
Xiping Liu i dr. Prikaz pretrage XML ključne riječi primjenom skrivenog Markovljevog modela

Tehnički vjesnik 23, 6(2016), 1649-1658 1649

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)
DOI: 10.17559/TV-20150314113111

INTERPRETING XML KEYWORD QUERY USING HIDDEN MARKOV MODEL

Xiping Liu, Changxuan Wan, Dexi Liu

Original scientific paper
Keyword search on XML database has attracted a lot of research interests. As XML documents are very different from flat documents, effective search of
XML documents needs special considerations. Traditional bag-of-words model does not take the roles of keywords and the relationship between keywords
into consideration, and thus is not suited for XML keyword search. In this paper, we present a novel model, called semi-structured keyword query (SSQ),
which understands a keyword query in a different way: a keyword query is composed of several query units, where each unit represents query condition.
To interpret a keyword query under this model, we take two steps. First, we propose a probabilistic approach based on a Hidden Markov Model for
computing the best mapping of the query keywords into the database terms, i.e., elements, attributes and values. Second, we generate SSQs based on the
mapping. Experimental results verify the effectiveness of our methods.

Keywords: hidden Markov model (HMM); semi-structured keyword query (SSQ); XML keyword query

Prikaz pretrage XML ključne riječi primjenom skrivenog Markovljevog modela

Izvorni znanstveni članak
Pretraživanje ključne riječi na XML bazi podataka privuklo je prilično zanimanja. Kako se XML dokumenti vrlo razlikuju od plošnih (flat) dokumenata,
učinkovita pretraga XML dokumenata zahtijeva posebno razmatranje. Tradicionalni model vreće riječi (bag-of-words) ne uzima u obzir uloge ključnih
riječi i odnos između ključnih riječi pa prema tome nije pogodan za XML pretragu ključne riječi. U ovom radu predstavljamo novi model, nazvan polu-
strukturno pretraživanje ključne riječi (SSQ), koji podrazumijeva pretraživanje ključne riječi na različit način; to se pretraživanje sastoji od nekoliko
cjelina pretrage i svaka cjelina predstavlja stanje pretrage (query condition). Za interpretaciju pretrage po tom modelu, potrebna su dva koraka. Prvo,
predlažemo probabilistički pristup zasnovan na skrivenom Markovljevom modelu za izračunavanje najboljeg uklapanja traženih ključnih riječi u termine
baze podataka, tj. elemenata, atributa i vrijednosti. Drugo, generiramo konstrukcije ključnih riječi (SSQs) na osnovu uklapanja. Eksperimentalni rezultati
potvrđuju učinkovitost naših metoda.

Ključne riječi: polu-strukturno pretraživanje ključne riječi; skriveni Markovljev model (HMM); XML pretraživanje ključne riječi

1 Introduction

Keyword search, due to its simplicity and friendness,
has been widely used and extended to search a variety of
sources of information, such as relational database and
XML documents [1, 2]. An XML document is composed
of nested elements. The nested structure of XML
documents poses great challenges to keyword search
techniques, as the users are able to search XML
documents through structure and text contents.

The unique characteristics of XML documents calls
for a fresh look at and deep understanding of the keyword
query. Existing XML keyword search methods are based
on the "bag-of-words" model. In this model, a text unit
(such as a paragraph or a document) is taken as the bag
(multiset) of words, which means that the grammar and
order of words are not taken into consideration. However,
this model is too simple for XML keyword search.

Consider a query Q1: "journal info system article
expert".The query intention is to search for articles about
"expert" in a journal named "info system". In an XML
database, the answer may be an element labelled "article"
nested in an element labelled "journal", where the
"article" element contains "expert" in its text content, and
the "journal" element has "info system" in its content.
Obviously, it is not natural to view the query as a bag of
words. First, the keywords in the query have different
roles. The keywords "article" and "journal" are labels of
elements, while "expert" and "info system" are just
keywords in texts. Second, there exist different
relationships between keywords. The keyword "expert" is
more closely related to "article" than to "info" and
"system", and "info system" has closer relationship with
"journal" than with "article".

From this example we can see that the traditional
bag-of-words model is not proper for XML keyword
search, because it does not provide information about the
structure of the query hidden in the XML keyword query.
In this paper, we present a new model, called semi-
structured keyword query (SSQ), to model a keyword
query against an XML document. An SSQ is different
from a keyword query in that it has structural information,
and it is less strict compared with a structured query. The
SSQ model is special in that it makes explicit the structure
of the query. However, it is not straightforward to
transform a keyword query into a query in SSQ form. In
this work, we propose two steps to make the
transformation. In the first step, we map the words in the
keyword query into database terms, where each term is
either from the schema vocabulary or from the texts of the
database. As each word can be mapped to many terms, we
develop a Hidden Markov Model-based probabilistic
approach for interpreting the query keywords in terms of
database terms. In the second step, we design an
algorithm which takes a sequence of database terms as
input, and outputs a set of SSQs. Once the SSQs are
generated, it is possible to improve XML search results
based on the SSQs, but that is beyond the scope of this
paper.

