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1. Introduction
Landslides are one of the most devastating natural 

hazards in mountainous terrains. Although the action 
of gravity is the primary driving force (Gorsevski et al. 
2006), landslides are also aggravated by human activi-
ties such as mining, agriculture, and forestry operations. 
With respect to forestry operations (timber harvesting 
and road construction activities), landslide often in-
creases with long-term consequences and has been re-
ported worldwide (e.g., Sessions et al. 1987, Duncan et 
al. 1987, Larsen and Parks 1997, Allison et al. 2004).

When damaging landslides occur on forestlands, 
it is not unusual to hear appeals for a broad ban on 
forestry operations. However, such a ban would be 
very costly to many forest landowners and it would 
impact their contributions to state and local econo-
mies. Therefore, apart from regular hazard reduction 
plans, landslide susceptibility (LS) assessments should 
also be developed and implemented for the safety in 
forestry operations. Landslide hazard reduction plans, 
which are generated as the site is handed over to a 
contractor, are important tools to ensure everybody 
understands how to deal with different levels of LS 
across the working site.

In the Caspian Forest in northern Iran, landslides 
and slope failures are a common problem because 
naturally formed slopes are disturbed by forestry op-
erations. History has shown that roads with improper 
terrain stability assessment in this area can cause sig-
nificant slope failures. This trend is expected to con-
tinue and may increase in the future; some estimates 
suggest that significant portions of the Caspian Forest 
are prone to mass wasting, and forestry operations in 
this forest can accelerate landslide rates and magni-
tudes (Jaafari et al. 2014). Therefore, understanding of 
LS is needed to evaluate forestry strategies including 
alternate choices of road location, choice of road stan-
dards, choice of transport mode, and understanding 
whether timber harvesting on and around steep slopes 
is reasonable.
The effectiveness of slope stability studies is appar-

ent from the high prediction results of LS assessment 
reports from models such as logistic regression (e.g., 
Pourghasemi et al. 2013), knowledge-based analytical 
hierarchy process (e.g., Pourghasemi et al. 2012, 
Pourghasemi et al. 2013), fuzzy logic (e.g., Pourghasemi 
et al. 2012, Akgun et al. 2012), artificial neural net-
works (ANNs) (e.g., Conforti et al. 2014), support vec-
tor machine (e.g., Pradhan 2013) and adaptive neuro-
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fuzzy interface system (ANFIS) (e.g., Vahidnia et al. 
2010, Sezer et al. 2011, Bui et al. 2012, Pradhan 2013). 
In the case of ANFIS, developed by Jang (1993), only 
minor applications of landslide-related studies have 
been reported (Bui et al. 2012). ANFIS is a multilayer 
feed-forward network, in which each node performs 
a particular function on incoming signals and has a set 
of parameters pertaining to this node (Jang 1993). AN-
FIS combines fuzzy logic and ANNs by using the 
mathematical properties of ANNs in tuning a rule-
based fuzzy inference system that approximates how 
the human brain processes information (Akib et al. 
2014). The ANFIS model is implemented as a first or-
der Takagi and Sugeno’s type fuzzy inference system 
(Takagi and Sugeno 1983) that consists of 2 fuzzy if-
then rules:

Rule 1: If x is A1 and y is B1 then f1 = p1x + q1y + r1	 (1)

Rule 2: If x is A2 and y is B2 then f2 = p2x + q2y + r2	 (2)

Where:
x, y	 are inputs
A, B	 corresponding term set
f	 output
p, q, r	 constant

The main objective of an ANFIS model is to deter-
mine the optimum values of the equivalent fuzzy in-
ference system parameters by applying a learning al-
gorithm using input–output datasets. The parameter 
optimization is done in such a way that during the 
training session, the error between the target and the 
actual output is minimized. Further information on 
ANFIS can be found in Jang (1993).
LS assessment involves handling, processing and 

interpreting a large amount of territorial data. Geo-
graphical Information Systems (GIS) are very useful 
in susceptibility assessment (Ayalew et al. 2005), be-
cause they allow frequent updating of the database 
related to spatial distribution of landslide events and 
their predisposing factors, as well as the susceptibility 
assessment procedures (Conforti et al. 2014). In recent 
years, the use of GIS-based approaches to study land-
slides has been frequently reported. These include 
GIS-based frequency ratio, index of entropy, and 
weights of evidence models (Jaafari et al. 2015a, Jaafari 
et al. 2014), and GIS-based multicriteria decision anal-
ysis (Feizizadeh and Blaschke 2013). Bui et al. (2012) 
used a GIS-based ANFIS model for LS mapping in 
Vietnam. Their results showed that ANFIS is a robust 
method for landslide modeling. Pradhan (2013) com-
pared the ability of the decision tree, support vector 
machine and ANFIS models to do LS mapping within 
a GIS environment. The results showed that all the 

