
M. Vardhan, D. S. Kushwaha Dinamička replikacija datoteke zasnovana na mehanizmu opterećenosti i konzistencije CPU u pouzdanom distribuiranom okruženju

Tehnički vjesnik 24, 1(2017), 147-160 147

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)
DOI: 10.17559/TV-20130507221245

A DYNAMIC FILE REPLICATION BASED ON CPU LOAD AND CONSISTENCY MECHANISM
IN A TRUSTED DISTRIBUTED ENVIRONMENT

Manu Vardhan, Dharmender Singh Kushwaha

Original scientific paper

An effort has been made to propose a CPU load based dynamic, cooperative, trust based, and secure file replication approach based along with
consistency among file replicas for distributed environment. Simulation results consisting of 100 requesting nodes, three file servers and file size ranging
from 677 KB to 11 MB establishes that, when the CPU load is taken into consideration, the average decrease in file request completion time is about 22,04
÷ 24,81 % thus optimizing the CPU load and minimizing the file request completion time. The CPU load decreases by 4,25 ÷ 5,58 %. Results show that,
the average write latency with proposed mechanism decreases by 6,12 % as compared to Spinnaker writes and the average read latency is 3 times better
than Cassandra Quorum Read (CQR). The proposed partial update propagation for maintaining file consistency stands to gain up to 69,67 % in terms of
time required to update stale replicas. Thus the integrity of files and behaviour of the requesting nodes and file servers is guaranteed within even lesser
time. Finally, a relationship between the formal aspects of simple security model and secure reliable CPU load based file replication model is established
through process algebra.

Keywords: CPU load balancing; distributed systems; file consistency; file encryption; file replication; role based credentials; trust management; update
propagation and write invalidate

Dinamička replikacija datoteke zasnovana na mehanizmu opterećenosti i konzistencije CPU u pouzdanom distribuiranom
okruženju

Izvorni znanstveni članak

Pokušalo se predložiti dinamički, kooperativni, pouzdani i sigurni pristup replikaciji datoteke utemeljen na opterećenosti CPU uz konzistenciju među
replikama datoteke za distribuirano okruženje. Rezultati simulacije koja se sastoji od 100 potrebnih čvorova, tri servera datoteke i datoteke veličine od 677
KB to 11 MB pokazuju da kada se uzme u obzir opterećenje CPU, prosječno smanjenje vremena potrebnog za popunjavanje datoteke je oko 22,04 ÷ 24,81
%. Tako se optimiziralo opterećenje CPU i smanjilo traženo vrijeme popunjavanja datoteke. Opterećenje CPU smanjuje se za 4,25 ÷ 5,58 %. Rezultati
pokazuju da se prosječno kašnjenje upisa (write latency) s predloženim mehanizmom smanjuje za 6,12 % u usporedbi sa Spinnakerovim, a prosječno
vrijeme čekanja čitanja (read latency) je 3 puta bolje od Cassandra Quorum Read (CQR). Predložena parcijalna propagacija ažuriranja za održavanje
konzistencije datoteke povećava se do 69,67 % u odnosu na vrijeme potrebno za ažuriranje zastarjelih replika. Tako je integritet datoteka i ponašanje
zahtijevanih čvorova i servera datoteke zagarantirano za čak manje vremena. Konačno, kroz algebra postupak uspostavljen je odnos između formalnih
aspekata jednostavnog modela sigurnosti i sigurnog pouzdanog modela replikacije datoteke zasnovanog na sigurnom pouzdanom opterećenju datoteke.

Ključne riječi: balansiranje CPU opterećenja; distribuirani sustavi; kodiranje datoteke; konzistencija datoteke; kvalifikacije utemeljene na ulozi;
pouzdano upravljanje; propagacija ažuriranja i poništavanje zapisa; replikacija datoteke

1 Introduction

To achieve high availability of files in distributed

environment, a secure and efficient replication
mechanism is required. The communicating nodes in the
environment should be trustworthy so as to provide high
level of security against various attacks viz.,
compromised key attack, identity spoofing and
masquerading. This should be coupled with least amount
of latency and faster response time. For this an efficient
CPU load based approach is imperative. All this is needed
in order to ascertain the credibility of the participating
nodes working together to achieve the goal of Computer
Supported Cooperative Working (CSCW).

RN

RN

RN

RN

RN

RN

RN

RN

RN
RN

RN

RN

RN

RN

INTERNET

RN

RN

FS3

FSn

FS1 FS2Zone-1
Zone-2

Zone-3

Zone-4

Figure 1 Proposed scenario

Load balancing is one of the important aspects of

CSCW. It is achieved by replicating the requested file
from the heavily loaded node to lighter one and
subsequently redirecting the file request to the lightly
loaded node in case any node enters the overloaded
region. Along with this, an efficient consistency
mechanism should be in place to confirm the integrity of
the files. For addressing these issues, paper proposes the
scenario as shown in Fig. 1.

Fig. 1 represents two types of nodes viz., File Server
(FS) and Requesting Node (RN). It shows a group of File
Servers (FSs), along with Requesting Nodes (RNs) that
sends the request for a file in a distributed environment. It
can be observed from Fig.1 that the connections are
scaled on Internet between FSs. FS and RN will
communicate/exchange information with each other as
and when required. Zones are logically divided depending
on the proximity between FSs, based on the addressing
scheme (IP address). FS to which a RN is connected is
termed as local FS and for this RN all other FS are termed
as 'remote' FS.

Properties of FS are as under:
• When a node agrees to share files, it executes FS-

server process to assume the role of FS.
• Each FS has a shared directory that contains the files.
• RN requests the file shared by the FS, so as to fulfil

its requirement.

A dynamic file replication based on CPU load and consistency mechanism in a trusted distributed environment M. Vardhan, D. S. Kushwaha

148 Technical Gazette 24, 1(2017), 147-160

• Shared files are replicated based on CPU load from
FSi to FSJ, as and when required.

• When a RN requests a file in write mode, it should
commit the changes before timeout period. Timeout
period is the time duration in which the RN has to
release the lock on the file open in write mode.

• Once the changes are committed, the changes are
propagated only to the local FS.

• As soon as the local FS updates its file, it invalidates
the replica of that file on other FS, so as to avoid
accessing the stale replicas.

Those nodes that agree to share its files with other

nodes in the distributed environment are designated as
File Server (FS). Initially FSi connects to FSJ. On
successful connection between FSi and FSJ a message is
multicast to all other FS by FSi. This message contains
FSi IP address and list of files shared by FSi (where J ≠ i; i
≤ n; J ≤ n; n is the total number of available FS at that
time instance). On receiving the multicast messages, all
these FS’s update its table. Now, all available FS’s have
the IP address and list of files shared by these FS’s. These
set of FS are capable of receiving and fulfilling the file
requests. But the number of requests a FS can handle is
limited by the CPU load. Requesting Node (RN) will send
the read/write file request to the local FS. This Local FS,
on receiving the file request either fulfils the request
locally, or, looks for any remote FS that has the handle of
requested file. Now it forwards the IP address of this
remote FS to RN. As soon as the connection is established
with the remote FS, this FS acts as local FS for RN. All
this is carried out ensuring CPU load based file
replication, consistency and security issues as proposed in
this paper.

To achieve the above mentioned issues for this
scenario, the paper aims to increase the availability of
files for various nodes in a secure distributed
environment. The roadmap to meet this objective is
modularized as under:
i A node sends its request for a particular file to a FS.
ii Before CPU load based file replication is done,
• Authenticity of nodes is established based on the trust

value, by utilizing the services of Trust Monitor
(TM).

iii In order to provide higher level of security, the files
are replicated only after encrypting it using Advance
Encryption Standard (AES) [26] and finally

iv An efficient partial update consistency mechanism is
proposed to maintain the integrity among the
replicated files.

The rest of the paper is organized as follows. The

next section discusses a brief literature survey of existing
theories and work done so far. Section 3 describes the
proposed trust based security mechanism. Section 4
discusses the proposed CPU load based file replication
and consistency maintenance mechanism approach in a
secured environment and its bisimulation equivalence.
Section 5 shows the simulation results followed by
conclusion in section 6.