To summarize, the following contributions are made in
this paper:

1) We propose a novel way to analyse and interpret an
XML keyword query. The approach makes explicit the
structural information hidden in the keyword query, and
transforms the query into a semi-structured keyword query
(SSQ). The SSQ helps to get the semantics and intention of
a keyword query.

Interpreting XML keyword query using hidden Markov model Xiping Liu et al.

1650 Technical Gazette 23, 6(2016), 1649-1658

2) We present a novel method that interprets a
keyword query as an SSQ. The method uses a Hidden
Markov Model to compute the best mapping of the query
keywords to the database terms, i.e., elements, attributes
and values.

3) We conduct a comprehensive set of experiments.
Experimental results show that the proposed method is
effective.

The rest of the paper is organized as follows. In section
2, the motivation of our method is introduced. In section 3,
the proposed SSQ model is presented. We interpret the
keyword query using a HMM model in section 4. Section 5
presents an algorithm generating SSQs. Experimental
studies are discussed in section 6. Section 7 reviews related
work and we finally conclude the paper in section 8.

2 Motivation

Due to the complexity of the XML documents,
keyword search over XML documents is faced with many
challenges. Understanding XML keyword query is the
key to resolve these challenges.

(1) The roles of keywords are important.
Query keywords have different roles in a keyword

query. Some keywords are intended to find the labels of
elements, while others are used to match words in the
texts.

Example 1. Fig. 1 shows an XML document about
bibliography data such as journals, articles and authors.
Each node represents an element. In the figure, some
irrelevant nodes, e.g. volume, number, are not shown.
This example will be used throughout this paper.
Consider a query Q1: "journal info system article expert".
The query is used to search for articles about "expert" on
journals named "info system". In this query, "journal" and
"article" are different from "info system" and "expert": the
former are expected to be labels of elements, while the
latter are expected to be words in texts. Obviously,
differentiating roles of the keywords is very important to
get the desired results.

According to the roles of keywords, we divide the
query keywords into two categories.

Figure 1 A sample XML document

Definition 1. Given a query keyword t in an XML

keyword query Q, if t appears in the text, we say t is a
content query term, or C-term in short; if t is the label of
an element, t is a tag query term, denoted as T-term. The
role of a query term is one of the two: C-term, T-term.

The role of a term can be easily inferred. We assume
that an inverted list is built for each term, from which it is
easy to know where the term appears.

(2) The relationships between keywords are important.
The connections between keywords are also different.
Given two different C-terms t1 and t2, there are two

different possible relationships between t1 and t2: (a) t1
and t2 are expected to be from the same text node, and (b)
t1 and t2 are not expected to be from the same text node.
Consider the query Q1: "journal info system article
expert", "info" and "system" are expected to be from the
same text node, while "info" and "expert" are not.

Given a T-term t1 and a C-term t2, there are also two
different possible relationships between them: (a) t2 is
expected to appear under t1, and (b) t2 is not expected to
appear under t1. For example, in query Q1: "journal info
system article expert", "info" and "system" are expected
to appear under "journal", and "expert" is expected to

appear under "article", but "info" is not expected to
appear under "article".

(3) The orders of query keywords are important.
When a user poses a keyword query, he will not order

the keywords arbitrarily. In other words, the order of
query keywords is important. For instance, in query Q1:
"journal info system article expert", "info system" and
"expert" cannot be swapped, we cannot change the order
of "journal" and "article" either.

We can see that a keyword query is not a casual
mixture of keywords. There are some hidden rules
beneath the surface. These rules form the structure of the
query. If we can get the structure of a keyword query, we
can understand the query better and thus can certainly get
better query results. Consider the query Q1: "journal info
system article expert", the hidden structure of the query is
that: (1) "info system" has a strong relationship with
"journal", and "expert" is closely related to "article"; (2)
the query is composed of two parts: "journal info system"
and "article expert". These two parts cannot be mixed
together.

In this paper, we propose a novel model to interpret a
keyword query. The key point of the model is to make
explicit the structure hidden in the query. Therefore, we

Xiping Liu i dr. Prikaz pretrage XML ključne riječi primjenom skrivenog Markovljevog modela

Tehnički vjesnik 23, 6(2016), 1649-1658 1651

call the model semi-structured keyword query (SSQ). The
model is not a structured model, like SQL or XQuery,
because the structure information is not so complete. For
example, in the query Q1: "journal info system article
expert", the relationship between "journal" and "article" is
unknown. We can see an SSQ as an immediate form
between a keyword query and a structured query. It is less
strict than a structured query, but has more structure than
a keyword query. Obviously, a SSQ is less ambiguous
than a keyword query, so if we can get SSQs from a
keyword query, we are probably able to improve the
search results.

In the following sections, we will present the SSQ
model, and describe how to interpret a keyword query in
terms of SSQ model.