models faired reasonably well, however, the success 
rate showed that ANFIS had better prediction capabil-
ity.
This paper addresses the slope failure (landslide) 

susceptibility assessment in the Caspian Forest using 
an ANFIS suitable to GIS-based analysis. The study 
tackles the main causal factors and delimits the most 
susceptible zones for slope failure as a useful tool for 
the engineers involved in road construction and tim-
ber harvesting. The susceptibility maps are also com-
pared with the known landslide locations according 
to the area under the curve (AUC) of receiver operator 
characteristic (ROC) curve to test the reliability and 
accuracy of the modeling approach. The susceptibility 
assessment presented here enables forest practitioners 
to avoid areas where forestry operations could cause 
slope failure, help identify where monitoring pro-
grams are necessary, and adopt appropriate policies 
to guide more efficient forestry operations.

2. Materials and methods

2.1 Study area
The study area is situated in Mazandaran Province, 

which shares a border with Golestan and Guilan Prov-
inces in the north of Iran. The study area has an ap-
proximate area of 52 km2 and is located between 
36º29’10˝ N and 36º32´50˝ N latitude and 51º40´60˝ E 
and 51º48´20˝ E longitude (Fig. 1).
The area is a part of the Educational and Experi-

mental Forest of Tarbiat Modares University in the 
Caspian Forest with slope variations between flat and 
>80°, and altitudes between 160 and 2190 m. Slope 
shapes vary but frequently represent convex elements. 
They mainly feature concave valleys. In this area, the 
stream network flows from the north-east to the west 
with a dendritic pattern. Due to proximity of the Cas-
pian Sea, the study area enjoys a humid and mild cli-
mate with average annual precipitation between 414 
to 879 mm. The average summer and winter tempera-
ture was 22.5 and 10ºC, respectively (Jaafari et al. 
2015b). The vegetation cover is quite continuous and 
is formed by deciduous trees.
According to the geologic map of the area, pre-

pared by Geological Survey of Iran (GSI), the major 
portion of the study area is underlain by dolomitic 
limestone. The Alborz fault is the most important fault 
in the area and is a reverse fault that follows the west-
east orientation and dip toward the south. This fault 
is active, and most earthquakes and landslides in Ma-
zandaran Province are the result of displacements and 
activity of this fault (Darvishzadeh 2004).



Spatial Prediction of Slope Failures in Support of Forestry Operations Safety (107–118)	 A. Jaafari et al.

Croat. j. for. eng. 38(2017)1	 109

2.2 Spatial database

2.2.1 Landslide inventory map
The landslide inventory map of the study area was 

compiled by inheriting the landslide locations from 
interpretation of aerial photographs and field-based 
inspections. Aerial photographs show that historical 
landslides could be mapped via breaks in the forest 
canopy, denuded vegetation on the slope, bare soil, 
and other typical geomorphic characteristics (Pradhan 
2013, Jaafari et al. 2014). Given the abundant over and 
understory vegetation in the study area, multiple field 
surveys and observations were conducted to produce 
a more detailed and reliable landslide inventory map 
(Jaafari et al. 2014). Shallow landslides were dominant, 
but large deep-seated landslides were also observed. 
In recent years, 103 landslides were detected and 
mapped within 52 km2 to assemble a database to eval-
uate the spatial distribution of slope failures in the 
study area (Fig. 1).