2 Related work

Everyone looks for trusted partners in order to send or
receive the data. Popular reputation systems [1] include
Eigen Trust [8], Peer Trust [9], Power Trust [10] etc.
Eigen Trust is one of the most cited and compared trust
models. It assigns each peer a unique global trust value
based on the peer’s history. However, it introduces the
concept of pre-trusted peers, which is very useful in the
model, but there is not always a set of peers that can be
trusted by default, prior to the establishment of the
community. Dou [12] presents a novel recommendation-
based trust model. Author identifies that the present trust
model could not promise the convergence of iterations for
trust computation and model does not consider security
problems against Sybil attack and Slandering. Moreover,
another assumption of Eigen Trust is that the peers who
are honest about the resources they provide are also likely
to be honest in reporting their local trust value is arguable.
Another work on Eigen Trust proposed by Kamvar et al.
[8], focuses on a Gnutella like file sharing network.
Shortcoming of the approach is that its implementation is
very complex and requires strong coordination and
synchronization of peers. Peer Trust [9] is a reputation-
based trust supporting framework, which includes a
coherent adaptive trust model for quantifying and
comparing the trustworthiness of peers based on a
transaction-based feedback system. On one hand, it
introduces three basic trust parameters and two adaptive
factors in computing trustworthiness of peers, namely,
feedback a peer receives from other peers, the total
number of transactions a peer performs, the credibility of
the feedback sources, transaction context factor and the
community context factor. On the other hand, it defines a
general trust metric to combine these parameters.
However, the way it measures the credibility of a peer
does not distinguish between the confidence placed on a
peer when supplying a service or carrying out a task, and
when giving recommendations about other peers. Cuboid
Trust [14] is a global reputation-based trust model for
peer to peer networks which builds four relations among
three trust factors including contribution of the peer to the
system, peer’s trustworthiness (in reporting feedbacks)
and quality of resource. It applies power iteration in order
to compute the global trust value of each peer. In this
system, direct trust or direct experiences are not given a
differentiated treatment, which cannot be well interpreted.
In addition, like Eigen trust model, Cuboid trust
introduces the concept of pre-trusted peers. It builds
several relations among three factors including
contribution, trustworthiness and quality of resource to
create a more general trust based model. One such trust
based system is Gossip Trust proposed by Zhou et al. [15]
that enables lightweight aggregation and fast
dissemination of global scores. It does not require any
secure hashing or fast lookup mechanism. Thus, it is
applicable to both unstructured and structured networks.
In GroupRep [16], a peer evaluates the credibility of a
given peer by its local trust information or the reference
from the group it belongs to. An improved computing
method to calculate the global trust value is proposed by
Fajiang Yu [17]. However, most models do not suit highly
dynamic and personalized trust environment. Although

M. Vardhan, D. S. Kushwaha Dinamička replikacija datoteke zasnovana na mehanizmu opterećenosti i konzistencije CPU u pouzdanom distribuiranom okruženju

Tehnički vjesnik 24, 1(2017), 147-160 149

the reputation is operated on limited number of feedbacks
rather than aggregating all the ratings, it provides good
performance in a variety of situations. There is some
recent research on reputation and trust management in
distributed systems. Aberer and Despotovic [18] are one
of the first in proposing a reputation based management
system. However, their trust metric simply summarizes
the complaints a peer receives and is very sensitive to the
skewed distribution of the community and misbehaving
peers. Chen and Singh [19] differentiate the ratings by the
reputation of ratters that is computed based on the
majority opinions of the rating. Adversaries who submit
dishonest feedback can still gain a good reputation as a
ratter in their method simply by submitting a large
number of feedbacks and becoming the majority opinion.
Dellarocas [20] proposes mechanisms to combat two
types of cheating behaviour when submitting feedback.
The basic idea is to detect and filter out exceptions in
certain scenarios using cluster-filtering techniques. This
can be applied to feedback-based reputation systems to
filter out the suspicious ratings before the aggregation.
Sen and Sajja [21] propose a word-of-mouth reputation
algorithm to select service providers. Their focus is on
allowing querying agent to select one of the high-
performance service providers with a minimum
probabilistic guarantee. The basic idea is to generate trust
values describing the trustworthiness, reliability, or
competence of individual nodes, based on some
monitoring parameters. Buchegger and Boudec [22] use
such trust information for malicious node detection.
Josang et al. [23] gives an overview of existing systems
that can be used to derive measures of trust and
reputation. Langheinrich [24] argues for a renewed
evaluation of the benefits from the concept of trust but
leaves the calculation of trust assessment up to humans.
Keynote is a well-known trust management system
proposed by Blaze et al. [25], designed for various large
and small-scale Internet-based applications. It provides a
single, unified language for both local policies and
credentials. For providing higher level of security,
Advance Encryption Standard (AES) [26] is used for
encryption and decryption file, while replicating the file.
AES is a symmetric secret key algorithm used for
encryption and decryption of data. The key size is 64-bits.
This mechanism derives a 64-bit key value for use by this
cipher.

Having discussed the security mechanism for
providing the high level of security and once the trust is
established between the communicating nodes, some
leading proposals of CPU load balancing, replication and
consistency mechanism are discussed next.

The issue of load balancing emerges when distributed
computing systems and multiprocessing systems began to
gain popularity. Baumgartner and Wah [50] and Casavant
and Kuhl [2] propose algorithm related to the problem in
load balancing in clusters. Lan et al. [3] and Bahi et al. [4]
propose distributed load balancing policy, in which every
node executes this policy autonomously. Moreover, the
load balancing policy can be static or dynamic. In a static
load balancing policy, the decisions are predetermined,
while in a dynamic load balancing policy, the decisions
are made at runtime. Dhakal et al. [5] proposes that a
dynamic load balancing policy can be made adaptive to

the changes in system parameters, such as the traffic in
the channel and the unknown characteristics of the
incoming loads. Cortes et al. [6] and Trehel et al. [7]
propose that dynamic load balancing can be performed
based on either local information (pertaining to
neighbouring nodes) or global information, where
complete knowledge of the entire distributed system is
needed before a load balancing action is executed.

Payli et al. [34] proposes that Dynamic Load
Balancing (DLB) provides application level load
balancing for parallel jobs using system agents and DLB
agent. The approach requires a copy of system agents on
all the systems so that DLB agent may collect load
information from these systems and perform load
balancing. Yagoubi and Slimani [35] puts forward a
dynamic tree based model to represent grid architecture
and proposes Intra-site, Intracluster and Intra-grid load
balancing. Nehraet. al. [36] addresses issues to balance
the load by splitting processes into separate jobs and then
distributing them to nodes. The authors propose a pool of
agents to perform this task. Both approaches modify the
dynamic load-balancing step of an adaptive solution.

Tang et al. [31] and Cao et al. [32] address that load
balancing plays a critical role in achieving high utilization
of resources in Data Grids. Yan et al. [33] proposes a
dispatcher and agent based hybrid load balancing policy
underlying grid computing environment. The dispatcher
performs maintenance, status monitoring, node selection
and assignment and adjustment task for each node. The
author’s consideration of load balancing restricts the
system to the ‘‘join and leave’’ decision of nodes.

When replication is involved in a distributed file
system, there is a need to address many questions. Should
the file be replicated on server side only or client side or
both? Should we replicate the whole file or a chunk of it?
Should we replicate the file content or the file attributes
too?

A high-level overview of Network File System (NFS)
is presented by Walsh et al [29]. Details of its design and
implementation are given by Sandberg et al [30]. Sun
NFS uses a TTL (time to live) based approach at the
client-side to invalidate replicas. As far as file consistency
is concerned, it is not always guaranteed. In case a client
modifies a file and subsequently updates this file present
on the server, the latest data will still not be available to
another client sharing the file until the TTL period is over.
The design of NFS involves simplicity and hence they did
not take into consideration any of the complex concurrent
read/write issues. Dharma et al. [38] propose a data
replication algorithm that not only has a provable
theoretical performance guarantee, but also can be
implemented in a distributed and practical manner.
Specifically, authors have designed a polynomial time
centralized replication algorithm that reduces the total
data file access delay by at least half of that reduced by
the optimal replication solution. Google File System [47]
introduces an atomic append operation so that multiple
clients can append concurrently to a file without extra
synchronization between them. GFS has a relaxed
consistency model that supports highly distributed
applications and remains relatively simple and efficient to
implement. File mutations are atomic and are handled
exclusively by the master. When an update/mutation

A dynamic file replication based on CPU load and consistency mechanism in a trusted distributed environment M. Vardhan, D. S. Kushwaha

150 Technical Gazette 24, 1(2017), 147-160

succeeds without interference from concurrent writers
(means no overlapping in time), the state is defined as
consistent. If interference occurs, then state is undefined
i.e. the order is not known but consistent, by maintaining
the order of operations on all the replicas. By default GFS
creates three replicas. GFS also uses a 2-phase write
protocol to achieve consistency among replicas. GFS’s
consistency is not strict, as it may read from a stale replica
before the information is refreshed.

To ensure synchronized file replication across two
loosely connected file systems, a transparent service
model has been developed by Rao and Skarra [39] that
propagates the modification of replicated files and
directories from either file system. Primary-copy (master-
slave) approach for updating the replicas says that only
one copy could be updated (the master), secondary copies
are updated lazily. There is only one replica which always
has all the updates. Consequently the load on the primary
copy (master replica) is large. Domenici [40] discusses
several replication and data consistency solutions,
including Eager (Synchronous) and Lazy (Asynchronous)
replication, Single-Master and Multi-Master Model, pull-
based and push-based consistency mechanism. It deals
with huge scientific data. Guy [41] proposes a replica
modification approach wherein a replica is designated
either as master or a secondary replica. Only master
replica is allowed to be modified whereas secondary
replica is treated as read-only, i.e. modification
permission on secondary replica is denied. A secondary
replica is updated in accordance with the master replica if
master replica is modified. Sun [42] proposes two
coherence protocols viz. lazy-copy and aggressive-copy.
In lazy-copy protocol, while accessing a modified replica,
first the metadata of the modified replica is accessed to
get the timestamps of the original and the modified
replica. By comparing the timestamps of these two
replicas, it is decided if the replica is up-to-date or not. In
aggressive copy protocol, no update delay between the
original and modified replicas exists. Once the original
replica is altered, all other remaining replicas are
immediately updated. Dirk et al. [44] and Huang et al.
[43] propose a high-level replica consistency service,
called Grid Consistency Service (GCS). The GCS allows
updating file and consistency maintenance. The literature
proposes several different consistency levels and
discusses how they can be included into a replica
consistency service. The next section discusses the
security mechanism based on node behaviour for
distributed environment.

