
KoG•20–2016 B. Odehnal: On Algebraic Minimal Surfaces

Original scientific paper
Accepted 9. 12. 2016.

BORIS ODEHNAL

On Algebraic Minimal Surfaces

On Algebraic Minimal Surfaces

ABSTRACT

We give an overiew on various constructions of algebraic
minimal surfaces in Euclidean three-space. Especially low
degree examples shall be studied. For that purpose, we
use the different representations given by WEIERSTRASS

including the so-called Björling formula. An old result
by LIE dealing with the evolutes of space curves can
also be used to construct minimal surfaces with rational
parametrizations. We describe a one-parameter family of
rational minimal surfaces which touch orthogonal hyper-
bolic paraboloids along their curves of constant Gaussian
curvature. Furthermore, we find a new class of algebraic
and even rationally parametrizable minimal surfaces and
call them cycloidal minimal surfaces.
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O algebarskim minimalnim plohama

SAŽETAK

Dajemo pregled različitih konstrukcija algebarskih mini-
malnih ploha u euklidskom trodimenzionalnom prostoru.
Posebice se promatraju primjeri niskog stupnja. U tu
svrhu koristimo različite prikaze koje daje WEIERSTRASS,
uključujući takozvanu Björlingovu formulu. LIJEV stari
rezultat pokazuje da se evolute prostornih krivulja mogu
koristiti za konstruiranje minimalnih ploha s racional-
nim parametrizacijama. Mi opisujemo jednoparametarsku
familiju racionalnih minimalnih ploha koje diraju ortogo-
nalne hiperboličke paraboloide duž njihovih krivulja s kon-
stantnom Gaussovom zakrivljenošću. Štovǐse, nalazimo
novu klasu algebarskih i čak racionalno parametrizirajućih
minimalnih ploha i nazivamo ih cikloidnim minimalnim plo-
hama.

Ključne riječi: minimalna ploha, algebarska ploha,
racionalna parametrizacija, polinomialna parametrizacija,
meromorfična funkcija, izotropna krivulja, Weierstraßov
prikaz, Björlingova formula, evoluta prostorne krivulje,
krivulja konstantnog nagiba

1 Introduction

Minimal surfaces have been studied from many different
points of view. Boundary value problems, uniqueness re-
sults, stability, and topological problems related to mini-
mal surfaces have been and are still topics for investiga-
tions. There are only a few results on algebraic minimal
surfaces. Most of them were published in the second half
of the nine-teenth century, i.e., more or less in the begin-
ning of modern differential geometry. Only a few pub-
lications by LIE [30] and WEIERSTRASS [50] give gen-
eral results on the generation and the properties of alge-
braic minimal surfaces. This may be due to the fact that
computer algebra systems were not available and classi-
cal algebraic geometry gained less attention at that time.
Many of the computations are hard work even nowadays
and synthetic reasoning is somewhat uncertain. Besides
some general work on minimal surfaces like [5, 8, 43, 44],
there were some isolated results on algebraic minimal sur-
faces concerned with special tasks: minimal surfaces on
certain scrolls [22, 35, 47, 49, 53], minimal surfaces re-

lated to congruences of lines [25, 28, 34, 38] minimal
surfaces with a given geodesic [23], minimal surfaces of
a certain degree, class, or genus (whether real or not)
[1, 10, 11, 19, 20, 21, 31, 41, 42, 48], minimal surfaces
touching surfaces along special curves [22], minimal sur-
faces showing special symmetries [14, 15, 16, 17], or min-
imal surface which allow isometries to special classes of
surfaces [4, 6, 18, 52].
The famous algebraic minimal surface by ENNEPER which
is of degree 9 and class 6 attracted intensive investiga-
tion. Consequently, researchers have found different gen-
erations of this surface: as the envelope of the planes of
symmetry of all points on the pair of focal parabolas

p1(u) = ( 4
3 u,0, 2

3 u2− 1
3 ),

p2(v) = (0, 4
3 v, 1

3 −
2
3 v2)

or as the unique minimal surface (22) through the rational
curve

γ(t) =
(
t− 1

3 t3, t2,0
)
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having γ’s normals for its surface normals. Since γ is pla-
nar, the surface normals of the uniquely defined minimal
surface form a developable surface (to be precise, a plane),
and thus, γ is a planar geodesic on ENNEPER’s minimal
surface. The plane of γ is a plane of symmetry of EN-
NEPER’s surface. This is a manifestation of a more general
result by HENNEBERG, see [21, 24, 30, 33]:

Theorem 1. A minimal surface M carries a planar and
not straight curve c as a geodesic. If M is algebraic, then
the involutes of c have to be algebraic or c is the evolute of
a planar algebraic curve.

We shall make use of this fact later in Sec. 7 when we con-
struct cycloidal minimal surfaces.
A further result due to HENNEBERG (see [21, 24, 30, 33])
is the following

Theorem 2. Let a minimal surface M be tangent to a
cylinder Z. If M is algebraic, then the orthogonal cross-
section c of Z is the evolute of an algebraic curve. If c
is the evolute of a transcendental curve, then M is also
transcendental.

However, according to a theorem by RIBAUCOUR, EN-
NEPER’s surface, like many other minimal surfaces, ap-
pears as the central envelope of isotropic congruences of
lines, see [25, 28, 34, 38, 45].
Among the real algebraic minimal surfaces, ENNEPER’s
surface has lowest possible degree 9. But there are alge-
braic minimal surfaces that can be found in [12, 13, 21, 30]
which are of degree 3 and 4 having the equations

G : (x− iy)4 +3(x2 + y2 + z2) = 0

and

L : 2(x−iy)3−6i(x−iy)z−3(x+iy)=0

with respect to a properly chosen Cartesian coordinate sys-
tem. The surfaces G and L have no real equation (polyno-
mial equation with real coefficients exclusively) and do not
carry a single real point.
G is usually called GEISER’s surface and L is named af-
ter LIE. GEISER’s minimal surface is a minimal surface of
revolution with an isotropic axis. Obviously, it is of degree
4 and some computation tells us that the equation of its
dual surface G?, i.e., the surface of its tangent planes has
the equation

G? : 9w2
0(w1−iw2)

4−(w2
1+w2

2+w2
3)

3=0

which is, therefore, of degree 6, and thus, G is of class 6.
Whereas LIE’s surface is of degree 3 and also of class 3
since the implicit equation of the dual surface L? reads

L?: 27w0(w2+iw1)
2+9i(w2

1+w2
2)w3−4iw3

3=0.

GEISER’s surface meets the ideal plane in the same ideal
line as LIE’s surface does. The ideal line x− iy = 0 is a
4-fold line on G and a 3-fold line on L . It is remark-
able that complex (non-real) algebraic minimal surfaces
have been undergoing detailed investigations, see, e.g.,
[1, 10, 12, 13, 48].
In [30], LIE gives a result dealing with the ideal curves of
algebraic minimal surfaces:

Theorem 3. The intersection of an algebraic minimal sur-
face with the plane at infinity consists of finitely many lines.

Some of the ideal lines on a minimal surface may have
higher multiplicities and pairs of complex conjugate lines
can also occcur.
For the coordinatization of ideal points and lines we refer
to Sec. 2.
The results on degrees, ranks, and classes of real algebraic
minimal surfaces differ from the results on complex alge-
braic minimal surfaces. For real algebraic minimal sur-
faces we have (see [30])

Theorem 4. The sum of the degree and class of a real al-
gebraic minimal surface is at least 15.