3 The SSQ model

In this section, we present the SSQ model for the
XMLkeyword query.

3.1 Definition

Definition 2. Given a keyword query Q, a query unit
q of Q is a pair ⟨context, cterms⟩, where context is a
sequence of T-terms, and cterms is a sequence of C-terms.

A query unit indicates a query condition, which states
that certain query keywords (C-terms) should appear
under certain elements (T-terms).

Below we use q(context, cterms), context(q) and
cterms(q) to denote the query unit q, the T-terms in q and
the C-terms in q, respectively. In certain query unit, there
may not exist context or cterms part, in that case, we use
NULL to denote null context or cterms. For example, the
query unit q(NULL, info system) denotes a query
condition that some text node should contain "info
system". In another example "database transaction author",
the query can be decomposed into two query units
q(NULL, database transaction) and q(author, NULL). The
former has no structural constraints while the latter has no
content constraints.

Given a keyword query Q = ⟨t1, ···,tn⟩, we can obtain
a set of query units Qs = ⟨q1, ···,qm⟩ from Q such that: (1)

Qqterms i ⊆)((1 ≤i≤m), and (2) Qqterms i
m ==)(i 1 ,where

terms(q) denotes the set of terms in q. We say Qsis a semi-
structured keyword query (SSQ) derived from Q.

For example, a SSQ of Q1: "journal info system
article expert" can be represented as {q(journal, info
system), q(article, expert)}.

A keyword query can be interpreted as different SSQs,
each with different size and query intents. If an SSQ Qs
has n query units, we say the size of the SSQ is n, or it is
n-sized. For example, Q1: "journal info system article
expert" can be interpreted as {q(journal, info system),
q(article, expert)} or{q(NULL, journal info system),
q(article, expert)}. Obviously, the two SSQs have
different meaning. Consider the query "database
transaction info system". If there is no T-term here, we
can get three SSQs with size 2: {q(NULL, database),
q(NULL, transaction info system)}, {q(NULL, database
transaction), q(NULL, info system)}, and {q(NULL,
database transaction info), q(NULL, system)}. Similarly,

3-sized SSQ also have three candidates, and one
candidate exists for 4-sized SSQ and 1-sized SSQ,
respectively. Thus we get a total number of eight SSQs
from this query. Among these SSQs, some are more likely
than others. It is not possible to handle all these SSQs.
Instead, we try to find the SSQs that are most likely
intended by the users.

3.2 Problem statement

Definition 3. An XML database D is a tuple <V, E, W,
λ, root>, where V is the set of vertices in the database,
and E∈V*V is the set of edges in the database. λis a
mapping V→S that maps each vertice to a string, which is
called the label of the vertice; root is a unique vertice in
the database. W is the vocabulary consisting of the labels
and terms in the database.

A database term refers to a label or a keyword in the
texts of the database. We distinguish two subsets of the
vocabulary W: the schema vocabulary WS and the domain
vocabulary WD. The schema vocabulary consists of the
labels of the vertices, and the domain vocabulary consists
of the terms appearing in the texts of the database. Each
element of the set is referred to as a database term.

Definition 4. A configuration cfg(Q) of a keyword
query Q on a database D is a function from the keywords
in Q to database terms in W. For each keyword ti in Q,
cfg(ti) is a term in the database vocabulary. Moreover,
given two keywords ti and tj, if ti≠tj, then cfg(ti) ≠cfg(tj). In
other words, a configuration maps each keyword in the
original query to a distinct term in the database
vocabulary.

We can see that a configuration is in fact an injective
function.The reason is as follows.

First, each keyword in the original query addresses
part of the query intention. That is, no keyword is
redundant. We assume that there are no stop words or
unjustified keywords in the query. Therefore, each
keyword is intended to find an element of interest, i.e.
keywords always have a correspondent database term.

Second, we assume that the query intention is very
clear, so each keyword has a specific meaning in a
configuration, i.e., it is mapped to only one database term.

Third, keyword queries are compact and users will
not use two keywords to refer to one database term, i.e. it
is not likely that multiple keywords are mapped to the
same database term in a configuration.

Given a keyword query, we use SSQ to describe its
possible semantics. Each such SSQ is referred to as an
interpretation of the keyword query in terms of database
terms.

Definition 5. An interpretation of a keyword query Q
on an XML database D using a configuration cfg(Q) is a
SSQ QS={q1, …, qn} such that the following holds:
 for each T-term A in QS, ∃k∈Q such that cfg(k)=A;
 for each C-term v in QS, ∃k∈Q such that cfg(k)∈WD,

and k=v;
 for each k in Q, cfg(k) ∈terms(QS).

We can estimate the number of configurations of a

keyword query.

Interpreting XML keyword query using hidden Markov model Xiping Liu et al.