3 Proposed security mechanisms based on node

behaviour

For performing secure file replication in distributed
environment, a mechanism is required to identify the
malicious node activity and for ascertaining the integrity
of files.

Reputation systems [18] provide a way for building
trust by utilizing community based feedback about past
experiences of nodes to help making recommendation and
judgment on quality and reliability of the transactions and
messages exchanged between communicating nodes. The
challenge of building such a reputation based trust

mechanism in distributed system is "How to effectively
cope with various malicious behaviours of peers such as
providing fake or misleading feedback about other
peers?" Another challenge is "How to incorporate various
contexts in building trust as they vary in different
communities and transactions?" This section proposes
Trust Management Service based on the feedback of
nodes.

Fig. 2 presents the components of the Trust
Management Service. It identifies and elaborates the
functionalities and interdependency between the
components. Different nodes are denoted as Trust Monitor
(TM)/File Server (FS) and Requesting Node (RN). Each
trusted FS also assumes the role of TM. Each RN needs to
get registered with TM. TM maintains the log of the
registered RN. Log consists of <Node_ID, Trust Value,
Service Usage Key (SUK)> as discussed below in sub-
section 3.2 data structure. Depending on the application
requirement, the role of TM can be distributed or
centralized. For the given scenario Node 1 2, 3, 4 and 5
are FS, that also performs the role of TM.

TM: Trust Monitor, RN: Requesting Node, FS: File,
Server SUK: Service Usage Key, ------: Shows the
logical connection between nodes.

TM /
FS

TM /
FS

TM /
FS

2 5

4

TM /
FS

1

TM /
FS

3

Figure 2 Scenario of trusted file replication model

3.1 Data structure used by TM and FS

Node_ID: shows the IP address of the node (FS and
RN) registered with TM and stores TV against each
Node_ID. Trust Value (TV): keeps the trust value of a
particular node (FS and RN) and also the threshold limit
of TV. Service Usage Key (SUK): this file identifies the
Service Usage Key assigned to a node (FS or RN). Last
file request time: is the last request time of a file to
identify frequent file access behaviour of RN. Frequent
File Count: for each RN this field furnishes the count of
total number of files requested in a specified time span.
Filename: Name of file. FileSize: Size of file. Request
Count: Number of requests a FS handles depending on the
CPU load. Replication Threshold: Maximum number of
requests a FS can handle, depending on the CPU load,
after that file will be replicated on other FS. Once the
request gets fulfilled, value in this field is decremented by
one. Valid: It is a Boolean variable that signifies whether
the file is stale or updated. Lock: It is an integer variable
that signifies that a node has acquired lock on the file and
the file is being updated. Primary FS ID: It is an integer
variable. This specifies the ID of the primary FS (FS that
has the latest updated file) of the file. Last Write
Timestamp (tlw): It is an integer variable. It stores the
timestamp at which the particular file is last updated. Diff

M. Vardhan, D. S. Kushwaha Dinamička replikacija datoteke zasnovana na mehanizmu opterećenosti i konzistencije CPU u pouzdanom distribuiranom okruženju

Tehnički vjesnik 24, 1(2017), 147-160 151

files: this field is used to store the time stamp (tlw) of Diff
files that are created after a replica is modified. Peers: It
is an array of integer variables and stores the IP address of
the FS that has the replica of the file.

Peer FS table is maintained by all FS containing the
following fields: Peer FS ID: ID of peer File Server. Peer
FS IP: IP address of peer File Server. Peer FS Port: Port
address of peer File Server.

3.2 Design of security service mechanism

On receiving the file request from RN, TM checks
RN’s TV from its TV field of data structure, to ensure that
TV(RN)>min(TV). If TV(RN)< min(TV) the request will
be discarded. TM authenticates the integrity of SUK
(against SUK validity and tampering) i.e. TM matches the
SUK received from RN with the SUK present in its SUK
field of the data structure. SUK provides a time period
within which file access or other operations have to be
carried out. This enhances the security and minimizes the
risk of security breach by RN, because the SUK is valid
only for a limited time period as defined by the TM. If
SUK of RN has expired, it will request TM for revocation
of SUK. FS provides access to the services (files read and
write operation) based on current trust value of the RN
and also checks for frequent file request behaviour for the
following scenarios:
• If TV of RN, TV(RN)<Threshold(TV), only file read

permission shall be granted to RN. File write
permission in this case is not allowed to be granted to
RN.

• If a RN makes several file requests within a particular
time period, file request count will be detected from
the <count field and last request time field> of the
data structure.

• The request will be fulfilled, if the request count does
not exceed the count limit within specified time span.
But if the request count exceeds the count limit, the
request is rejected. As the behavior of this node is
treated as malicious the TV of RN is decreased by
0.1. The specified time span = (current_request_time
– last_request_time). TM defines the limit for file
request count and the duration of time span. For this
local system clock is used.

• FS sends the encrypted file to RN.
• Based on the behavior of RN, its trust value will be

updated by the TM.

A nonce is generated by TM on receiving the SUK

request from RN. This nonce is known as SUK. SUK is
provided by TM to the individual RN only on request.
Trust Monitor (TM) keeps the log of the RNs registered
with this TM and the same information is maintained by
each TM. RN requests Service Usage Key (SUK) from
TM to access the service of the FS. TM provides the SUK
based on the current TV of the RN. TV of RN should be
≥min(TV). If the TV of RN >min(TV), RN will receive
the SUK, else the request will be discarded. Minimum TV
is the lowest trust value assigned to RN by the TM. SUK
is for specific time period as defined by TM. FS on
receiving the file request validates the SUK (against
tampering of SUK and its validity). TM matches the SUK
received from RN with the SUK present in its SUK field

of the data structure. TM also checks for frequent file
request behaviour as discussed above. After validating the
SUK, TM provides file read or write permission based on
the TV of RN as discussed above. TM observes the
behavior of RN and updates its trust value. Threshold
value of trust lies in between
min(TV)<Threshold(TV)<max(TV). Upon subsequent
interaction between FS and RN, the TV of RN gradually
increases and once threshold limit is reached, the
interactions for getting the updated TV of RN nullifies.
TV of RN increases or decreases by a multiple of 0.1 as
defined by TM. All this is carried out by the following
method:
• Node registration with TM.
• RN request for SUK from TM.
• Generation and Distribution of SUK by TM to RN.
• Authentication of SUK by TM, on receiving the

request from RN.

Fig. 3 shows two nodes RN, TM/FS and interaction
between them. RN sends the registration request to TM
and after successful registration RN receives the "ack"
message from TM. RN requests for SUK from TM and
receives the same. A generic flow and the interaction
between different entities (RN, TM/FS) can be observed
from Fig. 3.

RN TM/FS

<send SUK &
requests resource_FS_list_

from FS>

<seq._no., reg. request>
<seq._no., ack message>

registration successful

<seq._no., SUK_request>

<seq._no., SUK>

FS send encrypted file

validates the SUK & the file permissions to be given
to RN based on RN’s TV

RN sends acknowledgement to FS

TM updates trust value
of RN

checks RN’s TV>min(TV)

Figure 3 Interaction between RN, FS and TM

3.2.1 Working of TM

TM checks whether the request is made for node
registration, granting of Service Usage Key (SUK) or
updating Trust Value (TV). RN that gets registered with
TM is assigned the min(TV) as defined by TM.
• If RN requests for SUK, TM checks TV(RN), in case

TV(RN)<min(TV), SUK is not provided to RN.
Accordingly, RN is informed in reply to the request
made. Otherwise, if TV(RN)>min(TV), TM send the
<SUK> to RN.

• This SUK is assigned by TM to that node RN against
their IP address. TM provides SUK to RN on
demand.

• TM revokes the SUK of RN if their

A dynamic file replication based on CPU load and consistency mechanism in a trusted distributed environment M. Vardhan, D. S. Kushwaha

152 Technical Gazette 24, 1(2017), 147-160

TV(RN)>min(TV). Otherwise, the request is
discarded.

• In case TV of RN falls below the threshold, TM will
update the TV of this RN. If the TV of RN falls below
threshold limit, that RN is eligible only for file read
permissions and the IP address of that RN is marked
by TM to identify these nodes.

3.3 Ensuring file security by using file encryption

technique

To enhance the security of file replication mechanism,
symmetric key cryptography for encryption and
decryption with Advance Encryption Standard (AES) is
utilized. AES takes the file as input and creates a cipher of
the same length. AES uses a symmetric key which means
the same key is used to convert cipher back into the
original file. Its block size is of 128 bits. The key size is
also of 128bits. Fig. 4 illustrates the communication
between FS and RN. On receiving the file request, FS
validates the credentials of RN. Once the credentials are
validated successfully, FS encrypts the file using AES and
transmits it to the RN. RN on receiving the encrypted file
decrypts it using the same key as used for encryption.
Once the file is successfully decrypted, RN acknowledges
the receipt of file to FS.