The two aforementioned examples of complex minimal
surfaces obviously show a different behaviour.
It is well-kown (cf. [30, 33]) that 5 is the lowest possible
class of a real algebraic minimal surface. HENNEBERG’s
surface with the parametrization

f (u,v) =

 c3uS3v−3cuSv

s3uS3v +3suSv

3c2uC2v

 (1)

is an example for that, since the implicit equation of its
dual surface equals

u0(u2
1 +u2

2)
2 ++u3(u2

1−u2
2)(3u2

1+3u2
2+2u2

3)=0. (2)

The algebraic degree of HENNEBERG’s surface equals 15.
ENNEPER’s surface is the only known example of a mini-
mal surface where the degree and class sum up to 15: the
degree equals 9 (cf. (23)), the class equals 6 (cf. (24)).
LIE gives also results on the class of an algebraic minimal
surface:

Theorem 5. The class of an orientable algebraic minimal
surface is always even.

HENNEBERG’s surface is of class 5 and non-orientable.
The rational minimal Möbius strip given in [35] is of class
15.
In Sec. 2, we introduce coordinates and define all necessary
abbreviations. Then, the different parametrization tech-
niques for minimal surfaces are collected. Proofs for these
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can be found in most of the standard monographs on mini-
mal surfaces or differential geometry such as [2, 33, 46].
Sec. 3 is dedicated to ENNEPER’s surface and its natu-
ral generalizations. In Sec. 4, BOUR’s minimal surfaces
gain attention. We show different ways to find these min-
imal surfaces and give estimates on the algebraic degrees
of these surfaces. Then, in Sec. 5, RICHMOND’s surface
appears as one in a one-parameter family. Sec. 6 gives ad-
ditional and apparently new results on a well-known kind
of minimal surface tangent to a hyperbolic paraboloid. Sec.
7 deals with an apparently new class of minimal surfaces.
The fact that cycloids (cycloidal curves with cusps) have
rational normals and are algebraic as well as their evolutes
and involutes are (see [32, 51, 55, 56]), allows us to con-
struct a family of algebraic minimal surfaces that admit
even rational parametrizations. We debunk their relations
to curves of constant slope on quadrics of revolution.
The reasons for the interest in algebraic and, espe-
cially in rational minimal surfaces are manifold: Rational
parametrizations can be converted into a geometrically fa-
vorable representation, namely into the Bézier represen-
tation. Moreover, rational parametrizations can easily be
handled with computer algebra systems. This allows the
computation of implicit equations of surfaces and their du-
als and makes them accessible for further study which is
then no longer restricted to the purely differential geomet-
ric approach. The behaviour at infinity as well as other
algebraic properties can be studied.
We have to confess that implicit equations of algebraic
minimal surfaces will hardly show up in this paper be-
cause they can be really long. The algebraic equation of
a d-dimensional algebraic variety of degree D has at most

q =
1

(d +1)!

d+1

∏
k=1

(D+ k)

coefficients. In the case of the classical low degree exam-
ples by ENNEPER, RICHMOND, HENNEBERG, and BOUR
with degrees 9, 12, 15, and 16 we could expect up to 220,
455, 816, and 969 terms provided that no special coordi-
nate system is chosen and that the equations are expanded
in full length.

2 Prerequisites

Since we are dealing with minimal surfaces in the Eu-
clidean three-space, Cartesian coordinates (x,y,z) are suf-
ficient. Vectors and matrices are written in bold characters.
The canonical innerproduct of two vectors u,v ∈ R3 is de-
noted by 〈u,v〉. The Euclidean length ‖v‖ of a vector v is
then given by ‖v‖=

√
〈v,v〉. The induced crossproduct of

two vectors u,v ∈ R3 is the vector u×v ∈ R3.

In the following, we shall use the abbreviations

cx := cosx, sx := sinx, . . .

Cx := coshx, Sx := sinhx, . . .

for the trigonometric and hyperbolic functions whenever
there is not enough space for the equations.
Sometimes, we deal with ideal points, lines, and the ideal
plane. Then, we shall homogenize the underlying Carte-
sian coordinates by

x→ X1X−1
0 , y→ X2X−1

0 , z→ X3X−1
0 .

When we compute the intersection of a (minimal) surface
with the ideal plane (plane at infinity), then we let X0 = 0
and obtain the equation of a curve (or, more generally
speaking, a cycle which is the union of finitely many al-
gebraic curves) in terms of the homogeneous coordinates
(X1 : X2 : X3) in the ideal plane. However, we shall not
write this down in detail and define coordinates in the ideal
plane by simply setting X1 = x, X2 = y, and X3 = z. It is
sufficient to do so, because substituting X0 = 0 into the ho-
mogeneous equation returns all monomials of the highest
degree of the inhomogeneous equation.
In the following, we collect some results and representa-
tions of minimal surfaces that will be useful for the gener-
ation of algebraic minimal surfaces. These representations
are well-known and proofs can be found in the literature,
see, e.g., [2, 27, 30, 33, 36, 46].

2.1 BJÖRLING’s problem

Let γ : I ⊂R→R3 be a smooth curve and let ν : I→ S2 be
a smooth unit vector field along γ with 〈γ′,ν〉 ≡ 0, i.e., ν is
perpendicular to γ in the entire interval I. Both are consid-
ered to have complex continuations. A real parametriza-
tion f : D⊂R2→R3 of the uniquely defined real minimal
surface M through γ with its normals along γ parallel to ν

is then given by

f(u,v)=Re

γ(t)−i
t∫

t0

ν(θ)×dγ(θ)

. (3)

We call the pair (γ,ν) a scroll and it is the envelope of the
one-parameter family of planes 〈ν(t),x− γ(t)〉 = 0. The
curve γ shall henceforth be called the spine curve of the
scroll.
Since γ and ν are considered to have complex continua-
tions, the parameter t in (3) is assumed to be a complex
parameter. Subsequent to the integration, t is replaced by
t = u+ iv and finally the real part of the vector function in
C3 is extracted. Formula (3) is called Björling formula, see
[2, 27, 33, 36], and was first published by H.A. SCHWARZ
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in [44]. Actually, the Björling formula is just the solution
of a problem posed by E.G. BJÖRLING in 1844.

The Björling formula can be a starting point for the con-
struction of algebraic minimal surfaces, but it has a big
disadvantage like all other integral formulae: Antideriva-
tives of rational or algebraic functions may sometimes be
not rational or even algebraic.

A remarkable application of the Björling formula (3) may
be its application to non planar curves. The following re-
sult is due to LIE, see [30]:

Theorem 6. The minimal surface that touches the evolute
c? of an algebraic space curve c exactly at the centers of
curvature of c is algebraic.

However, the algebraic degree of the surface generated ac-
cording Thm. 6 may not only be high, it may even be hard
to determine.

As an application of Thm. 6, we can give the following low
degree example: We choose the PH-curve (for details and
definition see [9])

c(t) = (6t,6t2,4t3), t ∈ R. (4)

Its evolute is then parametrized by

c?(t) =

 −12t3

3−12t4 +6t2

16t3 +6t

 , t ∈ R (5)

and the normals ν(t) are λc1 = (1,2t,2t2) with λ= 1+2t2.
The requirements for the application of the Björling for-
mula are met since 〈ċ?,c1〉 = 0. A real parametrization of
the real minimal surface on the scroll (γ,ν) = (c?,c1) is
found with (3) and reads

f(u,v)=12

 4uv(u2−v2)
6u2v2−u4−v4

0

+

+12

 3uv2−u3

v3−3u2v
4
3 u3−4uv2

+6

 2uv
u2−v2−v+1

2
u(2v+1)

. (6)

Figure 1 shows the minimal surface parametrized by (6)
together with the curves c and c?.