1652 Technical Gazette 23, 6(2016), 1649-1658

Since each query keyword can be mapped into a T-
term or a C-term, there are |W| different mappings for
each keyword. Since at most only one keyword can be
mapped to a database term, for a query containing k

keywords, there are
)!-|(|

|!|
kW

W
possible configurations.

Of course, not all interpretations generated by the
configurations are equally meaningful. Some are more
likely than others to represent the query intention. In the
following sections, we will show how to effectively
identify these meaningful interpretations using
information about the occurrences and inter-dependencies
of elements in the database.

4 Computing configurations using a HMM

A naive method to get the configuration is as follows.

For each keyword in the original query, we find its best
match in the database terms. The best match of a keyword
is a database term where the mapping is more likely to
happen. Then the configuration can be obtained by
combining the best matches of keywords. This method
considers the keywords in the query independently, and
finds the mappings of keywords in isolation. However, in
real cases, keywords are not independent. The mapping of
a keyword is influenced by the mappings of previous
keywords, and will influence the mappings of following
keywords. In fact, the inter-dependencies among
keywords are of fundamental importance to interpret the
keyword query. The method thus is not applicable to real
cases.

In light of the importance of the inter-dependencies
between keywords, we need to consider the inter-
dependencies when analysing the keyword queries. We
model the matching process of keywords as a sequential
process in which the order is determined by the keyword
ordering in the query. In each step of the process, a single
keyword is matched against a database term, where the
result of previous steps is taken into account. The process
has a finite number of steps, i.e. the length of the query.
The whole process is stochastic as the matches of the
same keyword are different in different queries. This is
because a keyword can have different meanings in
different queries, thus can be mapped to different
database terms. The process can be modelled naturally by
the Hidden Markov Model (HMM) which is a stochastic
finite state machine.

4.1 HMM

The Hidden Markov Model (HMM) is a powerful

statistical tool for modelling generative sequences where
the system being modelled is assumed to be a Markov
process with unobserved (hidden) states. HMMs have
been widely applied in many areas such as signal
processing, NLP (natural language processing), and so on.

The Hidden Markov Model is a finite set of states,
each of which is associated with a (generally
multidimensional) probability distribution. The transition
probabilities refer to the probabilities of changing from
one state to another state. In a particular state an outcome

or observation can be generated, according to the
associated probability distribution.

The definition of an HMM needs the following
element

(1) N, the number of states in the model.
(2) M, the number of observation symbols in the

alphabet.
(3) A set of state transition probabilities𝐴𝐴 = {𝑎𝑎𝑖𝑖𝑖𝑖}.

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑝𝑝{𝑞𝑞𝑡𝑡+1 = 𝑗𝑗|𝑞𝑞𝑡𝑡 = 𝑖𝑖}, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁
where qt and qt+1 denotes the current and next state.

Transition probabilities should satisfy the following
constraints.

𝑎𝑎𝑖𝑖𝑖𝑖 ≥ 0, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁
and

�𝑎𝑎𝑖𝑖𝑖𝑖 = 1, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁
𝑁𝑁

𝑖𝑖=1

(4) {𝑏𝑏𝑖𝑖(𝑘𝑘)},a probability distribution in each state.

𝑏𝑏𝑖𝑖(𝑘𝑘) = 𝑝𝑝{𝑜𝑜𝑡𝑡 = 𝑣𝑣𝑘𝑘 | 𝑞𝑞𝑡𝑡 = 𝑗𝑗}, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁, 1 ≤ 𝑘𝑘 ≤ M
where vk denotes the kth observation symbol in the
alphabet, and ot is the current parameter vector. 𝑏𝑏𝑖𝑖(𝑘𝑘) is
usually called the emission probability. 𝑏𝑏𝑖𝑖(𝑘𝑘) should
satisfy the following stochastic constraints.

𝑏𝑏𝑖𝑖(𝑘𝑘) ≥ 0, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁, 1 ≤ 𝑘𝑘 ≤ M
and

�𝑏𝑏𝑖𝑖(𝑘𝑘)
𝑀𝑀

𝑘𝑘=1

= 1, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁

If the observations are continuous, then we employ a

continuous probability density function, instead of a set of
discrete probabilities. In this case we approximate the
probability density by a weighted sum of M Gaussian
distributions,

𝑏𝑏𝑖𝑖(𝑜𝑜𝑡𝑡) = � 𝑐𝑐𝑖𝑖𝑗𝑗

𝑀𝑀

𝑗𝑗=1

𝒩𝒩(𝜇𝜇𝑖𝑖𝑗𝑗 ,∑𝑖𝑖𝑗𝑗 , 𝑜𝑜𝑡𝑡)

where, cjm denotes the weighting coefficients, 𝜇𝜇𝑖𝑖𝑗𝑗 is the
mean vectors, and ∑𝑖𝑖𝑗𝑗 is the Covariance matrices.

cjm should satisfy the stochastic constrains,

𝑐𝑐𝑖𝑖𝑗𝑗 ≥ 0, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁, 1 ≤ 𝑚𝑚 ≤ 𝑀𝑀
and