FS

RN send file request to FS

FILE
DECRYPTION

FS after validating the file request, encrypts the
file using AES

After encrypting the file
FS sends the file to RN

On receiving the encrypted file RN decrypts the
file using AES

FILE
ENCRYPTION

On decrypting the file successfully,
RN acknowledges the receipt of file

RN

Figure 4 Secure file transfer using AES technique

4 CPU load based file replication and consistency
maintenance mechanism

Fig. 5 shows the File Server (FS) and Requesting

Nodes (RN). FS is responsible for providing the
replication service in the distributed environment. The
number of processes a CPU is currently executing decides
the load on the CPU i.e. overloaded or average loaded. In
case the CPU is overloaded and it keeps fulfilling the
request, the file request completion time will increase. But
in case the CPU load of the FS is 100 %, FS will start
dropping the file request. So, to avoid such situation, a
CPU load based file replication mechanism is proposed.
Based on the CPU load the requested file is replicated
from an overloaded node (FS) to an average loaded node
(FS) and the file request is redirected to average loaded
node. In Fig. 5 different types of messages labelled as
M6, M7, and M8 are elaborated here. M6: updates the
load status and other required parameters in the data
structure. M7: this message replicates the file and
redirects the request from an overloaded node to an
average loaded node. M8: carries the file request as sent
by the requesting node.

Overloaded

Average
loaded

Average Loaded

M7

M8

M8

M8
M8

M8 Data
structure

Data structure

Data
structure

Data
structure

M8

M8

M6

M6

M6

FS

FS

FS

FS

RN1

RN2

RN3

RN4

RN1

RN5

RN1

RN1

Average
loaded

M8
M6

RN2

RN2

M8

M8

Figure 5 CPU load based file replication mechanism

Fig. 5 shows four File Servers (FS) that are logically

connected to each other as scaled on internet. Each FS is
assumed as the trusted node. In the proposed File
Replication Model as shown in Fig. 5, an average loaded
FS can fulfil the file request of the requesting node
whereas an overloaded FS looks for an average loaded FS
on which the file request can be redirected. Overloaded
FS are those on which CPU load is equal to or above 75
% and the CPU load of the average loaded FS is below 75
%. In order to reduce the overhead of polling and
broadcasting periodically, FS does not enquire about the
load status of other FSs on periodic basis. Instead each FS
sends its load status information to other FS when it
changes its state from overloaded to average loaded. The
algorithm for CPU load based file replication is as
follows:

Each FS receives a file request from the Requesting
Node (RN) and based on its current CPU load status,
handles the request. Requested file is replicated on other
FS’s when the CPU gets overloaded. The various states of
FS are described below:
• Average loaded: File is present on the FS and the

CPU load is below 75 %, marked as ready.
• Overloaded: File is present on the FS and the CPU

load is equal to or above 75 %, marked as busy.

The handling of the request takes place as shown in

the flow diagram in Fig. 6. It can be observed from the
figure if the status of local FSi is overloaded. In this case,
FSi checks its peers field as discussed in data structure
section 3.2. Peers field identifies the IP address of only
those FS’s that have the replica of the requested file. FSi
sends a message to say FSJ. FSJ is one of the peers having
the replica of the requested file. This message requests for
the status of FSJ. FSJ checks its status against the
requested file and replies back to FSi depending on the
following conditions:
• If the status of FSJ is average loaded and requested

file is present on FSJ, it will fulfil the request. IP
address and port number of this FSJ is sent to the RN.
RN connects to this FSJ and receives the file.

• If the status of FSJ is overloaded, FSi sends a message
to FSk from the peers field. This message requests for
the status of FSk. FSk checks its CPU load status and
replies back its status to FSi (where J ≤ n; k ≤ n; n is
the total number of available FS at that time
instance). Thus, only selected FS from the peers field,

M. Vardhan, D. S. Kushwaha Dinamička replikacija datoteke zasnovana na mehanizmu opterećenosti i konzistencije CPU u pouzdanom distribuiranom okruženju

Tehnički vjesnik 24, 1(2017), 147-160 153

in an ordered way, will be requested for their status
against the requested file.

• As soon as FSi finds a peer FS (FSJ or FSk) with its
status as Average loaded, IP address of that peer FS
(FSJ or FSk) is sent to the RN by FSi and the RN
connects to that peer FS (FSJ or FSk) and receives the
file. And no more request messages for CPU load
status will be sent to peer FSs by FSi.

• Peer field identifies the IP address of only those FS’s
that have the replica of the requested file. If those
FS’s present in the peer field that has the replica of
the requested file are overloaded, and the remaining
FS’s do not contain the replica of the requested file, in
this case, FSi replicates the file on FSJ that has the
status as Average loaded. IP address of this peer FSJ
is sent to the RN and RN connects to this FSJ and
receives the file. Thus, the overhead of broadcasting
the status request message is avoided. In case the
number of FS’s is more, the proposed replication
approach significantly reduces the number of
messages exchanged.

Request received by
trusted FSi

Status of Local
FSi

File
Sent
to RN

FSi looks for remote FSJ that
can fulfill the request

Status of remote
FSJ

Send IP address of
remote FSJ and
Port number to RN

All Remote
FS’s checked

Remote FSJ
status

Yes
Busy

FileNotFound
“All Servers
Busy” message
send to RN

File available
on local FSi

File available
at local FSi

Yes

Send remote
FSJ IPaddress
and Port to RN

No

Yes No

Replicate file
from local FSi to
remote FSJ Invalid file request

Connection Close
With Requesting
Node

Ready

Busy/FileNotFound

Ready

No

Busy/FileNotFound

Start

Send file request

Follows a registration process
to get registered with TM

Performs check!

No

File VALID
on FSi

Yes

YesNo

Update file
using Partial
Update
Propagation
mechanism

Check RN’s TV, validates SUK
& the file permissions to be
given to RN

Figure 6 Flow diagram for CPU load based file replication

The functioning of File Server (FS) under various

scenarios is discussed in the next section.

4.1 Replication Scenarios

The various scenarios presented in this section
explain the complete File Replication model. The
scenarios described below involve three FS’s viz., S1, S2,
S3 and one Requesting Node (RN) N1. The messages
exchanged during the communication between FSs and
RN are described as follows: M1: This is a request
message that consists of either resource_FS_list message
or file request or replication request or status of other FS.
The resource_FS_list message is the request message for
the list of file names, FS IP address and FS Port number
from the Local FS. M2: This is the status message of FS.
The two statuses are Average loaded, and overloaded. M3:

This message denotes the sending of the file contents to
the RN or FS, or the sending of the IP address, Port
address of remote FSs and the resource_FS_list present on
the local FS to RN. M4: This message involves the IP and
Port address of the remote FS from which the requesting
node establishes the connection to receive the replicated
file. M5: Reply acknowledgement (RACK) from FSJ to
FSi is sent, after the file has been replicated successfully
on FSJ.

4.1.1 Case 1: Local FS S1 cannot fulfil the request and looks

for a remote FS S2 that can fulfil the file request

Requesting Node (RN) N1 requests SUK from TM
and once the SUK is received by RN, it sends
resource_FS_list a request (message M1) to FS(S1). TM
ensures that TV(RN)>min(TV). After ensuring the TV of
RN and validating the SUK, FS(S1) sends the
resource_FS_list (message M3) to N1. N1 sends file
request (M1) to the S1. S1 checks the file availability on
FSs, file validity on S1 (i.e. locally) and S1 status based on
CPU load. S1 observed that the request cannot be fulfilled
locally because S1 status is overloaded. Now, S1 sends the
status request message (M1) to remote FS(S2). S2 replies
its status as Average loaded (M2) to S1. S1 sends IP and
Port address of S2 (message M4) to N1. N1 receives the file
in encrypted form from S2. After the communication gets
over, both S1 update the trust value of RN.

4.1.2 Case 2: Local FS S1 replicates the file on remote FS S3

As discussed earlier, Requesting Node (RN) N1
requests SUK from TM and once the SUK is received by
RN, it sends resource_FS_list request (message M1) to
FS(S1). TM ensures that TV(RN)>min(TV). After
ensuring the TV of RN and validating the SUK, FS(S1)
sends the resource_FS_list (message M3) to N1. N1 sends
file request (message M1) to S1. S1 checks the file
availability on FSs, file validity on S1 (i.e. locally) and S1
status based on the CPU load. S1 observed that the request
cannot be fulfilled locally because S1 status is overloaded.
The status of S1 is overloaded, so, FS(S1) sends the status
request message (M1) to remote FS(S2). S2 replies its
status as overloaded (M2) to S1. After the communication
gets over, both S1 and S2 update the trust value of each
other on TM. Now, S1 sends the status request message
(M1) to remote FS(S3). S3 replies to S1, its status as
Average loaded and also informs that the requested file is
not present (M2) on S3. S1 sends the replication request
message (M1) to S3. S1 encrypts the requested file and
creates the replica of requested file (message M3) on the
S3. Once the file is successfully decrypted, S3 sends
RACK message (M5) to S1. After the communication gets
over both S1 and S3 update the TV of each other to TM. S1
sent the IP address and Port number of the S3 (message
M4) to N1. N1 receives the file from S3.