Figure 1: The minimal surface on the scroll (c?,c1) is deri-
ved from the evolute c? of a cubic PH-curve c.

Implicitization shows that the surface (6) is of degree 16
and the intersection with the ideal plane consists of the
ideal line of all planes parallel to x = 0 with multiplicity
16. Surprisingly, the class of this minimal surface equals
8 as we can see from the implicit equation of the dual sur-
face:

3ω
2
Ω

2+(4w0w2−15w2
1)ωΩ

2−2Ωω
3−ω

4

+4w2
1(3w2

1−4w02w2)Ω
2 +4w5

1(2w1+9w3)Ω

+w1(4w0w2(2w1+3w3)−9w2
1(5w1−6w3))Ωω (7)

+2w1(w0w2(w1+3w3)−6w2
1(w1+w3))ω

2

+(39w2
1+18w1w3−2w0w2)Ωω

2

+(12w2
1+6w1w3−w2

0−2w0w2)ω
3 +w5

1(w1+6w3)ω=0

where ω := w2
1 +w2

2 and Ω := w2
1 +w2

2 +w2
3.

We can summarize this in

Corollary 1. The minimal surface on the scroll (c?,c1)
with c? given in (5) (evolute of the polynomial cubic PH-
curve c from (4)) and with c1 being c’s unit tangent vector
field is a rational minimal surface of degree 16 and class
8.

The cubic curve (4) as well as its evolute (5) are non pla-
nar curves. In contrast to that, we can choose the planar
PH-cubic (semi-cubi parabola)

γ(t) = (4t3,0,6t2 +3) (8)

that lies in the xz-plane. Together with its unit normals

ν(t) =
1√

1+ t2
(−1,0, t) (9)
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a scroll (γ,ν) is defined and (3) yields the isotropic curve

ϕ(t)=(4t3,−4i
√

(t2+1)3,6t2+3). (10)

which is subsequently reparametrized by t = Sτ. Then,
τ = v+ iu (note that the real part equals v). Finally, the
extraction of the real part of (10) gives (1). Since the nor-
mals ν from (9) along γ from (8) form a developable ruled
surface (a plane), γ turns out to be a planar geodesic on
HENNEBERG’s minimal surface (1). The plane of γ is a
plane of symmetry for HENNEBERG’s minimal surface, cf.
Thm. 1. Figure 2 shows a part of HENNEBERG’s minimal
surface with the geodesic semi-cubic parabola (8).

Figure 2: HENNEBERG’s minimal surface with the
geodesic semi-cubic parabola γ.

A rational parametrization of HENNEBERG’s surface can
be obtained in two ways. The usual replacement of
trigonometric and hyperbolic functions by their well-
known rational equivalents delivers a parametrization in-
volving polynomials of degrees higher than necessary. The
substitution Sv = V yields a parametrization of bi-degree
(6,3), since C2v = 1+ 2Sv

2 = 1+ 2V 2 and S3v = 3Sv +
4Sv

3 = 3V +4V 3.
Implicitization shows that HENNEBERG’s surface is of al-
gebraic degree 15.
The dual surface, i.e., the set of tangent planes of HEN-
NEBERG’s surface, can be given either in parametric form
by

f? =


2cu

c2uS3v +3c2uSv
2su

c2uS3v +3c2uSv−1
C2vc2u +2c2u

 (11)

or by the implicit equation (2).

2.2 WEIERSTRASS’s formulae

2.2.1 The integral formula

There are some equivalent formulae which where first
given by WEIERSTRASS. These allow us to compute
parametrizations of minimal surfaces by prescribing a pair
of meromorphic functions: Let A : D ⊂ C → C and
B : D ⊂ C→ C be meromorphic functions, i.e., they are
holomorphic except at countably many points pi ∈ D⊂ C.
From A and B we find a real parametrization of a real min-
imal surface via

f(u,v)=Re

∫  A(1−B2)
iA(1+B2)

2AB

dw. (12)

Again, we assume that w= u+ iv is the complex parameter
in the domain D. The extraction of the real part of the com-
plex vector valued function gives the real parametrization
of the real minimal surface defined by A and B.
There is an alternative, but equivalent form for (12). Let
G and H be two meromorphic functions defined over the
same domain D⊂ C, then

f(u,v)=Re

∫  G2−H2

i(G2 +H2)
2GH

dw (13)

also yields a real parametrization of a real minimal surface.
(13) transforms into (12) by letting A=G2 and B=HG−1

provided that G 6≡0.
In many textbooks on differential geometry and in a huge
amount of publications, a further but equivalent integral
representation of minimal surfaces can be found. How-
ever, this third version is obtained from (12) by substitut-
ing B(w) = w and A(w) is an arbitray meromorphic func-
tion. This seems to be a restriction that presumes that A(w)
can globally and in a closed form be written as a function
A(B(w)) depending on B(w).

2.2.2 Recovering the functions A, B

From the parametrization f of a minimal surface we can re-
cover the meromorphic functions A and B, see [27, 33, 36]:
First, we compute F := ∂uf− i∂vf. Then, we use the coor-
dinate functions Fi of F and find

A =
1
2
(F1− iF2) and B =

F3

2A
. (14)

For example, the generating meromorphic functions of the
minimal surface given by (6) are

A = 3−12iw and B = 1+2iw.
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2.2.3 Integral free representation of minimal surfaces

Let A(w) : D⊂C→C be a meromorphic function and let
further A′ = dA

dw , A′′ = d2A
dw2 , and A′′′ = d3A

dw3 denote its first,
second, and third complex derivative. The vector

i=

 1−w2

i(1+w2)
2w

 (15)

is an isotropic vector in three-dimensional Euclidean space
R3 since 〈i, i〉= 0. Again, primes ′ indicate differentiation
with respect to the complex variable w. Now, we define

j = A′′i−A′i′+Ai′′. (16)

It is elementary to verify that 〈 j′, j′〉 = 0, and thus, j′ is
isotropic. Therefore, f =Re j is a real parametrization of a
real minimal surface. This parametrization is usually writ-
ten as

f(u,v)=Re

 (1−w2)A′′+ 2wA′− 2A

i(1+w2)A′′−2iwA′+2iA
2wA′′−2A′

 (17)

where A′′′ 6≡ 0 in D, see [2, 27, 33]. In case of a quadratic
polynomial A, (17) parametrizes a line. A cubic polyno-
mial A delivers an Enneper surface. The minimal surface
adjoint to HENNEBERG’s surface is uniquely determined
by the geodesic astroid α and its normals. The integral free
parametrization of minimal surfaces allows us to state:

Theorem 7. Each algebraic function A : D⊂C→C with
A′′′ 6≡0 (in the entire domain D) yields an algebraic mini-
mal surface parametrized by (17).

Moreover, it is clear that polynomials A ∈ C[w] deliver
polynomial parametrization. Further, each rational func-
tion A = P/Q with P,Q ∈ C[w] and gcd(P,Q) = 1 yields
rational parametrization of minimal surfaces. However,
just inserting rational or algebraic functions cannot guaran-
tee that the algebraic degree of the resulting minimal sur-
face is low. Sometimes a reparametrization turns a ratio-
nal parametrization of a minimal surface into a polynomial
one.

