefficients stil!
remained reasonable (Table I).

TABLE I

Pearson correlation coefficients (1')" for N cornponenr sets of test speeira createii
by the Monte Carlo technique

Pin-pointing Number of basis N
coefficient (v) spectra used (P) 10 12 14 16

3 0.967 0.984 0.957 0.969
0.97 4 0.938 0.958 0.936 0.900

3 0.972 0.976 0.989 0.990
0.75

4 0.970 0.979 0.945 0.961

a As defined by Chang et aL2

RESULTS AND DISCUSSION

Prompted by the success of these results, the decomposition algorithmfor
the CD parameters of proteins listed in the data bases used was performed.'
The numerical CD values measured in two laboratories supplied a reliable
and relatively broad data set for the analysis. On the other hand, the use of
these data enabled a direct comparison of results herein with those of Pro-
vencher and Glčckner-" and Hennessey and Johnson". The method of Hen-
nessey and Johnson," not considering constraints a and b, yielded the five
most significant basis spectra. The use of a sixth orthogonal basis spectrum
hardly improved the analysis and the involvement of more than five of the
16 basis spectra had practically no influence on the spectral features of the



CD CURVES OF PROTEINS 193

five most important ones. This is not the case in the convex analysis introduced
in this paper, the B (A, i) functions were found to depend, as a whole, on P.
That is why the choice of the number of the allowed components is of intrinsic
importance. In Figure 1 the dependence is shown of (J (P) (standard deviation
in thousandths) (Eq. 5) from P. The computed B (A, i) functions are given in
Figures 2a-3d.

o • •O+---.--.---r---'-~--r--'~~
000 200 4.00 600 800 1000 1200 11.\Xl. '1600

P

Figure 1. The dependence of standard deviation o (P) in thousandths from the num-
ber of the pure eomponents, P.

0, database 240-190 nm (Chang et aL,2 ef. Table VIlI in the review of Yang et aLl).
D, database 260--178 nm by Hennessey and Johnson" (ef. Table IX in Yang et aP).

For P = 3 the method generates common component curves which do not
resemble the CD spectra of any of the basic secondary structures of proteins
(Figures 2a and 3a). This gives strong support to the assumption that the
given sets of experimental CD curves are composed of the chiral contribution
of more than three conformations. However, even in this unrealistic case, the
number of transitions in the component curves agrees with that of experi-
mental CD spectra measured in the 190-260 nm spectral region. This seems
to be one of the most important results of our analysis.

For P = 4 - 6, not depending on P and the database used, two of the
generated curves, types A and C, feature the shape of the CD of ex-helix and
unordered conformation, respectively, with Amax and [el or AE values com-
parable to literature data. Spectral parameters of the B (A, i) component
spectra are summarized in Table II. The exciton couplet of the ex-helix-like
curve A appears in the 190-210 nm spectral region with an n~1t* transition
above 220 nm. All spectra labelled by C resemble each other. They show
anegative maximum below 200 nm as observed in the spectra of unordered
polypeptides and proteins.

The curves of type B can be correlated with the CD spectrum of the
~-form which is well known to be an assemblage of more than one somewhat
different secondary structures (parallel, antiparallel, twisted, etc.). Therefore
it is not surprising that the shape of type B functions changes with the data
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Figure 2. Convex analysis of CD data ([19] XlO-3) on 18 proteins, wavelength range:
240-190 nm (Chang et al.2, ef. Table VIn in the review of Yang et aLl).

a, p = 3; b, P = 4; c, P = 5; d, P = 6. A (a-type), B (,8-type), C (unordered), ti [type
I(III) turn], E (»unlabelled« additional chiral contribution), F (»unlabelled« additional

chiral contribution).

set used (Figure s 2b-3d). It seems to be more conservative for the 'lt-+-r:*
than for the n-+1t* transition.

By increasing the number of the allowed components (P;::: 4), the alge-
rithm reveals a component curve (D), which may correspond to the CD
contribution of type I(III) p-turns and/or a 310helical structure. Based on the
statistical data on the X-ray structure of proteinsš? type I and type III p-turns
represent the mostly populated group of turn conformations. They account
for 60-70% of these structures. According to comparative CD data on linear
and bridged model peptides, type I(III) turns show «-helix-like CD spectra
with bands of lower intensity.P Characteristic CD parameters (A, [8]), of
typical type I(III) p-turns are in qualitative agreement with those of com-
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Figure 3. Convex analysis of CD data (1';,<;) on 15 proteins. Mez surements were per-
formed over the wavelength range of 260-178 nm by Hennesj ey and Johnsor." (ej.