Now, after creating the file replica on more than one
server, there arises a need to maintain consistency among
all the replicas of a file. If a file is modified at any FS,
those changes need to be propagated to those FS on which
the replica is present. For this a partial update propagation
and write invalidate mechanism for maintaining file
consistency is proposed in the next section.

A dynamic file replication based on CPU load and consistency mechanism in a trusted distributed environment M. Vardhan, D. S. Kushwaha

154 Technical Gazette 24, 1(2017), 147-160

4.2 Proposed partial update propagation mechanism for
maintaining replica consistency

It is assumed that the clocks of all FS’s are

synchronized with each other and all RN’s synchronize
their clocks with local FS. A partial update propagation
and write invalidate mechanism is proposed. Most of the
existing approaches propose that every file has a primary
replica and other replicas are considered to be secondary.
This primary replica is called the master replica [39]. In
most of the existing approaches, if a secondary replica of
the file on node Nx is modified, the master replica on node
Ny has to be updated immediately. With this approach
there is need to wait until file write operation on
secondary replica on node Nx gets completed. After the
secondary replica has been updated on node Nx, this
updated replica on node Nx, needs to be propagated from
node Nx to the master replica on node Ny. But, with the
proposed approach, FS that has last modified the file
replica will become the primary FS for that file. FS
maintains the following entries in data structure that keep
track of information like file name, file’s last modification
time (tlw), IP address of the FS that has latest valid file
and Diff file/s created at different time stamps
<File_Name (fi), Last Write Time Stamp (tlw), Primary FS
ID, Diff File (D(fi(tlw))) > i.e. f1, FSx, f1(tlw), D(f1(t1))
D(f1(t2)) …D(f1(tn)). As soon as the FSi gets request for
write operation on file f1, FSi checks whether file f1 is
VALID or INVALID.

If file f1 is valid on FSi, it acquires the lock on file f1.
Now, FSi identifies those remote FSJ that have the replica
of file f1, from its Peers field of the data structure as
discussed in section 3.2. FSi sends a message only to
these remote FSJ, that the new primary FS of file f1 is FSi.
On receiving this message, FSJ invalidates its replica f1
and makes an entry in the Primary FS ID field of the data
structure that the primary FS of file (f1) is FSi, on which
last write operation has been done. So there is no need to
update any other replica immediately. But if the file is
invalid, it is updated using Partial Update Propagation.

Partial Update Propagation: If file f1 is invalid, FSi
checks the Primary FS ID field of the data structure as
discussed in section 3.2. This field gives the IP address of
the FS that has the latest replica of file f1. FSi sends a
request message to primary FSJ of file f1. FSi requests for
the updates of file f1, done after time stamp tlw i.e. FSi
[f1(tlw)]. FSJ on receiving the request message for updates
from FSi, FSJ checks the Time Stamp of file f1 i.e. FSJ
[f1(tlw)]. If the Time Stamp (tlw) of file f1 on FSJ is
subsequent to the Time Stamp (tlw) of file f1 on FSi, in this
case FSJ will send only those Diff file/s i.e. D(f1(tlw)), that
are created after the Time Stamp of file f1 on FSi i.e. FSi
[f1(tlw)]. After receiving the Diff file/s from FSJ, FSi
performs the join operation (∑) to update its stale file
replica. Before applying the join operation on file f1, FSi
ensures that file f1 is not locked by any RNi associated
with FSi. After applying the join operation, file f1 turns
into an updated one. Now, FSi has the valid file f1.

To validate the proposed model, Calculus of
Communicating System (CCS) is written and its
Bisimulation equivalence is proved using the
Concurrency Workbench of the New Century (CWB-NC)
that provides different techniques for specifying and

verifying finite-state of concurrent systems.

4.3 Bisimulation equivalence of secure CPU load based file

replication and consistency mechanism

Stability analysis of Secure File Replication and
Consistency Mechanism, using a process algebraic
approach is carried out in this section. Transition systems
[49] are considered to perform external and internal
actions. External actions are defined as observable actions
which are seen by the observer. However, an
unobservable action is considered as an internal action
which the observer cannot observe. Meaning of the
symbols used in the CCS [46] is described as follows:
SPN: Stands for Simple Provider Node. This denotes the
Server Node of the No-Replication model. SRN: Stands
for Simple Requesting Node. This denotes the Client
Node of the No-Replication model. NR: This denotes the
No-Replication Model. FS: Stands for File Server. This
denotes the Server Node of the R model. RN: Stands for
Requesting Node. This denotes the Client Node for the
proposed replication model. RI: This is the set of internal
actions for the proposed replication model. The symbol in
CCS (‘) denotes the action of sending message and the
rest of the actions denote the inputs/receiving message.

4.3.1 Definition of Simple Provider and Requesting Node

Definition of Simple Provider Node (SPN):
Provides the file to the requesting node, without
performing any file replication and changes its state back
to initial state i.e. SPNi. SPN in state SPNi on receiving
the file request message (requestFile) from SRN, changes
its state from SPNi to state SPN1. In state SPN1, after
acknowledging the existence of file (‘fileExists), SPN
changes its state from SPN1 to SPN2. SPN in the state
SPN2, sends its status (‘fsStatusAverageloaded) to SRN
and switches to state SPN3. Finally, after sending the file
(‘fileContent) to SRN, SPN switches its state from SPN3
to initial state i.e. SPNi.

SPN
≝requestFile.'fileExists.'fsStatusAverageloaded.'fileConte
nt.SPN (1)

Definition of Simple Requesting Node (SRN):
Requests a file from the simple server node and changes
its state back to initial state i.e. SRN.

SRN ≝
'requestFile.fileExists.fsStatusAverageloaded.fileContent.
SRN (2)

Setting internals for simple module

SI ≝ {fileExists} (3)

Model for Simple Server with No Replication (NR)

NR ≝ (SPN | SRN) \ SI (4)

M. Vardhan, D. S. Kushwaha Dinamička replikacija datoteke zasnovana na mehanizmu opterećenosti i konzistencije CPU u pouzdanom distribuiranom okruženju

Tehnički vjesnik 24, 1(2017), 147-160 155

4.3.2 Definition of File Server (FS) and Requesting Node
(RN)

Definition of File Server (FS): FS fulfils the file

requests received from RN, performs the file replication
from FSi to FSJ and changes its state back to initial state
i.e. FSi. FS in initial state i.e. FSi on receiving the file
request (requestFile) changes its state to FS1. After
acknowledging the existence of file (‘fileExists) FS now
changes its state from FS1to FS2. FS from state FS2 can
change its state either to FS3 or FS4. In case FS switches
from state FS2 to state FS3 (i) FS in state FS2 sends its
status as Average loaded (‘fsStatusAverageloaded) to the
RN and switches its state from FS2 to FS3. In this state
(FS3) FS sent the encrypted file content
('AESencFileContent) to the RN. After successfully
transmitting the file to RN, FS changes its state from FS3
to initial state FSi. OR If FS switches from state FS2 to
state FS4 (ii) FS in state FS2 sends a request message to
remote FSJ for their status (‘fsStatus) and FS switches its
state from FS2 to FS4. After receiving the status from
remote FSJ as Average loaded and file not present on FSJ,
FS changes its state from FS4 to state FS5. FS in this state
i.e. FS5 sends a replication request (‘put) to remote FSJ
and changes its state from FS5 to state FS6. In this state
(FS6) FS replicates the encrypted file
('AESencFileContent) on remote FSJ. After successfully
replicating the file from FSi to remote FSJ, FS reaches
state FS7. Now, FS in this state (FS7) sends the IP address
and port number of remote FSJ to the RN and changes its
state from FS7 to initial state i.e. FSi.

FS ≝ fsStatus.'no.FS + put.AESencFileContent.FS +
requestFile.('fileExists.('fsStatusAverageloaded.'AESencF
ileContent.FS +
'fsStatus.no.'put.'AESencFileContent.'newfs.FS)) (5)

Definition of Requesting Node (RN): requests a file
from FS and changes its state back to initial state i.e. RN.

RN ≝ 'requestFile.(fileExists.(fsStatusAverageloaded.
AESencFileContent.RN + newfs.RN)) (6)

Setting internals for replicating module

RI ≝{ fsStatus, put, no, newfs, fileExists } (7)

Definition of replicating module

R ≝ (FS | RN) \ RI (8)

Above mentioned CCS is compiled on CWB-NC and
bisimulation equivalence is proved between dynamic File
Replication model (R) and simple server with no
replication (NR) model i.e. R ≈ NR. The output of the
CWB-NC compiler is shown below:

cwb-nc> load FS.ccs
Execution time
(user,system,gc,real):(0.000,0.000,0.000,0.002)
cwb-nc>eq -S bisim R NR
Building automaton...
States: 34

Transitions: 62
Done building automaton.
TRUE
Execution time
(user,system,gc,real):(0.004,0.000,0.000,0.005)

This output shows the bisimulation equivalence of the
proposed Replicating (R) model with the standard non-
replicating (NR) model.