2.2.4 The associate family

The minimal surface adjoint to HENNEBERG’s surface is
uniquely determined by the geodesic astroid α and its nor-
mals. In any of the above cases, the real parametrization
f of a real minimal surface was found by computing the
real part f =Reϕ(w) of some complex vector valued func-
tion ϕ(w). The vector valued function ϕ(w) parametrizes
an isotropic curve in Euclidean three-space, i.e., a curve
with constant slope ±i. The computation of the real part
is equivalent to the addition of the complex conjugate

vector function and subsequent multiplication by 1
2 , i.e.,

f = 1
2 (ϕ+ϕ) = Reϕ. This is just the analytical formula-

tion of a fundamental result by LIE (see [27, 30, 33, 36]):

Theorem 8. Translating an isotropic curve ϕ (curve of
constant slope±i) along another isotropic curve ψ sweeps
a minimal surface. The minimal surface is real if, and only
if, ϕ and ψ are complex conjugate curves.

The curve ϕ(w) is an isotropic (minimal) curve of Eu-
clidean geometry. This property is not altered if we multi-
ply ϕ(w) by eiτ prior to the extraction of the real part. The
latter multiplication by a complex factor of absolute value
1 is, geometrically speaking, just a rotation of the complex
curve. The family of real minimal surfaces given by

f(τ)=Re(eiτ
ϕ(w))=cτReϕ(w)+sτImϕ(w) (18)

is called the associate family. Especially, f⊥ := f(π

2 ) is
called the adjoint minimal surface to f. The following the-
orem is obvious:

Theorem 9. The family of minimal surfaces associate to
an algebraic minimal surface consists only of algebraic
minimal surfaces.

Proof. From (18) we can see that the parametrizations of
the minimal surfaces in the associate family are linear com-
binations of Reϕ(w) and Imϕ(w) with coefficients cτ and
sτ. If f is obtained via (17), then both f(0) =Reϕ(w) and
f(π

2 ) = Imϕ(w) are algebraic and so is any of their linear
combinations.

It is elementary to verify that the meromorphic function A
from (12) changes to eiτA and B does not change during
the transition from the minimal surface defined by A and B
to the members of its associate family.
We shall have a look at the minimal surface adjoint to
HENNEBERG’s surface (1). A parametrization f⊥ of this
adjoint surface is found by multiplying (10) by ei π

2 = i,
reparametrizing by t = Sτ. Then, τ = v+ iu and we extract
the real part which gives

f⊥(u,v)=

 c3uS3v−3Svcu

s3uS3v+3Svsu

3C2vc2u

. (19)

The surface (19) has more symmetries than HENNEBERG’s
surface: It is symetric with respect to the planes

x = 0,y = 0,x± y = 0,z = 0.

The algebraic minimal surface f⊥ (19) is of degree 26 and
a part of it is shown in Fig. 3. Its intersection with the ideal
plane is the 18-fold ideal line of all planes parallel to z = 0
together with the four-fold pair of ideal lines of complex
conjugate isotropic planes.
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Figure 3: The minimal surface adjoint to HENNEBERG’s
surface is uniquely determined by the geodesic
astroid α and its normals.

The surface f⊥ intersects the plane z = 0 along the astroid

α(t) = (4ct
3,4st

3,0) (20)

that turns out to be a geodesic on the surface f⊥.
On the other hand, α can be taken as the spine curve of the
scroll (α,ν) with its unit normals

ν(t) = (−st ,−ct ,0). (21)

Inserting (20) and (21) into (3), we obtain a parametriza-
tion of f⊥ that is slightly different from (19) but equivalent
to that. Summarizing this, we can state (a known result,
see [22, 23, 33]) in

Theorem 10. The adjoint minimal surface to HEN-
NEBERG’s minimal surface carries a geodesic astroid
α. The adjoint to HENNEBERG’s minimal surface is the
uniquely determined minimal surface on the scroll (α,ν)
with ν being α’s unit normal vector field.

It is noteworthy that the astroid α (20) is a hypocycloid.
This will be of importance in Sec. 7.

3 ENNEPER’s surfaces

There is not just one Enneper surface even if we don’t
mention equiform copies of the standard form. The well-
known example

E1(u,v)=

−
1
3 u3 +uv2 +u
1
3 v3−u2v− v

u2− v2

 (22)

with its bi-cubic parametrization is one in a one-parameter
family of algebraic minimal surfaces that admit even poly-
nomial parametrizations. It can be found with (13) by let-
ting G = 1 and H = w or with (17) where A = 1

6 z3.

The algebraic degree of the classical Enneper surface
equals nine since an implicit equation can be given by

[9(y2−x2)+4z(z2+3)]3−
−27z[9(y2−x2)− z(9(x2+y2)+8z2)+8z]2=0. (23)

The class of ENNEPER’s surface equals six as can be read
off from the implicit equation of its family of tangent
planes

w2
0(w

2
1+w2

2)
2−3(w2

1−w2
2)

2w2
3−4(w2

1−w2
2)

2(w2
1+w2

2)+

+2w0w3(w2
1−w2

2) · (3w2
1+3w2

2+2w2
3)=0. (24)

ENNEPER’s minimal surface is an example of a non-
orientable minimal surface with even class, cf. Thm. 5.
The term of degree nine in (23) equals z9 which shows that
the ideal line of all planes parallel to z = 0 comprises the
set of ideal points of ENNEPER’s surface.
According to LIE [30], the sum of the class and the de-
gree of an algebraic minimal surface is at least 15, and
thus, ENNEPER’s surface is the confirming example. Its
real self-intersection consists of the pair

s1 = (0, 3
8 t(3t2 +8), 9

8 t2 +3),

s2 = (−3
8

t(3t2 +8),0,−9
8

t2−3)

of polynomial cubic curves (semi-cubic parabolas) in the
symmetry planes x = 0 and y = 0.
The more general version of ENNEPER’s surface is given
by

En(u,v)=Re


w− w2n+1

2n+1

iw+
iw2n+1

2n+1
2wn+1

n+1

 (25)

where n ∈ N \ {0} is usually called the order of the En-
neper surface. These minimal surfaces are obtained from
(13) with

G(w) = 1 and H(w) = wn.

With n = 1 we obtain the classical minimal surface by EN-
NEPER parametrized by (22) first given in [8].
Dropping the restriction n ∈ N \ {0}, we obtain the plane
x = 0, i.e., a flat minimal surface if n = 0. The case n =−1
is still to be excluded if one is interested in algebraic mini-
mal surfaces. However, the case n=−1 yields the catenoid

2C z
2
=
√

x2 + y2.

Surprisingly, the case n = −2 yields RICHMOND’s sur-
face (31), which will be discussed in Sec. 5. The surface
E3(u,v) is displayed in Fig. 4.
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Figure 4: The Enneper surface of order 3 is of algebraic
degree 49, cf. Thm 11.

We can give an upper bound on the algebraic degree and
a precise value for the class of the Enneper surfaces of an
arbitrary order:

Theorem 11. Enneper surfaces of order n∈N\{0} are al-
gebraic minimal surfaces whose degree is at most (2n+1)2

and its class equals 2n(2n+1).

Proof. The polynomial parametrization of an Enneper sur-
face (25) of order n is of bi-degree (2n+1,2n+1). Elim-
ination of u and v from the coordinate functions means
computing resultants with respect to u and v. Thus, the
algebraic degree of En is at most (2n+1)2.
In order to show that the class equals 2n(2n+ 1), we use
a result by LIE (cf. [30, vol. 1, p. 315]): The rank of the
isotropic curve (25) equals r = 3n+ 1 and the multiplic-
ity of the absolute conic as a curve on the tangent devel-
opable this particular isotropic curve equals µ= n. Accord-
ing to LIE, the class of the minimal surface generated by
the isotropic curve (25) equals 2µ(r−µ)=2n(3n+1−n)=
2n(2n+1).