Table IX in Yang et al.i). A ... F as in Pigui ~ 2.

a, p = 3; b, p=: 4; c, P = 5; d, P = 6.

ponent curve D (Table II). 310 helices are repeating type III ~:-turns and also
show cc-helix-Iike spectra with decreased band intensities'" which are close
to those of type I(III) turns.

As for type II ~-turns, the majority were reported to show c1ass B CD
spectra.! with anegative band above 220 nm and apositive one below 200 nm.
The positive band of the ~-pleated sheet conformation also appears between
195-200 nm with a weaker negative band near 217 nm.' Taking into eon-
sideration that the latter band may be red shifted to the 220-225 nm region,
the algorithm is not expected to reveal the chiral contribution of this type
of ~-turns. (For P = 4 and 5, it is probably merged into component curves
B and D.)
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TABLE II

CD parameters O" nm; [8] x 10-3, mean residue eHipticity) of calculated component
curves (B (I" i))

Curve Data Number of components (P)
type base" 4 5 6

223 -24.0 223 -31.5 223 -28.1
(1) 208.5 -23.1 208 -33.0 210sh -22.0

193 56.0 193 84.0 195 75.0
A

223 -44.2 223 -34.5 223 -44.0
(2) 210 -37.7 209 -29.7 209 -39.0

193.5 100.8 194 73.0 194 88.5

225 -11.2 224 -12.0 223 -28.5
(1) - 210sh -5.5 208 -13.5 207 -45.2

198 30.5 197 31.4 194 34.1
B

218.5 -7.5 222 -24.4 219.5 -26.7
(2) - 210sh -20.0 210 -24.5

195 20.9 197 44.5, 196 53.4

224 8.5
(1) 208 5.1 - 212sh -8.5 - 211sh -15.0

197 -52.0 198 -36.0 197 -64.0
C

224 5.7 225 1.0
(2) - 205sh -9.5

197 -38.8 197 -21.5 202 -23.0
184 6.0

- 221 -12.0 225.5 -8.2 - 219sh -4.5
(1) 206 -24.9 - 212sh -3.5 209.5 -7.7

195 23.0 197 23.0 197 31.1
D

223.5 -13.8 220 -10.8
(2) 213.5sh -13.0 - 211sh -7.5 216 -7.5br

196 16.2 194 18.3 192 16.5

- 231 2.1 - 222 2.6br
(1) 213.5 -5.3 203 -15.5

202.5 5.4 194 8.0
E

- 226 2.7br 223 -4.0
(2) 201.5 -5.1 205.5 2.8

197 -21.0
185 8.3

226 -10.5
(1) - 211sh -0.5

F
202 28

- 226 3.0
(2) 217 -1.0

196 12.0

• For data bases (1) and (2) see Tables Vl l] and IX, respectively, of Yang et aU
tle values resulting from data set (2) are converted into [13] for the sake of com-
parison.
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The curves E and F have been called »unlabelled« component spectra.
They may reflect the presence of other conformations, or more generally,
additional sources of optical activity. It is expected, however, that these
component curves will be correlated with further chiroptically different stru-
ctural elements on the basis of the X-ray structure and/or amino acid com-
position of the proteins whose experimental CD curves served as the database
of the decomposition procedure.

Our analysis is rather sensitive to the data set used. There are only 9
proteins whose CD spectra were measured in both laboratories (ef. Tables
VIlI and IX in the review of Yang et aU). Their CD parameters are generally
in good agreement except for small differences in the intensity of the bands.
In some cases there are, however, significant differences regarding even the
number of transitions observed in the 260-200 nm region. According to the
data' in Table VIlI, ribonuclease S, cytochrome c and subtilisin BPN' feature
two negative extrema above 190 nm which is in contradiction with the single
negative transition given in Table IX. These differences together with the
consequences of database truncation to 190 nm (Table VIlI) may give an
explanation for the somewhat differing results of our analysis using data
from Table VIlI or IX, respectively. (The general effect of database truncation
is discussed in detail by Hennessey and Johnson"),

The variable selection methođ'" improves the analysis by removing
proteins from the basis set whose CD spectra contain chiral contributions
not found in the CD curve of the protein being decomposed. The convex
analysis circumvents this problem by using a noise term (Eq. 1) to eliminate
individual chiral components. The main power of the method reported here
is that it does not make use of X-ray data in the manner of Provencher and
Glčckner.t" The proportion of differing and chiroptically independent secon-
dary structural units may be similar in the crystalline state and in solution,
but it is not necessarily the same. On the other hand, we agree with the above

p

authors that constraints a and b [~C (i, k) = 1 and C (i, k) ~ O] are not
i=1

artificial. Originating in the homochirality of the amino acid units, the CD
curve of none of the known protein secondary structures relates to any of
the others as mirror images. This is true even of the CD of ~-turns. The
spectrum of type II' ~-turns is, for example, not the mirror image of type II
spectrum, but resambles that of the predominant type I and III ones."