Finally, having discussed all this, next section
presents the simulation and results obtained from it.

5 Simulation and results
5.1 CPU load based file replication mechanism

The simulation has been conducted for CPU load

based File replication, using one, two, and three FSs. The
simulation is carried out with 100 RN’s and each RN
requests for file F of size 677KB; 3,1 MB or 11 MB from
FSi. The proposed model is simulated on Linux platform
with the network transfer speed of 300 kb/s.

The comparison in terms of request completion time
for varying file size using one, two, and three FS is shown
in Figs.7, 9, and 11. When CPU load based file replication
mechanism is devoid of any security mechanism, average
completion time for a request is always less than the
average completion time with trust and security. Initially
when the files are not available (replicated) on other FS’s,
the time required to fulfil the request of RN is higher.
After sufficient replicas are created, the service time for
each request decreases significantly. When any FSi
receives file request for file fi and this request moves the
CPU load to 75 %, it replicates the file on FSJ. This
replication overhead is compensated by the benefits like
avoiding re-sending of request (in case the FS is not able
to service the request, it forwards to other available FS).

5.1.1 One file server

A scenario with 100 requesting nodes and only one
FS is shown in Fig. 7. It shows the request completion
time taken by one FS for varying file size viz., 677 KB;
3,1 MB and 11 MB. It can be observed from the figure
that, with 1-FS the file request completion time increases
as the number of requesting nodes increases. This is due
to the reason that the system keeps fulfilling the request
even when the CPU is 95 % loaded. For file size of 677
KB, the request completion time of requesting node 1÷60
is 562,63 ms and for requesting node 61÷100 it is 645,975
ms, i.e. increase in request completion time by 14,81%
and the corresponding CPU load increases from 4,94 units
to 4,97 units i.e. by 0,51 %. For file size of 3,1 MB, the
request completion time increases from 1338,55ms to
1539 ms, i.e. by 14,97 % and the corresponding CPU load
increases from 4,94 units to 5,01 units i.e. by 1,34 %. For
file size of 11 MB, the request completion time increases
from 3775,91 ms and to 4337,7ms, i.e. by 14,87 % and
the corresponding CPU load increases from 4,56 units to
4,97 units i.e. by 8,90 %. The average increase in request
completion time using 1FS is 14,88 % and the average
increase in CPU load is by 3,58 %. The request
completion time decreases for requesting node 82÷100,
because the load on FS decreases as most of the requests

A dynamic file replication based on CPU load and consistency mechanism in a trusted distributed environment M. Vardhan, D. S. Kushwaha

156 Technical Gazette 24, 1(2017), 147-160

are completed and this is in accordance with the CPU load
of FS.

Figure 7 Request completion time based on CPU load using 1-FS

Figure 8 Request completion time based on CPU load using 1-FS

5.1.2 Two file servers

A scenario with 100 requesting nodes and two FSs is
shown in Fig. 9.

Figure 9 Request completion time based on CPU load using2-FS

It shows the request completion time in seconds for

2FS’s. With two FS, the file request can be fulfilled from
two servers at different locations (FS1, and FS2). In case
of 2FS, when the CPU load is greater than or equal to 75
%, the requested file is replicated from FS1 to FS2. Now
the request is fulfilled from both the FS, i.e. FS1, & FS2.
In case CPU load of both the FS is greater than or equal to
75 %, the request will be dropped until the CPU load is
less than 75 %. For the file size of 677kB, the request
completion time for requesting node 1 ÷ 60 is 485,46ms
and for requesting node 61 ÷ 100 is 396,95ms, i.e. request
completion time decreases by 18,23 %, because the
corresponding CPU load decreases from 2,68 units to 2,59
units i.e. by 3,13 %. For the file size of 3,1MB, the
request completion time decreases from 1025,03ms to
785,8ms, i.e. by 23,33 %, because the corresponding CPU
load decreases from 2,25 units to 2,16 units i.e. by 3,91
%. For the file size of 11MB, the request completion time
decreases from 3430,78 ms to 2550,92 ms, i.e. by 25,64
%, because the corresponding CPU load decreases from
2,70 units to 2,55 units i.e. by 5,70 %. The average
decrease in request completion time using 2FS is 22,04 %
and the average decrease in CPU load is by 4,25 %.

Figure 10 CPU load variation on FS-1 and FS-2 for 11 MB file

5.1.3 Three File Servers

A scenario with 100 requesting nodes and three FSs
is shown in Fig. 11. It shows the request completion time
in seconds for 3FS’s. With three FS, the file request can
be fulfilled from any of the three locations (FS1, FS2 or
FS3). In case of 3FS, when the CPU load is greater than or
equal to 75 %, the requested file is replicated from FS1 to
FS2 or FS1 to FS3, depending on the CPU load status of
FS2 and FS3. In case both FS2 and FS3 are average loaded,
FS is selected in an ordered way. Now the request is
fulfilled from all the FS, i.e. FS1, FS2 & FS3. In case CPU
load of all the FS is greater than or equal to 75 %, the
request will be dropped until the CPU load is less than 75
%. For the file size of 677kB, the request completion time
for requesting node 1 ÷ 60 is 570,6 ms and for requesting
node 61 ÷ 100 is 450,67 ms, i.e. request completion time
decreases by 21,01 %, because the corresponding CPU
load decreases from 1,66 units to 1,60 units i.e. by 3,44
%. For the file size of 3,1 MB, the request completion
time decreases from 869,21 ms to 650,82 ms, i.e. by 25,12
%, because the corresponding CPU load decreases from
1,96 units to 1,82 units i.e. by 6,89 %. For the file size of
11 MB, the request completion time decreases from
2925,05 ms to 2097,6ms, i.e. by 28,28 %, because the
corresponding CPU load decreases from 1,97 units to 1,83
units i.e. by 7,19 %. The average decrease in request
completion time using 3FS is 24,81 % and the average
decrease in CPU load is by 5,58 %.

M. Vardhan, D. S. Kushwaha Dinamička replikacija datoteke zasnovana na mehanizmu opterećenosti i konzistencije CPU u pouzdanom distribuiranom okruženju

Tehnički vjesnik 24, 1(2017), 147-160 157

Figure 11 Request completion time based on CPU load using 3-FS

Figure12 CPU load variation on FS-1, FS-2 and FS-3 for 11 MB file

Table 1 Average request completion time based on CPU load (ms)

Number of
File Serve

(FS)

Requesting
Node (RN) 677 KB 3,1 MB 11 MB

1FS

1 - 20 526,2 1307 3496,7
21 - 40 582,65 1375,75 3788,15
41 - 60 579,05 1332,9 4042,9
61 - 80 502,85 1623,05 5047,2

81 - 100 789,1 1454,95 3628,2

2FS

1 - 20 449,8 692,25 2212,9
21 - 40 521,5 1107,1 3979,65
41 - 60 485,1 1275,75 4099,8
61 - 80 529,4 863,2 4290,9

81 - 100 264,5 708,4 810,95

3FS

1 - 20 836,05 1091,35 3605,15
21 - 40 351,75 774,9 2992,8
41 - 60 524 741,4 2177,2
61 - 80 341,1 669,5 2755,6

81 - 100 560,25 632,15 1439,6

Tab. 1 shows the average request completion time for
various scenarios.

5.1.4 Partial update propagation

For a file of size 677 kb, Fig. 13 shows the
comparison between the proposed partial update
consistency mechanism and the write update mechanism.
With the proposed partial update consistency mechanism,
the average time required for updating the stale replicas
decreases from 554,35 ms to 165,7 ms. The average
decrease in time for updating the stale replicas using
partial updates is 69,67 %.

Figure 13 Partial Update Consistency Mechanisms

5.2 Comparison with GFS, Spinnaker and Cassandra

Load balancing can be used to distribute incoming
requests to two or more instances of an application,
dividing the work load between the instances. In GFS
[47], the load balancer is a software or hardware
application that distributes the requests of different types
to the appropriate applications. Spinnaker [27] is a
consistent and highly available data store that is designed
to run on a large cluster of commodity servers in a single
data centre. Spinnaker is derived from Cassandra [37]
codebase that is eventually a consistent data store.

The graphs of our results show the average latency of
a read or write operation (on the Y axis) for a given
system “load” (on the X axis). System load is the average
number of read or write requests per second generated by
a requesting node. Results are shown for the scenario of
100 requesting nodes and two file servers.

Table 2 System Configuration
 Spinnaker and Cassandra Proposed
Processsor Two Quad-core 2,1 GHz

AMD
3,6 GHz P

IV
Memory 16 GB 1 GB
Hard Disk 5 SATA disks 80 GB
Ethernet
Connection 1 Gb/s 100 Mb/s

Switch 1 Gb/s 100 Mb/s
Bandwidth 1 Gb/s 300 Kb/s

Figure 14 Average write latency

Fig. 14 shows the average latency of a write as the

load increases. It is observed that, the average write
latency with proposed mechanism decreases by 6,12 % as
compared with Spinnaker writes, because the file request
can be fulfilled from any of the two file servers. But this
latency increases by 2,06 % as compared to Cassandra
quorum write, because sometimes, the file server gets
overloaded which increases the write latency of proposed
write mechanism and also due to lower system
configuration and bandwidth as discussed in Tab. 2.