� 𝑐𝑐𝑖𝑖𝑗𝑗

𝑀𝑀

𝑗𝑗=1

= 1, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁

(5) The initial state distribution, 𝜋𝜋 = {𝜋𝜋𝑖𝑖}, where

𝜋𝜋𝑖𝑖 = 𝑝𝑝{𝑞𝑞1 = 𝑖𝑖}, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁

Therefore we can just use the notation 𝜆𝜆 = (𝐴𝐴,𝐵𝐵,𝜋𝜋)to

denote an HMM with discrete probability distributions,
while 𝜆𝜆 = (𝐴𝐴, 𝑐𝑐𝑖𝑖𝑗𝑗 , 𝜇𝜇𝑖𝑖𝑗𝑗,∑𝑖𝑖𝑗𝑗,𝜋𝜋) denotes one with
continuous densities.

HMM makes the following assumptions.
(1)The Markov assumption

Xiping Liu i dr. Prikaz pretrage XML ključne riječi primjenom skrivenog Markovljevog modela

Tehnički vjesnik 23, 6(2016), 1649-1658 1653

As described in the definition of HMMs, transition
probabilities are defined as,

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑝𝑝{𝑞𝑞𝑡𝑡+1 = 𝑗𝑗|𝑞𝑞𝑡𝑡 = 𝑖𝑖}, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁

Therefore, we make the assumption that the next state

is dependent only upon the current state. This is known as
the Markov assumption.

(2) The stationarity assumption
This assumption assumes that state transition

probabilities are independent of the actual time when the
transitions take place. i.e.,

𝑝𝑝{𝑞𝑞𝑡𝑡1+1 = 𝑗𝑗|𝑞𝑞𝑡𝑡1 = 𝑖𝑖} = 𝑝𝑝{𝑞𝑞𝑡𝑡2+1 = 𝑗𝑗|𝑞𝑞𝑡𝑡2 = 𝑖𝑖}

for any t1 and t2.

(3) The output independence assumption
This assumption states that current output

(observation) is statistically independent of the previous
outputs (observations).

4.2 Using HMM

In our context, we model the keywords as

observations and each term in the database vocabulary as
a state. The HMM used is illustrated in Fig. 2.

Figure 2 The HMM model

Then, our problem is: given a sequence of

observations 𝑘𝑘0, 𝑘𝑘1,⋯ , 𝑘𝑘𝑙𝑙 , find the most likely state
sequence, i.e. the sequence of database terms 𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑙𝑙.

To infer using HMM, we need to know the HMM
parameters, i.e. the transition probability distribution A,
the emission probability distribution B and the initial state
distribution π. These parameters are usually inferred from
training data. In this work, we initialize the model
parameters using the database structure so that query
interpretation can be performed even without any training
data.

Computing transition probabilities
The transition probabilities are computed based on

the semantic relationships that exist between the database
terms. We assume the existence of a database summary,
where it summarizes the structure of the database, and for
each path, it summarizes the keywords appearing under
the path. An example of the summary is DataGuide+.

Then, the transition probabilities can be computed
from the summary. We divide the transitions between
database terms into three cases:

(1) Transition between T-terms. Given two T-terms ui
and uj, the transition probability 𝑝𝑝�𝑞𝑞𝑡𝑡+1 = 𝑢𝑢𝑖𝑖�𝑞𝑞𝑡𝑡 = 𝑢𝑢𝑖𝑖� or
simply denoted A(ui, uj) can be thought of as navigation
probability, i.e. the probability of navigating to uj from ui.
The navigation consists of several steps, and we assume
that 1) each step is independent of previous steps, and 2)
each step is a stochastic process. More specifically,

suppose the navigation path from ui to uj is
ui→ui+1→…→uj, then the navigation probability from ui
to uj is computed as

𝑝𝑝�𝑢𝑢𝑖𝑖 ⇢ 𝑢𝑢𝑖𝑖� = 𝑝𝑝(𝑢𝑢𝑖𝑖 → 𝑢𝑢𝑖𝑖+1)𝑝𝑝(𝑢𝑢𝑖𝑖+1 → 𝑢𝑢𝑖𝑖+2)⋯𝑝𝑝(𝑢𝑢𝑖𝑖−1

→ 𝑢𝑢𝑖𝑖)

𝑝𝑝(𝑢𝑢𝑖𝑖 → 𝑢𝑢𝑖𝑖+1) =
𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞(𝑢𝑢𝑖𝑖 → 𝑢𝑢𝑖𝑖+1)

𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞(𝑢𝑢𝑖𝑖)

where 𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞(𝑢𝑢𝑖𝑖 → 𝑢𝑢𝑖𝑖+1) is the frequency of the edge from
ui pointing to uj, and freq(ui) is the frequency of the node
ui in the summary.

The goal of the rules is to foster the transition
between database terms close to each other. If the path-
based distances between two T-terms are short, it means
they are closely related and thus are very likely to be
queried together.