The computation of the implicit equations of the surfaces
En up to n = 7 shows that the bound degEn = (2n+1)2 is
sharp at least in these cases.

4 BOUR’s surfaces

The minimal surfaces by E. BOUR (see [4]) are character-
ized by allowing local isometries to surfaces of revolution.
Parametrizations of the surfaces in this one-parameter fam-
ily are obtained from (12) by inserting

A(w)=cwm−2, c∈C\{0},m∈R\{0} (26)

and B(w) = w. Alternatively, we can use

G =
√

cw
m
2 −1 and H =

√
cw

m
2

together with (13). With (26) and (12) we arrive at the
parametrization

Bm(u,v) =Rec ·


1

m−1 wm−1− 1
m+1 wm+1

i
m−1 wm−1 + i

m+1 wm+1

2
m wm

. (27)

We call m the order of the Bour surface Bm.
It means no restriction to assume |c| = 1, i.e., c = cτ + isτ

since the multiplication of A by c causes only a scaling of
the respective minimal surface with the scaling factor |c|.
On the other hand, the multiplication with any complex
number c = cτ + isτ (with τ ∈ S1) corresponding to a point
on the Euclidean unit circle chooses one certain member
of the family of minimal surfaces associate to Bm.
Well-known and non-algebraic minimal surfaces can be
found among the surfaces by BOUR: m = 0, c = 1 lead to
the catenoid; the choice m = 0, c = i results in the helicoid

2arctan
x
y
= z

which is adjoint to the catenoid. If m = ±1 the resulting
minimal surfaces are not algebraic independent of c, but
they seem to be worth a closer inspection. A part of this
non-algebraic minimal surface is displayed in Fig. 5.

Figure 5: The non-algebraic minimal surface B−1.

BOUR’s minimal surfaces are algebraic if, and only if,
m∈Q\{−1,0,−1}. The following result makes clear that
negative m can be excluded from our considerations:

Lemma 1. For any m ∈ Z \ {−1,0,1} we have B(m) =
S · ψ(B(−m)) where S = diag(1,−1,−1) is the ma-
trix describing the reflection in the x-axis and ψ is the
reparametrization

u =
U

U2 +V 2 , v =− V
U2 +V 2 , (28)
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or equivalently, ψ : w = u+ iv 7→W−1 (with W =U + iV )
which is the inversion in the Euclidean unit circle in the
parameter plane.

Proof. Let m<−1. We observe the changes

wm−1→w−n−1, wm+1→w−n+1

with m =−n. Then, we reparametrize with ψ according to
(28) and the latter powers of w change again:

w−n−1→(W−1)−n−1=W n+1,

w−n+1→(W−1)−n+1=W n−1,

both with positive n. Thus, the second and third coordi-
nate function change their sign and S = diag(1,−1,−1).
Finally, changing U→ u and V → v simplifies the compar-
ison of the parametrizations.

Especially, the surfaces for m = 2,3,4,5 are of relatively
low degree. ENNEPER’s minimal surface corresponds to
m =±2 with arbitrary c.

Figure 6: BOUR’s surface of order 3 is a Bézier minimal
surface of algebraic degree 16 and of class 8.

With m = 3 we find a minimal surface of degree 16 and
class 8 which is displayed in Fig. 6. The surface has three
planes of symmetry: y = 0 and 3x2 = y2 whose intersec-
tions with the plane z= 0 are three straight lines concurrent
in the point (0,0,0) which lie entirely in the surface. All
three lines turn out to be four-fold lines on the surface. The
Bour minimal surface of order 3 meets the ideal plane in
the ideal line of all planes parallel to z = 0 with multiplic-
ity 16. The planar rational (polynomial) quartic PH-curve
(cf. [9])

γ(t) =
(
−1

4
t4 +

1
2

t2,0,
2
3

t3
)

together with its normal vectors can be used to construct a
parametrization of this minimal surface with the Björling
formula (3). Therefore, γ is a geodesic on the surface.
If now m =±4, we obtain an algebraic minimal surface of
degree 25 and class 10. The four lines

(x2−2xy− y2)(x2 +2xy− y2) = 0

are five-fold lines on this minimal surface. With the
Björling formula (3) the two planar and congruent PH-
curves

γ1 =

(
0,−1

5
t5 +

1
3

t3,
1
2

t4
)
,

γ2 =

(
−1

5
t5 +

1
3

t3,0,
1
2

t4
)

in the planes x = 0 and y = 0 together with their rational
normals also define the Bour minimal surface of order 4.
Both curves, γ1 and γ2 are planar geodesics on the Bour
surface of order 4 and the plane z = 0 is a plane of sym-
metry. Again, the intersection with the ideal plane is a line
whose multiplicity equals the algebraic degree of the sur-
face.
The above given examples show that BOUR’s minimal sur-
faces can also be obtained as minimal surfaces on PH-
scrolls as a solution to Björling’s problem. In a more gen-
eral version, we have

Theorem 12. The minimal surfaces on the scroll (γ,ν)
with

γ(t)=
( −1

m+1 tm+1+ 1
m−1 tm−1, 2

m tm,0
)

(29)

where m≥ 2 and

ν(t) =
1

1+ t2 (−2t,1− t2,0) (30)

are BOUR’s minimal surfaces of order m up to equiform
transformations.

Proof. We insert (29) and (30) into (3) and arrive at (27).
Note that ν from (30) satisfies ν = wm−2γ′⊥.

We can give an upper bound on the algebraic degree and
class of BOUR’s minimal surfaces of order m in

Theorem 13. The algebraic degree and the class of
BOUR’s minimal surface of order m are equal to (m+1)2

and 2(m+1) provided that m≥ 2.

Proof. We use the same arguments as in the proof of Thm.
11.

Like the generalized Enneper surfaces (25), the Bour sur-
faces (27) are Bézier minimal surfaces (as long as they are
algebraic).
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5 RICHMOND’s surfaces

The original Richmond surface (as shown in Fig. 7) comes
along as one special example in a one-parameter family of
minimal surfaces. It has the simple parametrization

f(u,v) =


1
3 u3−uv2 + u

u2+v2

1
3 v3−u2v− v

u2+v2

2u

 . (31)

Figure 7: Richmond’s minimal surface of degree 12 and
class 12.

RICHMOND’s surface is the only real algebraic minimal
surface of degree 12 up to equiform transformations, see
[33]. The class of RICHMOND’s surface equals 12, not 17
as RICHMOND stated in [39] (This was corrected in [40].)
The minimal surfaces associated to RICHMOND’s surface
(31) are just similar copies of that surface, see [39].
When using (12) in order to parametrize the surface, we
have to insert

A(w) =
1

w2 , B(z) = w2.