2.2.2 Slope failure (landslide) conditioning factors
The recognition and mapping of an appropriate 

set of instability factors related to slope failures re-
quires previous information on the main causes of 
landslides (Guzzetti et al. 1999). In this study, the 

Fig. 1 Location of study area with landslide inventory map

Fig. 2 General structure of ANFIS
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landslide conditioning factors (LCFs) were selected 
among the most commonly used in the literature to 
assess slope failures susceptibility; in particular, the 
results of field surveys suggested that slope degree, 
slope aspect, altitude, plan curvature, topographic 
wetness index (TWI), stream power index (SPI), sed-
iment transport index (STI), lithology, rainfall, dis-

tance to faults, distance to streams, normalized dif-
ference vegetation index (NDVI), forest canopy, 
forest plant community, and timber volume match 
very well with the landslide distribution in the study 
area. The calculation and significance of these factors 
in landsliding has explicitly been presented in 
Pourghasemi et al. (2013), Jaafari et al. (2014), Jaafari 

Fig. 3 Geo-environmental parameter maps of the study area: slope degree, slope aspect, altitude, plan curvature, topographic wetness index, 
stream power index, sediment transport index, lithology, distances to faults, distances to streams, rainfall, normalized difference vegetation 
index, plant community, timber volume, and canopy



Spatial Prediction of Slope Failures in Support of Forestry Operations Safety (107–118)	 A. Jaafari et al.

Croat. j. for. eng. 38(2017)1	 111

et al. (2015a), and Wang et al. (2016). Fig. 3 shows the 
LCFs used in this study.
Slope degree, slope aspect, altitude, plan curvature, 

TWI, SPI, and STI layers were created from a 20 m 
Digital Elevation Model (DEM) using ArcGIS and 
SAGA GIS. The geological map was prepared by GSI 
on a 1:100,000 scale. Distance to faults and distance to 
streams were computed using spatial analyst tool of 
ArcGIS. The rainfall map was prepared using the 
mean annual precipitation data from the meteorolog-
ical stations for the study area over the last 20 years 
(Jaafari et al. 2014). Extensive investigations by the 
Tarbiat Modares University on the study area have 
been the major source of data associated with NDVI, 
forest plant community, forest canopy, and timber vol-
ume used in the present study. As the raster dataset 
has enriched the capability for spatial analysis, all fac-
tor layers were converted into raster format. Given the 
extent of the study area and the landslide distribution, 

grid cells having a spatial resolution of 20×20 m (Bui 
et al. 2012, Jaafari et al. 2014, Jaafari et al. 2015a) were 
selected as the mapping unit. This was small enough 
to capture the spatial characteristics of landslide sus-
ceptibility and large enough to reduce computing 
complexity.
A series of tests was also performed considering 

different input datasets from the LCFs. The purpose 
of selecting various datasets was to explore the influ-
ence of parameter enrichments on the performance of 
the ANFIS models, and the importance of the added 
parameter on the landslide assessments (Pradhan 
2013). Table 1 shows that dataset_1 includes a maxi-
mum number of LCFs, and it continues to narrow 
down to dataset_5.
The idea behind this kind of grouping came from 

the nature and the availability of data and resources 
of each LCF. Some factors, such as forest canopy, tim-
ber volume, and plant community, are costly to collect 
across forestlands in Iran due to the landscape hetero-
geneity and unavailability of supporting tools such as 
accurate high-return LiDAR data for all areas and fre-
quent changes over a short time period due to forestry 
operations. Thus, they were only included in datas-
et_1. In contrast, the preparatory factors (e.g. slope, 
aspect, altitude and lithology) that are not expected to 
change significantly over a short time period (e.g. 
50 years) are very easy to quantify using fairly simple 
GIS operations. These factors were, therefore, consid-
ered for inclusion in all datasets. The inclusion of other 
factors in different datasets also follows this instruction.

2.3 Training and validation dataset
In landslide modeling, the landslide inventory 

map needs to be split into two subsets for training and 
validation. Without splitting, it would not be possible 
to validate the results (Jaafari et al. 2014). When split-
ting data, there is no rule of thumb for the relative 
sizes of the two subsets (Pradhan 2013). Here, the in-
ventory map was randomly divided into two datasets. 
Part_1 that contains 80% of the data (82 landslides) 
was used in the training phase of the five ANFIS 
models. Part_2 is a validation dataset with the remain-
ing 20% of the data (21 landslides) used to validate the 
models and to estimate their accuracy. All 82 landslide 
locations in the part_1 dataset denote the presence of 
landslides and were assigned to a value of 1. The same 
number of points denoting the absence of landslide 
were randomly sampled from the landslide free area 
and assigned a value of 0. Values for the 15 LCFs were 
then extracted to build a training dataset (Bui et al. 
2012, Pradhan 2013). This dataset contains a total of 
164 points, with one target variable denoting the land-
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slide presence/absence and the 15 LCFs. This dataset 
was further randomly partitioned into two subsets 
including: training and checking to develop the ANFIS 
models. The training set was used to adjust the con-
nections weights, membership functions and model 
parameters. The checking set was used to check the 
performance of the model through the training pro-
cess and to stop the training to avoid over fitting. This 
method of data division is recommended to control 
over fitting of the models (Jang et al. 1997). In this 
study, approximately 70% (116 points) of the extracted 
database was randomly selected as the training data-
set, and the remaining 30% (48 points) as the checking 
dataset. The commercially available Neuframe soft-
ware (Neusciences 2000) was used to select the datas-
ets at random.
Due to the different scales of the input variables, 