(2) Transition between T-terms and C-terms. Given a
T-term ui and a C-term uj, the transition probability
𝑝𝑝�𝑞𝑞𝑡𝑡+1 = 𝑢𝑢𝑖𝑖�𝑞𝑞𝑡𝑡 = 𝑢𝑢𝑖𝑖� or A(ui, uj) is computed as the
probability of uj occurring under the context of ui. In
formal,

𝐴𝐴�𝑢𝑢𝑖𝑖,𝑢𝑢𝑖𝑖� =
𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝑢𝑢𝑖𝑖(𝑢𝑢𝑖𝑖)
∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝑢𝑢𝑖𝑖(𝑐𝑐)𝑐𝑐

where 𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝑢𝑢𝑖𝑖�𝑢𝑢𝑖𝑖� is the frequency of uj occurring under
the context of ui, and ∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝑢𝑢𝑖𝑖(𝑐𝑐)𝑐𝑐 is the sum of all C-
terms under the context of ui. According to this formula,
the more frequently a C-term appears in a certain T-term,
the higher the transition probability between the two
states.

(3)Transition between C-terms. Given two C-terms ui
and uj, the transition probability 𝑝𝑝�𝑞𝑞𝑡𝑡+1 = 𝑢𝑢𝑖𝑖�𝑞𝑞𝑡𝑡 = 𝑢𝑢𝑖𝑖� or
A(ui, uj) is taken as the similarity of the C-terms. The
commonly used similarity measures such as edit distance
measure can be employed here.

Computing emission probabilities
The emission probability is the conditional

distribution of the observed variables from a specific state.
Recall that 𝑏𝑏𝑖𝑖(𝑘𝑘) = 𝑝𝑝{𝑜𝑜𝑡𝑡 = 𝑣𝑣𝑘𝑘 | 𝑞𝑞𝑡𝑡 = 𝑗𝑗} denotes the
emission probability at the state of qt. We classify the
emission probability into two categories as follows.

(1) The state qt is a T-term. In this case, the emission
probability is the probability of a keyword occurring
under the element of qt. Thus can be computed as

𝑝𝑝{𝑜𝑜𝑡𝑡 = 𝑣𝑣𝑘𝑘 | 𝑞𝑞𝑡𝑡 = 𝑗𝑗} =
𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝑖𝑖(𝑣𝑣𝑘𝑘)

|𝐾𝐾𝐾𝐾(𝑗𝑗)|

where KU(j) is the union of keywords contained in the
texts in the element of j, and freqj(vk) is the frequency of
vk occurring in the element of j.

(2) The state qt is a C-term. In this case, the emission
probability is the probability of seeing the keyword vk
following the C-term j. Therefore, we define the
probability as the co-occurrence significance of vk and j.

In order to compute the co-occurrence significance of
two words ki and kj, we first observe the co-occurrence
frequencies freq(ki, kj), that is the number of times ki and
kj occurring under the same text unit. They are then

u0

k0

u1

k1

u2

k2

ul

kl

...

... keywords:

database
terms:

Interpreting XML keyword query using hidden Markov model Xiping Liu et al.

1654 Technical Gazette 23, 6(2016), 1649-1658

interpreted by a co-occurrence significance measure,
given individual frequencies freq(ki) of ki and freq(kj) of kj.
A number of measures have been developed in related
work, and we use the following measure in this work.

𝑠𝑠𝑖𝑖𝑠𝑠�𝑘𝑘𝑖𝑖 , 𝑘𝑘𝑖𝑖� =
𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞�𝑘𝑘𝑖𝑖 , 𝑘𝑘𝑖𝑖� −

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑘𝑘𝑖𝑖)⋅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑘𝑘𝑗𝑗�

𝑛𝑛2

�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑘𝑘𝑖𝑖)⋅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑘𝑘𝑗𝑗�

𝑛𝑛2

This measure is known as the z-score, where n is the

number of text units in the document.
Then, when the state qt is a C-term, the emission

probability is

𝑝𝑝{𝑜𝑜𝑡𝑡 = 𝑣𝑣𝑘𝑘 | 𝑞𝑞𝑡𝑡 = 𝑗𝑗} = 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗, 𝑣𝑣𝑘𝑘)

Setting the initial state probabilities
At this step, we need to estimate the probability of

each initial state. Recall that each state in our setting is a
database term, a T-term or a C-term. We first discuss the
initial state probability of a T-term state.

We understand the state probability of a T-term state
as the importance of the T-term in the document, and then,
we model the importance of a T-term in a way analogue
to the PageRank algorithm. The basic idea is similar to
the XRank system.

The objective importance of a T-term is computed
based on the hyperlinked structure of XML documents. It
is similar to PageRank, but is computed at the granularity
of an element and takes nested structure of XML elements
into account. It retains the original ranking semantics for
HTML but is refined to considering the differences
between computing ranks for HTML and XML
documents.