RICHMOND’s minimal surface can also be constructed as
a minimal surface on a scroll: Use the planar curve

γ(t) =
(

1
3

t3 +
1
u
,0,2t

)
(32)

for the spine curve with unit normals

ν(t) =
1

1+ t2

(
−2t,0, t2−1

)
(33)

along γ and insert both into (3). The unit normal vector
field of the curve γ from (32) is not precisely that given
by (33) but can be transformed by the reparametrization
t →
√

t into (33). Note that the plane y = 0 that contains
γ is a plane of symmetry of RICHMOND’s minimal surface
and γ is a planar geodesic of the surface.
More generally speaking, associated to the family of
curves

γa(t) =
(

t3 +
a2

2t
,0,2at

)

with a ∈ R\{0} and the unit normal vector field

νa(t) =
(
−6at2

a2 +9t4 ,0,
a2−9t4

a2 +9t4

)
there is a one-parameter family of rational, and thus,
algebraic minimal surfaces of Richmond type whose
parametrizations read

R (a,u,v)=

 u3−3uv2 + 1
12

a2u
u2+v2

3u2v− v3 + 1
12

a2v
u2+v2

au

.
The generalization is straight forward. We choose

A(w) =
1

w2 and B(w) = wm+1 (34)

with m ∈ N \ {0} which yields a one-parameter family of
minimal surfaces when inserted into (12). We shall call m
the order of the Richmond surface Rm.
Figure 8 shows two Richmond surfaces: one of order 3, the
other one of order 4.
Note that A has a pole of degree 2 at w = 0. Especially,
the surface with m = 1 is given by (31). Again, we observe
that replacing m by−m results in the same surface. So it is
sufficient to consider only positive m.
It is no surprise that the family of generalized Richmond
minimal surfaces contains members of other families. For
example R1 = B1 with c = 1.
Alternatively, we could use the representation (13) with

G(w) =
1
w
, H(z) = wm.

The parametrizations of the generalized Richmond sur-
faces read

Rm(u,v)=Re


− 1

w
− w2m+1

2m+1

− i
w
+

iw2m+1

2m+1

−2wm

m

 (35)

and they make clear that these are algebraic surfaces that
admit even a rational parametrization.
We can give an upper bound for the algebraic degree of the
generalized Richmond surfaces:

Theorem 14. The generalized Richmond surfaces of order
m∈N\{0} are at most of algebraic degree 2(m+1)(2m+
1). The class of the generalized Richmond surfaces equals
exactly 2(m+1)(2m+1).
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Proof. For the proof of the upper bound of the degree, we
use similar arguments as in the proofs of Thm. 11 and Thm.
13.
In order to verify the formula for the class of the gener-
alized Richmond surfaces, we use the results from [30,
vol. 1, p. 315] and compute, like in the proof of Thm. 11:
r=3m+2 and µ=m+1 which yields the class 2µ(r−µ)=
2(m+1)(3m+2−m−1)=2(m+1)(2m+1).

The regular reparametrization

u = rcs, v = rss

changes (35) to

Rm(r,s)=

−
r2m

m+1 c(m+1)s− 1
(m−1)r c(m−1)s

− r2m

m+1 s(m+1)s− 1
(m−1)r s(m−1)s

2rcs

 (36)

which is not just favorable for plotting the surface. It also
enables us to show

Theorem 15. The Richmond minimal surfaces (35) with
m ∈ Q \ {−1,0,1} carry a one-parameter family of har-
monic oscillation curves of order two.

Proof. Let the first and the second coordinate function be
the real and the imaginary part of a complex number and
build w = x+ iy. Then, apply EULER’s formula and find

w(s)=− r2m

m+1
ei(m+1)s− 1

m−1
ei(m−1)s.

If r ∈ R \{0} is fixed, then, according to [55, 56], w(s) is
a complex parametrization of an ordinary cycloidal curve.
Finally, we observe that the third coordinate function z =
2r coss is periodic for any r ∈ R. Thus, the s-lines on the
surface (36), i.e., the curves with fixed r are higher oscilla-
tion curves in the sense of [37].

By assumption, m ∈Q, and thus, the curves are closed.

Figure 8: Minimal surfaces of Richmond type: Left: m =
3 of algebraic degree 56; right: m = 4 of alge-
braic degree 90.

6 Minimal surfaces tangent to orthogonal
hyperbolic paraboloids

We consider the one-parameter family of hyperbolic
paraboloids

P : (1−b2)xy = 2bz (37)

with b ∈ R\{−1,0,1} and the cylinder of revolution

Z : x2 + y2 = 1. (38)

The cylinder intersects the paraboloids (37) along the ra-
tional quartic space curves

γ(t) =
(

ct ,st ,
1−b2

4b
s2t

)
. (39)

In the following, we use the abbreviations

β1 :=1+b2, β2 :=1−b2, β3 :=b4+6b2+1.

Let now the normal vector field be given by

ν(t)=grad(P)|γ =
1
β1

(β2st ,β2ct ,−2b). (40)

Then, we insert γ and ν from (39) and (40) into (3) and
find the parametrizations of the minimal surfaces in the
one-parameter family of minimal surfaces touching the
paraboloids (37) along their intersection with Z. From
their parametrizations

f(u,v) =
1

12bβ1


β2

2c3uS3v+3cu(β3Sv+4bβ1Cv)

−β2
2s3uS3v+3su(β3Sv+4bβ1Cv)

3β2s2u(β1C2v+2bS2v)

,
(41)

we can immediately see that these surfaces admit rational
parametrizations of bi-degree (6,6). Figure 9 shows the
minimal surface parametrized by (41) together with the hy-
perbolic paraboloid, the curve γ from (39), and the unit nor-
mal vector field ν as given in (40). Moreover, Fig. 9 gives
an idea how the minimal surface tangent to a hyperbolic
paraboloid deviates from the paraboloid.
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Figure 9: The minimal surface (41) on the scroll (γ,ν).
The curve γ is a curve along which the Gaus-
sian curvature on the hyperbolic paraboloid P
is constant.

The rational representation of these minimal surfaces al-
lows us to compute an implicit equation of each surface in
the family. Hereby, we find that all minimal surfaces (41)
are algebraic surfaces of degree 30. They all have the cycle
z18(x2 + y2)6 = 0 in the ideal plane in common.
The curves of constant Gaussian curvature K on the hyper-
bolic paraboloid P given in (37) lie on cylinders of revolu-
tion coaxial with the one in (38). For any b∈R\{−1,0,1}
these cylinders have the equation

x2 + y2 =
1

β2
√
−K
− 4b2

β2
2

(42)

for any admissible value K < Kmax =−
β2

2
16b4 . From

r2 =
1

β2
√
−K
− 4b2

β2
2

we can determine the cylinder’s radius. Conversely, we
can choose b such that the radius r corresponds to a certain
value K. This gives rise to

Theorem 16. The minimal surfaces that touch an orthog-
onal hyperbolic paraboloid P along the curves of constant
Gaussian curvature on P are rational (and thus algebraic)
minimal surfaces and can be parametrized by (41). These
minimal surfaces are of degree 30 and of class 10.
The parameter curves v = const. are rational (and thus
algebraic and closed) oscillation curves of order two,
i.e., their orthogonal projections onto z = 0 are cycloidal
curves of order two and the z-coordinate function is har-
monic.

Proof. From the parametrization (41) we can derive an im-
plicit equation after a rational substitution of the trigono-
metric and hyperbolic functions. Thus, the rationality is

obvious and the degree turns out to be 30. From the
parametrization of the set of points (41), we can derive a
parametrization of the set of tangent planes. Eliminating
the paramters yields a polynomial of degree 10 and so the
class of the minimal surface equals 10.
The x- and the y-coordinate can be considered the real and
the imaginary part of a complex variable. Thus, for fixed
v ∈ R, we have w(u) = x+ iy which gives a complex rep-
resentation of the top view of the parameter curves:

w(u)=
β2

2S3v

12bβ1
e−3iu+

β3Sv+4bβ1Cv

4bβ1
eiu.

Comparing the latter with the formulae given in [55, 56],
we can see that these are the path curves of the end points
of open two-bar mechanisms. The ratio of the angular ve-
locities of the rotating bars equals −3 : 1 and the lengths
of the legs are the absolute values of the coefficients of the
exponential functions. The z-coordinate is a multiple of
sin2u, and thus, harmonic.