Our analysis provides evidence that the CD spectra of proteins contain
independent information of at least four different secondary structures.
Without making use of any basis spectra originating from model systems
of known secondary structure, the analysis herein gives independent proof
of the existence of the different secondary structural elements with individual
CD spectra. These spectra proved to be identical or, at least, similar to those
found in model polypeptides. The new mathematical approach is a useful tool,
not only in analyzing CD spectra, but also in other cases where the additivity
contraint (a) is valid.
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APPENDIX

Let us suppose that the constraints a, b are already met. The S matrix used
for the transformation may be constructed by the iteration

Sn+l = TnSn

where J ~ (i)
Tn has the form Tn (i, j) = 11

1-y (j)

if i = JEHn
if j ~ iEHn
if i = jEGn

if j ~ iEGn

(11)

where the set G« has asingle index f2n, H; = {I, 2, •.. , P}/Gn, and f2n is the index of
one specified row playing a discriminated role in the algorithm. [One possibility
for the choice of f2n is f2n = n (mod P)]. One can easily check that

det (Tn) = :rc y (i)
te«;

(12)

thus Tn may be chosen as a solution for the next problem.
For the sake of simplicity let us speak about the first step. Given the integer

f2 = f21, 1:::; f2 .s P, find the variables {y (i), i EH}, such that

~ Y (i) C (t, k) :::; 1 k = 1, ... ,N
ieH

(13)

and
W=:rc y(i)-+max nowH={1,2, ... ,P}/{Q}

For arbitrary (P -1) dimensional vectors

{d (i), iEH}
such that

N
d (i) = ~ s (k) C (i, k), iEH

k=1
(14)

N
with some constants ~ (k) ;::: O, ~ ~ (k) = 1 we have

k=1

~ Y (i) d (i) :::; lo
ieH

If we had only the last constraints, the product w would be maximized by

1
v(i)------
• - (P - 1) d (i)'

(15)

.and one can show that the original problem is equivalent to

:rc d (i) -+ max
«n

which can be solved e. g. by a gradient iteration. Let us lab el the convex hyper-
surface by D;

N
D = {d: 3 ~ E ~N> d (i) = ~ o (k) . C (i, k)}

k=1

where
N

~N={8(k);:::0, ~ ~(k)=l}
i= 1

The transformation
log :!f d (i) = ~ log d (i)

ieH sen
(16)
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leads to the following equation

f [~(1), ~ (2), ... , ~ (N)] = ~ log d (i)
ielI

(17)

which is to derive:

iJ f = ~ C (i, 1)
ćl ~ (k) ieH d (i)

,... , ~
teu

C (i, k) C (i,N)
d (i) , ... , i;H d (i) (18)

where
l=5k=5N

From there the successive ~n+l (k) can be calculated as

where
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SAZETAK

Rastavljanje konveksne napetosti u krivuljama cirkularnog dikroizma proteina

Andras Perczel, Mikl6s HoH6si, Gabor Tusnady i Gerald D. Fasman

Razvijen je novi algoritam, nazvan konveksna analiza, za određivanje kiral-
nog doprinosa uobičajenih sekundarnih struktura, neposredno iz eksperimentalnih
CD krivulja većeg broja proteina. Analiza se zasniva na CD podacima Yanga
et aL (1986). Prvi pokušaji provedeni su na skupini umjetnih proteinskih spektara
kreiranih Monte Carlo tehnikom, koristeći sastavne spektre zasnovane na POli-L-
-Iizinu, Primjena algoritma rastavljanja na ostvareni niz spektara rezultirao je
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djelomičnim spektrima [B (2,i)] i težinama (udjelima) [C (i, k)] uz izvanredan Pear-
sonov korelacijski koeficijent (r) [Co T. Chang, C. S. C. Wu, J. T. Yang, (1978)
sonov korelacijski koeficijent (r) [Co T. Chang, C. S. C. Wu, J. T. Yang, AnaL
Biochem. 91 (1978) 12].

Neovisno o podacima rentgenske analize ovaj je algoritam pokacao da je CD
spektar određenog proteina sastavljen od barem četiri različita neovisna izvora
kiralnosti. Tri od izračunane komponente krivulje pokazale su znatnu sličnost
s CD spektrima poznatih proteinskih sekundarnih struktura. Ovaj pristup pred-
stavlja znatno poboljšanje u odnosu na analizu svojstvenih vektora J. P. Hennessey
and W. C. Johnson, Biochemistry 20 (1981) 1085]. Nova metoda nije samo upo-
trebljiva za analizu CD spektara nego i za razmatranje drugih problema rastav-
ljanja, gdje vrijedi aditivnost.