and in order to increase the speed and accuracy of data 
processing, input data need to be normalized from 0 
and 1 before using them in the ANFIS model. For this 
purpose, the extracted values from LCFs were normal-
ized using the normalization formula as follows:

	 i min
norm

max min

X X
X

X X
−

=
−

		 (3)

Where:
Xi	 data that should be normalized
Xmax, Xmin	 �the maximum and minimum value of orig-

inal data, respectively
Xnorm	 normalized value of Xi.

2.4 Development the ANFIS models for the 
spatial prediction of slope failure
In this study, a type_3 ANFIS model (Takagi and 

Sugeno 1983) was used to produce susceptibility maps 
of the study area. In this type of ANFIS model, the 
output of each rule is a linear combination of input 
variables added by a constant term (Jang 1993). The 
final output is the weighted average of each rule’s out-
put (Buragohain and Mahanta 2008). The general 
structure of a type_3 ANFIS model with two inputs of 
x1 and x2, and one output of y is shown in Fig. 2 (Eren-
turk 2009). From this figure, it can be seen that the 
model contains five layers: the first layer actualizes the 
fuzziness of inputs, the second layer calculates the fir-
ing strength of each rule, the third layer normalizes 
the firing strengths, the fourth layer determines the 
consequent parameters of the rule, and the fifth layer 
computes the output of the fuzzy system by summing 
the outputs of the fourth layer.
A total of five ANFIS models were constructed to 

produce LS maps of the study area. To implement AN-
FIS, MATLAB programming language version R2011a 

was used. GENFIS1 and GENFIS2 functions are two 
available methods that have been widely used to gen-
erate the initial fuzzy inference system (FIS). The 
GENFIS1 generates an initial Sugeno-type FIS for AN-
FIS training using a grid partition, and GENFIS2 uses 
subtractive clustering to generate the initial Sugeno-
type FIS. As proposed by Chiu (1997), due to the large 
number of input variables considered in this study, the 
GENFIS2 function was used to generate the initial FIS 
for ANFIS training by first applying subtractive clus-
tering on the data. GENFIS2 accomplished this by ex-
tracting a set of rules that models the data behavior.
After constructing the Sugeno-type FIS for the five 

ANFIS models, each model was trained by consider-
ing 200 epochs. Finally, the output data obtained from 
the models were converted to a GIS grid data to create 
the slope failure susceptibility maps.

2.5 Validation and comparison of susceptibility 
maps
Prediction modeling does not have a scientific sig-

nificance without computing the validity of the results. 
Here, the susceptibility assessment results were tested 
using known landslide locations. Testing was per-
formed by comparing the known landslide location 
data with the landslide susceptibility map. To validate 
the results of the susceptibility assessment, the AUC 
of the ROC curve was used (Bui et al. 2012, Pourghasemi 
et al. 2012, Pradhan 2013, Pourghasemi et al. 2013, Jaaf-
ari et al. 2014, Jaafari et al. 2015a, Ezzati et al. 2016). 
The ROC curve is a graphical representation of the 
trade-off between the false-negative and false-positive 
rates for every possible cutoff value. By tradition, the 
plot shows the false-positive rate (FPR) on the X axis 
(Eq. 4) and the true-positive rate (TPR) on the Y axis 
(Eq. 5).