Finally, we shall mention that meromorphic functions A,B:
C→C in the Weierstraß-representation (12) are

A=
(1+b)2

8ibβ1

(
e3iw(1−b)2+e−iw(1+b)2

)
(43)

and the simple function

B = i
1−b
1+b

e−iw. (44)

Since b ∈ R\{−1,0,1}, the function B can never vanish.
The substitution t = eiw in (43) transforms A into a ratio-
nal function. Together with B from (44) which is linear
anyway, and thus, also rational, we can find the minimal
surfaces from Thm. 16 via (12) with rational generators A
and B.
The associate minimal surfaces show a surprising behav-
ior:

Theorem 17. The minimal surfaces associated to (41) are
congruent to f . Traversing the associate family of minimal
surfaces means rotating the original one about the z-axis.

Proof. Derive the parametrization or implicit equation of
the surfaces in the associate family. The congruence trans-
formation can easily be read of from the parametriza-
tion.

Consequently, all members of the associate family of the
minimal surface f given by (41) have the same algebraic
properties.
The minimal surfaces (41) intersect the hyperbolic
paraboloid P with equation (37) in the lines x = z = 0 and
y = z = 0, each with multiplicity 6 and along the curve γ

with multiplicity two (according to the construction).
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7 Minimal surfaces with geodesic cycloids

Thm. 1 and Thm. 10 give rise to a generalization of HEN-
NEBERG’s adjoint surface which was the minimal surface
on a scroll with an astroid (20) for its spine curve. Here,
we shall recall that there is a notion of cycloid that shall not
be of use here: Frequently, the word cycloid is used for a
curve that is generated by rolling a circle on a straight line,
see [29, 32, 51]. The minimal surface with this straight
cycloid as a planar geodesic is known as CATALAN’s min-
imal surface (see [27, 33, 36] and it is not algebraic.
The cycloidal curves that emerge from rolling a circle
along another one yields a one-parameter family of ratio-
nal, and thus, algebraic minimal surfaces. We have

Theorem 18. Let r,R ∈ R \ {0} be real constants with
R+ 2r 6= 0 and R+ r 6= 0. The minimal surfaces on the
scroll (ζ,ν) with ζ⊂ π3 : z = 0 and ν ∈ S1

ζ(t)=

 (R+ r)ct+rc (R+r)t
r

(R+ r)st+rs (R+r)t
r

0

,

ν(t)= 1
2c Rt

2r

−ct − c (R+r)t
r

−st − s (R+r)t
r

0


(45)

can be parametrized by

f(u,v)=


(R+r)cuCv+rc (R+r)u

r
C (R+r)v

r
(R+r)suCv+rs (R+r)u

r
C (R+r)v

r

− 4r(R+r)
R c Ru

2r
S Rv

2r

. (46)

These minimal surfaces are algebraic, rational, and closed
if, and only if, R,r ∈Q\{0}.
In any case, the cycloid ζ⊂ π3 is a geodesic on the minimal
surface.
The surfaces with R,r ∈ Q \ {0} contain at least one
straight line.

Proof. Insert γ and ν from (45) into (3). This gives (46).
The geodesic property of the cycloidal spine curves is a
direct consequence of Thm. 1.
The straight lines are part of the double curves in symmetry
planes.

In the case R+ 2r = 0, the cycloid ζ from (45) collapses
to a diameter of the circle (Rct ,Rst ,0). If R+ r = 0, the
polhodes of ζ are not just congruent, they are identical and
no rolling takes place.
The cycloids ζ parametrized by (45) are closed, rational,
and thus, algebraic, if, and only if, r : R ∈ Q \ {0}. They
have cusps of the first kind at

cos
tR
r

=−1 ⇐⇒ t = (2k+1)π
r
R
,

i.e., finitely many if r : R ∈Q\{0}, provided the admissi-
ble choice of r and R. Consequently, the minimal surfaces
(46) have branch points exactly at the cusps of the cycloids
ζ given by (45).
From the parametrization (46) it is clear that the u-lines
(curves with v = const.) on the cycloidal minimal surfaces
have a very special shape. We have

Theorem 19. The u-lines on the cycloidal minimal sur-
faces given by (46) are generalized oscillation curves.
Their orthogonal projections onto the planes z = c (with
c ∈ R) are cycloidal curves.

Proof. A closer look at the first and second coordinate
function of the parametrization (46) tells us that, for fixed
v ∈ R, we have the parameterization of cycloidal curves.
These curves can also be written in terms of complex co-
ordinates by letting w(u) = x+ iy and applying EULER’s
formula as

w(u) = (R+ r)Cveiu + rC (R+r)t
r

eiu R+r
r .

Comparing with [56], we find the lengths

A1 = (R+ r)Cv, A2 = rC (R+r)v
r

of the legs of a generating two-bar mechanism and the (ra-
tio of the) angular velocities of the bars are

ω1 : ω2 = 1 :
R+ r

r
.

From that we can compute the radii of the polhodes of the
motion that generates the orthogonal projections of u-lines
as path curves, see [55, 56].

The meromorphic functions A,B : D ⊂ C→ C from (13)
can also be given:

Lemma 2. The cycloidal minimal surfaces can be ob-
tained from the Weierstraß-representation (13). Therein,
the meromorphic functions A and B are:

A(w)=− i
2 (R+r)

(
e−iw+e−i R+r

r w
)
,

A(w) ·B(w)= i(R+r)c (R+r)w
2r

.
(47)

Proof. In order to find A and B from (46), we use (14).

More ore less surprisingly, there is a connection to the
curves of constant slope on quadrics of revolution and the
curves γ(u) = f(u,0) on the cycloidal minimal surfaces.
The family of minimal surfaces associated to (46) can be
given with (18) as

f(u,v,τ) = cτ · f+ sτ · f⊥ (48)
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where f is the parametrization (46) and f⊥ reads

f⊥=


(R+r)Svsu+rS (R+r)v

r
s (R+r)u

r

−(R+r)Svcu−rS (R+r)v
r

c (R+r)u
r

− 4r(R+r)
R s Ru

2r
C Rv

2r

. (49)

The spine curves of the scrolls are obtained by substituting
v = 0 in (48). These spine curves can be taken as the spine
curve γ of a scroll on which, according to the Björling for-
mula (3), minimal surfaces can be errected. Now, we have
the following

Theorem 20. The one-parameter family of curves f(u,0,τ)
with parametrization (48) and (49) are curves of constant
slope on quadrics of revolution. These curves are closed,
rational, and thus, algebraic spacecurves provided that
r : R ∈Q\{0}, R+2r 6= 0, and R+ r 6= 0. The slope angle
σ is independent of R and r and is related to τ (modulo 2π)
by

cσ =−sτ ⇐⇒ σ = τ+
π

2
. (50)

Proof. The top views of the curves b = f (u,0,τ), i.e., the
orthogonal projections of the curves f (u,0,τ) onto planes
parallel to z = 0 are cycloids (with cusps). It is well-
known (see, e.g., [3, 7]) that the curves of constant slope
on quadrics of revolution appear as epi-, hypo-, hyper, and
paracycloids in a top view (in the direction of the lead).
The case of paraboloids of revolution differs a little bit: In
the corresponding top views, we can see the involutes of
circles, cf. [26].

Figure 10: The spine curves of the cycloidal minimal sur-
faces are bent smoothly into curves of constant
slope on quadrics of revolution.