An intuitive definition of PageRank algorithm shows
how to measure the importance or influence of a web
page on the Internet. The basic intuition is that, if a
webpage is linked to by many other webpages, then it is
important; if a webpage is linked by other important
pages, then it is also important; if a webpage and many
other pages are linked by an important page, then it shares
the importance of the webpage with others.

The method of computing PageRanks [9] of HTML
documents is to apply the following formula repeatedly.

𝑃𝑃𝑃𝑃(𝑢𝑢) = (1 − 𝑑𝑑) + 𝑑𝑑 �
𝑃𝑃𝑃𝑃(𝑣𝑣)
𝑁𝑁(𝑣𝑣)

𝑣𝑣∈𝐵𝐵(𝑢𝑢)

where
 PR(u) is the PageRank of webpage u,
 B(u) is the set of webpages that backlink to u,
 PR(v) is the PageRank of page v which links to page u,
 N(v) is the number of outbound links on page v and
 d is a damping factor which can be set between 0 and 1.

Now we extend the PageRank algorithm to XML

documents. An XML database can be simply modelled as
a directed graph G=(N,CE, HE) where N refers to nodes
representing XML elements and values, CE is the set of
containment edges (parent-child edges) and HE is the set

of hyperlink edges. The rank e(v) of an element v is
computed as follows.

𝑓𝑓(𝑣𝑣) =
1 − 𝑑𝑑1 − 𝑑𝑑2 − 𝑑𝑑3
𝑁𝑁𝑑𝑑 × 𝑁𝑁𝑑𝑑𝑓𝑓(𝑣𝑣) + 𝑑𝑑1 �

𝑓𝑓(𝑢𝑢)
𝑁𝑁ℎ(𝑢𝑢)

(𝑢𝑢,𝑣𝑣)∈𝐻𝐻𝐻𝐻

+

𝑑𝑑2 �
𝑓𝑓(𝑢𝑢)
𝑁𝑁𝑐𝑐(𝑢𝑢)

(𝑢𝑢,𝑣𝑣)∈𝐶𝐶𝐻𝐻

+ 𝑑𝑑3 � 𝑓𝑓(𝑢𝑢)
(𝑢𝑢,𝑣𝑣)∈𝐶𝐶𝐻𝐻−1

where Nd is the total number of XML documents, Nde(v) is
the number of XML elements containing v, Nh(v) is the
number of out-going hyperlinks from document v, Nc(u) is
the number of sub-elements of u, CE−1 is the set of
reverse containment edges, d1is the probabilities of
navigating through hyperlinks, d2 and d3 are the
probabilities of navigating through forward and reverse
containment edges, respectively.

Like the random walk interpretation of the PageRank
algorithm [9], the formula also has a general
interpretation in the context of random walks over XML
graphs. Consider a random surfer over a hyperlinked
XML graph. At each step, the surfer visits an element e,
and chooses an action from the following choices: (1) he
jumps to a random element within a random document
with probability 1-d1-d2-d3, (2) he follows a hyper-link
from e with probability d1, (3) he goes down a
containment edge to one of e’s sub-elements with
probability d2, and (4) he ascends to e’s parent element
with probability d3. In this model, e(v) is exactly the
probability of finding the random surfer in element v.

While the ranking formula computes the rank of a
specific element, what we need is a measure of the
objective importance of a T-term. Note that a T-term is
actually an element tag. Therefore, we aggregate the ranks
of all elements labelled with a T-term t to get the
importance of t. That is

𝑝𝑝{𝑞𝑞1 = 𝑖𝑖} = � 𝑓𝑓(𝑣𝑣)

𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙(𝑣𝑣)=𝑖𝑖

where label(v) is the label of element v.

Now we discuss the initial state probability of a C-
term state. Note that a C-term is actually a keyword in the
database, therefore, the initial state probability of a C-
term t is actually the importance or weight of a keyword t
in the database.

Initially, we may still interpret the importance of a
keyword t in the context of random walk through XML
graph. To get a keyword t, a random surfer will first visit
a leaf element e, and then pick the keyword t in the
content of e. Therefore, the probability 𝑝𝑝𝑓𝑓𝑜𝑜𝑏𝑏(𝑡𝑡 ∈ 𝑓𝑓) of
reaching t under e is

𝑝𝑝𝑓𝑓𝑜𝑜𝑏𝑏(𝑡𝑡 ∈ 𝑓𝑓) = 𝑝𝑝𝑓𝑓𝑜𝑜𝑏𝑏(𝑓𝑓) × 𝑝𝑝𝑓𝑓𝑜𝑜𝑏𝑏(𝑡𝑡|𝑓𝑓)

where the probability prob(e) is the probability of
reaching element e, and prob(t|e) the probability of
picking up t under element e. The prob(e) can be taken as
the importance of the element e in the graph, and prob(t|e)
can be computed using tf*idf measures, as follows.