A dynamic file replication based on CPU load and consistency mechanism in a trusted distributed environment M. Vardhan, D. S. Kushwaha

158 Technical Gazette 24, 1(2017), 147-160

Figure 15 Average read latency

Figure 16 Average write latency with increasing number of nodes

Table 3 Comparison of load balancing approaches

Parameters GFS Spinnaker Cassandra Propose
Mechanism

Load
Balancer

Type

software
and

hardware
Software Software Software

Levels of
Load

Balancing
Two One One One

Dedicated
Load

Balancer
Yes No No No

Load
Balancing
Technique

Use
Sticky

Session

key-based
range

partitioning

key-based
range

partitioning

Based on
CPU load

Connection
type Physical Logical Logical Logical

Fig. 15 shows the average latency of a read as the

load increases. It shows the latency of Spinnaker and
Cassandra for 4KB read against the proposed scheme for
read across the board. It is observed from the table that
the average read latency with the proposed mechanism is
3times better than Cassandra Quorum Read (CQR). This
is because a quorum read in Cassandra has to access two
replicas and check for conflicts, whereas a read with the
proposed mechanism has to access the replica from any of
the two file servers. The average read latency increases by
32,08 % as compared to Spinnaker Consistent Reads
(SCR), Spinnaker Timeline Reads (STR) and Cassandra
Weak Reads (CWR), because the consistent read in
spinnaker only has to access the leader replica and also
due to the system configuration as discussed in the Tab.2.

Fig. 16 shows that the average write latency for 4 KB
Spinnaker writes is 21,68 ms, Cassandra Quorum writes is
19,7 ms and for the proposed write mechanism the
average write latency is 35,86 ms. Fig. 16 shows that for

both Spinnaker and Cassandra, the write latency remained
roughly constant with increasing number of nodes.
Whereas in the proposed approach, it is done on all the
nodes. This is because a write is performed only on three
nodes, regardless of the number of nodes. As compared to
the proposed write mechanism, when the number of
requesting nodes increases by 20 times, the average write
latency increases by 1,67 ÷ 1,84 times. This shows that
write latency does not increase proportionally with
respect to the increasing number of nodes.

5.3 How the proposed approach is robust: A Comparison

of Load Balancing Approaches

• Spinnaker and Cassandra perform write operation

only at three nodes, whereas the proposed mechanism
writes the file on-demand to n number of nodes.

• In Google’s Bigtable when a node goes down, all the
data on that node becomes unavailable until the node
is restarted and its log in GFS is replayed. But with
the proposed replication mechanism the data can be
accessed from another file server, on which the
replica is present.

• In the proposed mechanism all read and writes are
carried out in a secure manner based on the trust of
the requesting nodes and Advance Encryption
Scheme (AES) is used while sending the file over the
channel.

6 Conclusion

An optimal CPU load based approach for a trusted,

distributed and dynamic file replication mechanism is
proposed. An incoming request received by a file server is
either serviced based on its own CPU load or
redirected to the file server whose CPU is average loaded.
Thus the proposed dynamic CPU load based file
replication mechanism adapts to the changing CPU load.
We have shown experimentally that the proposed CPU
load based file replication mechanism minimizes the
average file request completion time by replicating the
requested file on an average loaded file server and
subsequently redirecting the file request to this file server.
Thus improves the system utilization rate. All this is
achieved even after trust maintenance and security
overhead. Basic trust parameters and adaptive factors in
computing trustworthiness of peers based on Trust Value
(TV) of RN, frequency of the requesting a file by RN and
integrity of the SUK (service usage key) is proposed.
Trust Monitor (TM) gauges the TV of requesting node
based on its activities to be used by FS. To accomplish
this objective, there was a need to address issues like:
• Ascertaining trustworthiness of RN.
• Establishing secure communication among various

parties.
• Secure file replication from FSi to FSJ or RN in a

CPU load based trusted distributed environment and
• Finally, an efficient consistency mechanism that

reaffirms the integrity of the files.

Once the trust has been established between

communicating nodes i.e. FS and RN, file replication is
carried out in a secure manner using AES. Initially, when

M. Vardhan, D. S. Kushwaha Dinamička replikacija datoteke zasnovana na mehanizmu opterećenosti i konzistencije CPU u pouzdanom distribuiranom okruženju

Tehnički vjesnik 24, 1(2017), 147-160 159

the file is present only on one file server, CPU gets
overloaded which may lead to dropping of file request by
the file server and subsequently increases the file request
completion time. Later when the file gets replicated on
most of the FS‘s, the average file request completion time
decreases and the overhead of security gets negligible. In
particular, when the CPU load is taken into consideration,
the average decrease in the file request completion time
achieved is about 22,04 ÷ 24,81 %, thus optimizing the
CPU load and minimizing the file request completion
time. The CPU load itself decreases by 4,25 ÷ 5,58 % and
the overhead of trust maintenance and security is
significantly minimized. This is attributable to the fact
that the CPU load based file replication mechanism
achieves a better spread of requests, and reduces the
likelihood of FS’s being idle during peak traffic scenario.
Results show that the average write latency with proposed
mechanism decreases by 6,12 % as compared to
Spinnaker writes and the average read latency is 3 times
better than Cassandra Quorum Read (CQR).

The proposed partial update propagation for
maintaining file consistency stands to gain up to 69,67 %
in terms of time required to update stale replicas. Finally,
a relationship between the formal aspects of the simple
security model and secure reliable file replication model
is established through process algebra. The stability and
reliability analysis ensures that the system will run in the
finite sequence of interaction and transitions. On the basis
of these properties, we have been able to build a secure
and reliable file replication model. This work is one of the
few that attempt to investigate the file access time with
security implications and carefully design a file
replication model that absorbs the overhead of security
measures while replicating a file.

7 References

[1] Resnick, P. et al. Reputation systems. // Commun. ACM.

43, (2000), pp. 45-48. DOI: 10.1145/355112.355122
[2] Casavant, T. L.; Kuhl, J. G. A Taxonomy of Scheduling in

General Purpose Distributed Computing Systems. // In T.L.
Casavantand M. Singhal, ed., Readings In Distributed
Computing Systems, IEEE Computer Society Press, 1994.

[3] Lan, Z.; Taylor, V. E.; Bryan, G. Dynamic Load Balancing
for Adaptive Mesh Refinement Application. // Proc. Int'l
Conf. Parallel Processing (ICPP), 2001.

[4] Bahi, J. M.;Contassot-Vivier, C.; Couturier,R. Dynamic
Load Balancing and Efficient Load Estimators for
Asynchronous Iterative Algorithms. // IEEE Trans. Parallel
and Distributed Systems, 16, 4(2005), pp.289-299. DOI:
10.1109/TPDS.2005.45

[5] Dhakal, S.; Hayat, M. M.; Pezoa, J. E.; Yang, C.; Bader,D
A. Dynamic Load Balancing in Distributed Systems in the
Presence of Delays: A Regeneration-Theory Approach. //
IEEE Trans. Parallel Distrib. Syst. 18, 4(2007), pp. 485-
497. DOI: 10.1109/TPDS.2007.1009

[6] Cortes, A.; Ripoll, A.; Senar, M.; Luque, E. Performance
Comparison of Dynamic Load-Balancing Strategies for
Distributed Computing. // Proc. 32nd Hawaii Conf. System
Sciences, 8, (1999), p. 8041. DOI: 10.1109/hicss.1999.773073

[7] Trehel, M.; Balayer, C.; Alloui, A. Modeling Load
Balancing Inside Groups Using Queuing Theory. // Proc.
10th Int'l Conf. Parallel and Distributed Computing System,
Oct. 1997.

[8] Kamvar, S.; Schlosser, M.; Garcia-Molina, H. The Eigen
Trust algorithm for reputation management in p2p

networks. // Proc. ACM World Wide Web Conf. (WWW
'03), Budapest, Hungary, May 2003, pp. 640-651.

[9] Wang, W.; Zeng, G.; Yuan, L. Ant-based reputation
evidence distribution in P2P networks. // GCC, pp. 129-
132. Fifth International Conference on Grid and
Cooperative Computing, IEEE Computer Society,
Changsha, Hunan, China (2006).

[10] Zhou, R.; Hwang, K. PowerTrust: a robust and scalable
reputation system for trusted peer-to-peer computing. //
IEEE Trans. Parallel Distrib. Syst., 18, 4(2007), pp. 460-
473. DOI: 10.1109/TPDS.2007.1021

[11] Bruhadeshwar, Bezawada; Kulkarni, S. S.; Liu, A. X.
Symmetric Key Approaches to Securing BGP—A Little Bit
Trust Is Enough. // In IEEE Transactions on Parallel and
Distributed Systems. 22, 9(2011), pp. 1536-1549. DOI:
10.1109/TPDS.2011.19

[12] Dou, W.; Wang, H.-M.; Jia, Y.; Zou, P. A
recommendation-based peer to peer trust model. // J. Softw.
15, 4(2004), pp. 571-583.