We compute b′ = d
du b. The lead is given by the unit vector

l = (0,0,1). Now, it is elementary to verify that

cσ =
〈b′, l〉
‖b′‖

=−sτ

which makes clear that the slope of the spine curves b =
f (u,0,τ) is constant and independent of the choice of R
and r and (50) is valid. It is easily verified that the coordi-
nate functions of b satisfy

Q :x2+y2+
k2R2z2

4r(r+R)
=(2r+R)2cτ

2 (51)

with k = cotτ which is the equation of quadrics Q of revo-
lution.
The rationality is clear if r : R ∈ Q\{0} since then cosnu
and sinnu can be expressed in cosu and sinu which can
subsequently be replaced with their rational equivalents
provided that (R+r)/r=n is an integer. If (R+r)/r=m/n
with gcd(m,n) = 1, we reparametrize by letting u′ = ru,
expand cosmu, . . . in sinu and cosu followed by the ratio-
nal reparametrization. Since cycloids are closed if r : R ∈
Q \ {0}, the curves of constant slope on the quadrics (51)
are also closed.

Figure 10 illustrates the contents of Thm. 20.
We shall note (51) can be the equation of an ellipsoid or
a one-sheeted hyperboloid as well. The latter appears if
r < 0. Two-sheeted hyperboloids will not be described by
(51) since then the coefficient of z2 as well as the right-
hand side of (51) have to be negative. This is not possible
since the right-hand side is a full square.
On the other hand, the top-views of the curves of con-
stant slope on a two-sheeted hyperboloid of revolution are
paracycloids, i.e., curves that belong to the class of spi-
raloids and are transcendental independent of r and R are,
cf. [29, 32, 51, 54]. In the case that (51) describes a one-
sheeted hyperboloid, k, and thus, the slope of the curves b
is always larger than that of the quadrics’ asymptotic cone.
Otherwise the curves of constant slope appear as hypercy-
cloids in the top-view. These curves are closely related to
paracycloids, and like these, they are always transcenden-
tal and belong to the class of spiraloids, see [29, 32, 51, 54].

7.1 A cardioid as a geodesic curve

The low degree minimal surfaces of cycloidal type can be
found by choosing small values for the radii R and r of the
polhodes of the cycloid ζ. The case of an astroid which
occurs with r : R =−1 : 4 is described in Sec. 2, especially
in Thm. 10.
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Figure 11: The cycloidal minimal surface with R = r = 1
and its geodesic cardiod ζ.

Figure 11 shows the algebraic minimal surface along the
cardiod ζ. This surface occurs with r : R = 1 : 1. The alge-
braic degree of the cardioidal minimal surface is 20 and the
class equals 36. The intersection µ of the minimal surface
with the plane at infinity has the equation z16(x2+y2)2 = 0
which tells us that the ideal line of all planes parallel to
z = 0 is the only real part of µ (with multiplicity 16). The
second factor corresponds to a pair of complex conjugate
ideal lines with multiplicity 2.
The x-axis of the underlying Cartesian coordinate frame is
a four-fold line on the surface and together with the car-
diod ζ and the six-fold isotropic pair of lines through the
origin of the underlying coordinate frame it completes the
surface’s intersection with z = 0. A rational parametriza-
tion can be achieved by substituting

cu =
1−U2

1+U2 , su =
2U

1+U2 (52)

and, surprisingly, with

Sv =V, Cv =
√

1+V 2 (53)

since the hyperbolic functions showing up in the coordi-
nate functions can be exressed in sinhv exclusively. Thus,
the cardioidal minimal surface admits a rational Bézier
representation of bi-degree (8,4).
The adjoint surface looks like a compressed helicoid, see
Fig. 12. Note that this surface cannot be a ruled surface,
because the transcendental helicoid is the only ruled mini-
mal surface. It is of algebraic degree 38. The intersection
with the ideal plane is the cycle z32(x2 + y2)3. The sur-
face carries the two eight-fold straight lines x = z = 0 and
x = y = 0.

Figure 12: A compressed helicoid as the adjoint to the car-
diodal minimal surface.

7.2 Steiner’s hypocyloid

Steiner’s hypocycloid appears in geometry in many ways.
However, it is also a cycloidal curve and we can obtain it
by choosing R = 3 and r =−1 in (45). The corresponding
cycloidal minimal surface (46) turns out to be of algebraic
degree 28 and of class 16. From the construction it is clear,
that the horizontal cross-section with the plane z = 0 con-
sists of the three-cusped hypocycloid. Moreover, the lines
of symmetry y = 0 and 3x2 = y2 (all three with multiplicity
four) are part of the cross-section. Sine y = z = 0 annihi-
lates the equation of this minimal surface, the x-axis of the
underlying coordinate frame is entirely contained in this
minimal surface.

The intersection of the hypocycloidal minimal surface with
the ideal plane is given by the equation z16(x2 + y2)6 = 0.
Thus, the ideal line of all planes parallel to z = 0 is a 16-
fold line on this surface. As is the case with any algebraic
minimal surface, the ideal curve degenerates completely
and splits into a finite number of lines.

Figure 13: The minimal surface on a geodesic hypocycloid
ζ with three cusps.
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A rational Bézier representation of bi-degree (8,4) can be
found by substituting (52) and (53). Figure 13 shows a part
of the surface with a geodesic hypocycloid.

7.3 A geodesic nephroid

A final low degree example shall be discussed: We choose
R = 2 and r = 1. This results in a minimal surface with
a geodesic nephroid. The surface is of algebraic degree
24 and of class 72. The intersection with the ideal plane
is the 18-fold ideal line of all planes parallel to z = 0 to-
gether with a three-fold pair of complex conjugate lines.
Figure 14 shows the minimal surface with a geodesic
nephroid.

Figure 14: The rational minimal surface with a geodesic
nephroid ζ.

The nephroidal minimal surface admits a rational Bézier
representation of bi-degree (6,6) since we have to substi-
tute

Cv =
1+V 2

1−V 2 , Sv =
2V

1−V 2 .

The z- and the y-axis are contained in the surface.

8 Final remarks

The curves of constant slope mentioned in Thm. 20 can
also be used as spine curves of scrolls on which minimal
surfaces can be errected. Unfortunately, the minimal sur-
face that touch the quadrics of revolution along curves of
constant slope are, in general, not algebraic. With Thm. 2
the following theorem is a natural consequence:

Theorem 21. The minimal surfaces that touch the vertical
cylinders (generators parallel to the lead) along the curves
of constant slope on quadrics of revolution are algebraic if
the curves of constant slope are algebraic too.

Note that the curves of constant slope on quadrics of rev-
olution are algebraic if they are closed. Thus, the min-
imal surfaces mentioned in Thm. 21 are algebraic if the
spine curves of the scrolls are closed curves of constant
slope. Since the normals of all minimal surfaces described
in Thm. 18 stay horizontal while the surfaces traverse the
associate family, and furthermore, since the vertical cylin-
ders’ (horizontal) normals are always orthogonal to the tan-
gents of the curves of constant slope, we can state

Theorem 22. The algebraic minimal surfaces that touch
the vertical cylinders along the curves of constant slopes
on quadrics of revolution are precisely the algebraic mini-
mal surfaces mentioned in Thm. 20.

The algebraic degrees are growing rapidly and there will
hardly be some low degree examples among the minimal
surfaces described in Thm. 21.
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Sci. Éc. Norm. 3/IV (1887), 159–200.

[15] E. GOURSAT: Étude des surfaces qui admettent tous
les plans de symétrie dun polyèdre régulier. Ann. de.
Sci. Éc. Norm. 3/IV (1887), 241–312.

[16] E. GOURSAT: Étude des surfaces qui admettent tous
les plans de symétrie dun polyèdre régulier. Ann. de.
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[22] L. HENNEBERG: Über diejenige Minimalfläche,
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