	 1 TNX FPR
TN FP

 = = −  + 
	 (4)

	 TPX TPR
TP FN

 = =  + 
	 (5)

Where:
TN (true negative) and TP (true positive) are the 

number of pixels that are correctly classified, whereas 
FP (false positive) and FN (false negative) are the num-
bers of pixels erroneously classified.
The area under the ROC curve (AUC) character-

izes the quality of a forecast system by describing the 
system’s ability to anticipate the correct occurrence or 
non-occurrence of pre-defined »events« (Pourghasemi 
et al. 2013). The best method has a curve with the larg-
est AUC; the AUC varies between 0 and 1, where 1 
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indicates perfect prediction and, 0.5 indicates random 
predictions. Larger ROC value suggests better the 
compatibility between dependent and independent 
variables. The quantitative-qualitative relationship 

between AUC and prediction accuracy can be classi-
fied as follows: 0.9–1, excellent; 0.8–0.9, very good; 
0.7–0.8, good; 0.6–0.7, moderate; and 0.5–0.6, poor 
(Hosmer et al. 2013).

Fig. 4 Susceptibility map produced by: (a) model_1, (b) model_2, (c) mode_3, (d) model_4, (e) model_5
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3. Results
The susceptibility maps produced by the five AN-

FIS models are shown in Fig. 4a–e. In every map, the 
susceptibility classes of I, II, III, IV and V indicate the 
likelihood of slope failure (landslide) initiation, rang-
ing from very low to very high susceptibility. A de-

tailed interpretation of susceptibility classification is 
presented in Table 2.
This shows that each susceptibility class provides 

a relative ranking of the likelihood of a slope failure 
following road construction and/or timber harvesting. 
For example, the first class implies very low suscepti-
bility to slope failure and the area characterized by this 
class is safe for forestry operations.
The results of validation of the five ANFIS models 

using ROC-AUC are shown in Figs. 5 and 6. The re-
sults show that all the models have good prediction 

Fig. 5 Prediction rate curves for the susceptibility maps produced 
in this study

Fig. 6 Success rate curves for the susceptibility maps produced in 
this study

Fig. 7 The landslide susceptibility classes delimited by the five 
ANFIS models

Table 2 Detailed slope failure susceptibility classification

Interpretation
Susceptibility 

class

Safe

Very low likelihood of failures following road construction or 
timber harvesting

I

Low instability

Normal road construction and timber harvesting will not 
significantly decrease terrain stability

II

Moderate likelihood of failures following road construction or 
timber harvesting

Minor failures expected in road cuts
III

High likelihood of failures following road construction or 
timber harvesting

IV

Very high likelihood of failures following road construction or 
timber harvesting

V
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capabilities, with the best results of the model_5 
(AUCsuccess rate=86.19%, AUCprediction rate=83.74%), 
followed by the model_4 (AUCsuccess rate=82.23%, 
AUCprediction rate=75.81%).
In addition, a comparison between the five suscep-

tibility classes delimited by the different ANFIS mod-
els is presented in Fig. 7. The result suggests that the 
moderate, high and very high susceptibility classes 
cover more than 60% of the study area.

4. Discussion

4.1 Landslide susceptibility mapping
Modeling LS across a forestland is challenging be-

cause of geological, topographical and environmental 
complexities. Although various methods for LS assess-
ment have been proposed, the evaluation of predictive 
ability of these methods in forestlands still lags. This 
study evaluated the predictive ability of ANFIS for 
modeling LS across a forestland subjected to forestry 
operations. Five ANFIS models developed herein offer 
the possibility to compare the distribution landslide of 
hazard with different sets of LCFs. When the ROC 
curves of these five models were considered together, 
their overall performances were close to each other. 
Performance validation indicated that the most suc-
cessful ANFIS model is model_5, which has much 
fewer attributes than models 1–4. Therefore, it can be 
concluded that the altitude, slope angle, aspect, and 
lithology are most suitable LCFs for LS assessment in 
the study area. Moreover, these results suggest that the 
other LCFs are a possible source of bias because they 
decreased the prediction accuracy. There is always a 
trade-off between the quality of the data, the resourc-
es involved, and the reliability of the LS assessment. 
To achieve the best quality relation, it is very important 
to invest in landslide inventory and LCFs databases 
(van Westen et al. 2008).
Selection of LCFs is crucial for the quality of LS 

models (Irigaray et al. 2007). Although some methods, 
such as linear correlation, Kolmogorov–Smirnov test 
and Genetic Algorithm (Irigaray et al. 2007, Kavzoglu, 
et al. 2015) have been suggested to support the optimal 
selection of LCFs, the standard guideline is still de-
bated. According to Remondo et al. (2003a, 2003b), the 
best LS models can be produced only with the DEM-
derived factors. They concluded that some of the 
LCFs, including lithology and land cover (vegetation), 
improve predictions only slightly. Other factors, such 
as regolith thickness, do not improve the predictions 
at all probably because the variables are not repre-
sented accurately enough. However, the different re-