[13] Kyoung-Don, Kang; Can, Basaran. Adaptive Data
Replication for Load Sharing in a Sensor Data Center. //
Proceedings of the 2009 29th IEEE International
Conference on Distributed Computing Systems Workshops
(ICDCSW '09). IEEE Computer Society, Washington, DC,
USA, 20-25.

[14] Chen, R.; Chao, X.; Tang, L.; Hu, J.; Chen, Z. CuboidTrust:
a global reputation-based trust model in peer-to-peer
networks. // Fourth Int. Conf. on Autonomic and Trusted
Computing, ATC 2007, (LNCS, 4610), 2007, pp. 203-215.

[15] Zhou, R.; Hwang, K.; Cai, M. GossipTrust for fast
reputation aggregation in peer-to-peer networks. // IEEE
Trans. Knowl. Data Eng. 20, 9(2008), pp. 1282-1295. DOI:
10.1109/TKDE.2008.48

[16] Tian, H.; Zou, S.; Wang, W.; Cheng, S A group based
reputation system for P2P networks. // Third Int. Conf. on
Autonomic and Trusted Computing, ATC 2006, (LNCS,
4158), 2006, pp. 342-351.

[17] Yu, F., Zhang, H., Yan, F., Gao, S. An improved global
trust value computing method in P2P system. // Third Int.
Conf. on Autonomic and Trusted Computing, ATC 2006,
(LNCS, 4158), 2006, pp. 258-267. DOI:
10.1007/11839569_25

[18] Aberer, K.; Despotovic, Z. Managing trust in a peer-2-peer
information system. // presented at the Proceedings of the
tenth international conference on Information and
knowledge management, Atlanta, Georgia, USA, 2001. DOI:
10.1145/502585.502638

[19] Chen, M.; Singh, J. P. Computing and using reputations for
internet ratings. // presented at the Proceedings of the 3rd
ACM conference on Electronic Commerce, Tampa, Florida,
USA, 2001. DOI: 10.1145/501158.501175

[20] Dellarocas, C. Immunizing online reputation reporting
systems against unfair ratings and discriminatory behavior.
// presented at the Proceedings of the 2nd ACM conference
on Electronic commerce, Minneapolis, Minnesota, United
States, 2000. DOI: 10.1145/352871.352889

[21] Sen, S.; Sajja, N. Robustness of reputation-based trust:
boolean case. // presented at the Proceedings of the first
international joint conference on Autonomous agents and
multiagent systems: part 1, Bologna, Italy, 2002. DOI:
10.1145/544741.544808

[22] Buchegger, S.; Boudec, J. L. Coping with False
Accusations in Misbehavior Reputation Systems for Mobile
Ad-Hoc Networks. // EPFL tech. rep. IC/2003/31, EPFL-
DI-ICA, 2003.

[23] Josang, A. et al. A survey of trust and reputation systems
for online service provision. // Decis. Support Syst. 43,
(2007), pp. 618-644. DOI: 10.1016/j.dss.2005.05.019

A dynamic file replication based on CPU load and consistency mechanism in a trusted distributed environment M. Vardhan, D. S. Kushwaha

160 Technical Gazette 24, 1(2017), 147-160

[24] Langheinrich, M. When trust does not compute - the role of
trust in ubiquitous computing. // presented at the Proc. 5th
Int'l. Conf. Ubiquitous Comp, Seattle, WA, 2003.

[25] Blaze, M. et al. The keynote trust-management system V2,
RFC 2704 1999.

[26] Advance Encryption Standard:
http://www.ietf.org/rfc/rfc3962.txt, accessed on 28 Aug
2012.

[27] Rao, J.; Shekita, E. J.; Tata, S. Using Paxos to build a
scalable, consistent, and highly available datastore. // Proc.
VLDB Endow. 4, 4 (January 2011), pp. 243-254. DOI:
10.14778/1938545.1938549

[28] Hurley, R. T.; Soon Aun, Y. File migration and file
replication: a symbiotic relationship. // Parallel and
Distributed Systems, IEEE Transactions on. 7, (1996), pp.
578-586. DOI: 10.1109/71.506696

[29] Walsh, D.; Lyon, B.; Sager, G.; Chang, J. M.; Goldberg, D.;
Kleiman, S.; Lyon, T.; Sandberg, R.; Weiss, P. Overview of
the Sun Network Filesystem. // In Winter Usenix
Conference Proceedings, Dallas. 1985.

[30] Sandberg, R.; Goldberg, D.; Kleiman, S.; Walsh, D.; Lyon,
B. Design and Implementation of the Sun Network
Filesystem. // In Summer Usenix Conference Proceedings,
Portland. 1985.

[31] Tang, M.; Lee, B.-S.; Tang, X.; Yeo, C.-K. The impact of
data replication on job scheduling performance in the Data
Grid. // Future generation Computer Systems. 22, 3(2006),
pp. 254-268. DOI: 10.1016/j.future.2005.08.004

[32] Cao, J.; Spooner, D. P.; Jarvis, S. A.; Nudd, G. R. Grid load
balancing using intelligent agents. // Future Generation
Computer Systems. 21, 1(2005), pp. 135-149. DOI:
10.1016/j.future.2004.09.032

[33] Yan, K. Q. et al. A hybrid load balancing policy underlying
grid computing environment. // Journal of Computer
Standards & Interfaces. (2007), pp. 161-173.

[34] Payli, R. U. et al. DLB—a dynamic load balancing tool for
grid computing. // Scientific International Journal for
Parallel and Distributed Computing. 07, 02(2004).

[35] Yagoubi, Y. Slimani. Task load balancing for grid
computing. // Journal of Computer Science. 3, 3(2007), pp.
186-194. DOI: 10.3844/jcssp.2007.186.194

[36] Nehra, N.; Patel, R. B.; Bhatt, V. K. A framework for
distributed dynamic load balancing in heterogeneous
cluster. // Journal of Computer Science. (2007). DOI:
10.3844/jcssp.2007.14.24

[37] Cassandra. http://cassandra.apache.org.
[38] Nukarapu, Dharma; Tang, Bin; Wang, Liqiang; Lu,

Shiyong. Data Replication in Data Intensive Scientific
Applications with Performance Guarantee. // IEEE Trans.
Parallel Distrib. Syst. 22, 8(2011), pp. 1299-1306. DOI:
10.1109/TPDS.2010.207

[39] Rao, H.; Skarra, A. A transparent service for synchronized
replication across loosely-connected file systems. // in
Services in Distributed and Networked Environments,
1995., Second International Workshop on, 1995, pp. 110-
117.

[40] Domenici, A. et al. Relaxed Data Consistency with
CONStanza. // presented at the Proceedings of the Sixth
IEEE International Symposium on Cluster Computing and
the Grid, 2006. DOI: 10.1109/CCGRID.2006.84

[41] Guy, L. et al. Replica Management in Data Grids. //
Technical report, GGF5 Working Draft, Edinburgh,
Scotland, 2002.

[42] Yuzhong, S.; Zhiwei, X. Grid replication coherence
protocol," in Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, 2004,
pp. 232-239. DOI: 10.1109/ipdps.2004.1303278

[43] Huang, C. et al. Massive Data Oriented Replication
Algorithms for Consistency Maintenance in Data Grids. //
Computational Science – ICCS 2006. vol. 3991, V.

Alexandrov, et al., Eds., ed: Springer Berlin / Heidelberg,
2006, pp. 838-841.

[44] Dullmann, D.; Segal, B. Models for Replica
Synchronisation and Consistency in a Data Grid. //
presented at the Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing,
2001. DOI: 10.1109/HPDC.2001.945177

[45] Zomaya, A. Y. Parallel and distributed computing
handbook: McGraw-Hill Professional, 1996.

[46] Milner, R. Communication and Concurrency: Prentice Hall,
1989.

[47] Ghemawat, S.; Gobio, H.; Leung, S.-T. The google file
system. // SIGOPS Oper. Syst. Rev. 37, 5(2003), pp. 29-43.
DOI: 10.1145/1165389.945450

[48] Satyanarayanan, M. A Survey of Distributed File Systems.
In Annual Review of Computer Science, Annual Reviews,
Inc., Palo Alto, CA, 1989.

[49] Mishra, S.; Kushwaha, D. S.; Misra, A. K. Hybrid reliable
load balancing with mosix as middleware and its formal
verification using process algebra. // Future Gener. Comput.
Syst. 27, 5(2011), pp. 506-526. DOI:
10.1016/j.future.2010.12.007

[50] Baumgartner, K. M.; Wah, B. W. Computer Scheduling
Algorithms: Past, Present, and Future. // Information
Science. 57-58, (1991), pp. 319-345. DOI: 10.1016/0020-
0255(91)90085-9

Authors’ addresses

Manu Vardhan
Department of Computer Science and Engineering,
Motilal Nehru National Institute of Technology Allahabad
Allahabad - 211004, India
+918853038545
vardhanmanu@gmail.com

Dharmender Singh Kushwaha
Department of Computer Science and Engineering,
Motilal Nehru National Institute of Technology Allahabad
Allahabad - 211004, India
dsk@mnnit.ac.in

	Figure 4 Secure file transfer using AES technique

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