sults reported by Sezer et al. (2011) and Pradhan (2013) 
suggest that the increase in the number of LCFs has a 
positive impact on the overall prediction performance 
of LS assessment using ANFIS. The results are quite 
different according to various researchers and study 
areas. This is because there is no common guiding 
principle for selecting LCFs (Ayalew et al. 2005). They 
are usually selected based on the landslide types, the 
failure mechanisms, the map scale of analysis, the 
characteristics of the study area, and data availability 
(Glade and Crozier 2005).

4.2 Landslide susceptibility maps for the safety 
in forestry operations
As pointed out by van Westen et al. (2006), the sus-

ceptibility classes categorized with such terms as »very 
high«, »high«, »moderate«, »low« and »very low« risk 
should be defined based on the experience of the ex-
perts with the support of sufficient models and depend 
on the likelihood that a slide will occur and the conse-
quences that such an event would have for the elements 
at risk. In this study, each susceptibility map was as-
signed a set of symbol (I to V) to indicate the likelihood 
of slope failure (landslide) initiation. A detailed inter-
pretation of susceptibility classification for the relative 
ranking of the likelihood of slope failures following 
road construction and/or timber harvesting has also 
been provided. This interpretation of susceptibility 
classes can be considered as a safety plan by which 
safety is managed on the area, as this plan indicates that 
each part of the area poses certain risks to road con-
struction and timber harvesting.
It is worth pointing out that the assignment and 

interpretation of the susceptibility classes are subjec-
tive and specifically reflect forest management consid-
erations applied by managers who make decisions for 
management purposes. Therefore, contractors in-
volved in forestry operations must have their own 
operational safety plans. These plans, which must be 
updated by contractors on a regular basis, should in-
clude safety and health policy, responsibilities, risk 
assessments and controls (Ryan et al. 2004). Moreover, 
the nature of the forestry operations implies that there 
can often be several different operational works close 
to each other. Therefore, other interpretations can also 
be added to the susceptibility symbol to support each 
part of the forestry operations. These may include soil 
erosion potential, risk of sediment delivery to streams, 
and the potential for landslide debris to enter streams 
(BCMOF and BCMOE 1999, Schwab and Geertsema 
2010).
Due to the dynamic nature of forestry operations 

(e.g. a road with steep cuts is constructed in a slope 
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that was considered to be of low susceptibility), the LS 
maps are subject to change. The single most important 
contributor to long-term effectiveness of the produced 
LS maps is the establishment of monitoring systems 
to observe the changes and note when and how these 
changes occur. However, given that a monitoring pro-
gram within a mountain forest is difficult and costly, 
the results of this study suggest that it be limited to the 
highly susceptible zones identified here. Moreover, 
monitoring programs can improve the confidence in 
predictive ability of the ANFIS models developed 
here. These investigations were beyond the situation 
and scope of this study, but they are important com-
ponents that benefit more efficient planning of for-
estry operations.

5. Conclusion
This study analyzed the potential of slope failure 

in a mountain forest using ANFIS models within a GIS 
environment. The outcome of GIS-based ANFIS ap-
plication was a set of susceptibility maps, that could 
be used to predict the stability of slopes from 15 basic 
factors including slope degree, slope aspect, altitude, 
plan curvature, TWI, SPI, STI, lithology, rainfall, dis-
tance to faults, distance to streams, NDVI, forest can-
opy, forest plant community, and timber volume. The 
results of this study suggest that all of the five ANFIS 
models have performed reasonably well with AUC 
values over 70%. Therefore, they can be used to de-
velop prudent hazard mitigation plans for safe for-
estry operations. However, the best model can only be 
produced with altitude, slope angle, aspect, and lithol-
ogy. Forest engineers can tailor the use of these models 
based on their circumstances.
The susceptibility assessment of slope failure is an 

essential resource of knowledge of the study area for 
its capacity to support safe forestry operations. Unfor-
tunately, such studies are far from common in the 
mountainous forestlands subjected to forestry opera-
tions. This makes comparative analyses difficult. Thus, 
it is important to apply the method proposed here to 
different environmental settings.
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