Xiping Liu i dr. Prikaz pretrage XML ključne riječi primjenom skrivenog Markovljevog modela

Tehnički vjesnik 23, 6(2016), 1649-1658 1655

𝑝𝑝𝑓𝑓𝑜𝑜𝑓𝑓(𝑡𝑡|𝑓𝑓) = �1 + 𝑙𝑙𝑜𝑜𝑠𝑠 𝑡𝑡𝑓𝑓𝑡𝑡,𝑓𝑓� × 𝑙𝑙𝑜𝑜𝑠𝑠
𝑁𝑁
𝑑𝑑𝑓𝑓𝑡𝑡

where tft,e is the frequency of t in element e, N is the total
number of content units in the database, dft is the number
of content units containing the keyword t.

Given a keyword t, it may appear under a lot of leaf
elements. Therefore, a natural way to assess the
importance of a keyword t is to aggregate the importance
of t under all leaf elements containing the keyword. That
is to say,

𝑝𝑝𝑓𝑓𝑜𝑜𝑏𝑏(𝑡𝑡) = �𝑝𝑝𝑓𝑓𝑜𝑜𝑓𝑓(𝑡𝑡|𝑓𝑓)

𝑡𝑡∈𝑓𝑓

An alternative way to compute 𝑝𝑝𝑓𝑓𝑜𝑜𝑏𝑏(𝑡𝑡) is to perform

the steps above on the summary of the database, where
contents with the same path are collapsed together. This
version of 𝑝𝑝𝑓𝑓𝑜𝑜𝑏𝑏(𝑡𝑡) can be computed much faster because
the summary is very small in size.

4.3 Decoding algorithm

The aim of decoding is to discover the hidden state

sequence that was most likely to have produced a given
observation sequence. We use the List Viterbi algorithm
[10], which is a generalization of the well-known Viterbi
algorithm, to find the single best state sequence for an
observation sequence.

5 Generating SSQs

In this section, we present an algorithm of generating

SSQs based on the sequence of terms generated by HMM
model.

The algorithm first decodes the keyword query into a
sequence of database terms, then it generates a set of
interpretations (SSQs) based on the database terms. Given
a sequence of database terms, we can infer the SSQs
based on some observations about query units and SSQ.

Observation 1. Given a keyword query Q, let QS be a
SSQ derived from Q, and q be a query unit in QS, the C-
terms in q (if any) are consecutive in Q.

Example 2. If a user wants to find articles about
"expert" on an "info system" journal, he probably poses a
query like "journal info system article expert" or "article
expert journal info system", or "info system journal article
expert" etc. Instead, he is unlikely to issue the query
"journal info expert article system". That is to say, "info"
and "system" will be kept together. The reason is that
"info system" are from the same query unit, so they
cannot be split up.

Observation 2. Given a keyword query Q, let QS be
an SSQ derived from Q. For any query unit q in QS, the
terms in q appear together in Q.

Observation 1 states that the C-terms in any query
unit appear together in Q, now Observation 2 goes further
to state that all terms in a query unit are together. In other
words, C-terms in a query unit should neighbour the T-
terms from the same query unit in Q.

Example 3. In the query "journal transaction database
article xml search", we can decompose the query into two

query units q(journal, transaction database) and q(article,
xml search). In each unit, the T-terms appear together
with the C-terms. For that query intention, one may also
use the query "article xml search journal transaction
database" to express the query intention; on the other
hand, one would not pose the query "journal article xml
search transaction database", where terms from the same
query units are separated.

Figure 2 Algorithm of generating SSQs

The process of generating SSQs is sketched in Fig. 2.

It first decodes the keyword query and gets the roles of
the terms. The keyword query is first segmented into
several groups according to the roles of the terms. Each
group is composed solely of C-terms or T-terms. Then, a
SSQ is constructed, where each query unit is made from a
group. The SSQ is an initial raw SSQ, the algorithm then
tries to derive more SSQs from the raw SSQ. It first puts
the SSQ into a queue. For each SSQ in the queue, it tries
to merge the neighbouring query units. A pair of query
units can be merged if one has empty context and the
other has empty C-terms. Every time a pair of
neighbouring query units is successfully merged, a new
SSQ is generated and pushed to the queue for further
merge. If no query units in an SSQ can be merged, the
resulting SSQ will be refined by the function refine,
which refines a SSQ to make sure it is valid with respect
to the observations. For each query unit qi, the function
checks if it is valid, if not, the function splits it up to
multiple ones substituting for qi. We use a running
example to explain the process.

Example 4. Take query "journal transaction database
article xml search" as an example. Suppose the "journal"
and "article" are T-terms. The terms are first segmented
into four groups: C1 ("journal"), C2 ("transaction
database"), C3("article") and C4 ("xml search"). Based on
these groups, a raw SSQ is constructed, i.e. {q(journal,
NULL), q(NULL, transaction database), q(article, NULL),
q(NULL, xml search)}. Then, the following SSQs will be
generated in order: {q(journal, transaction database),

Interpreting XML keyword query using hidden Markov model Xiping Liu et al.

1656 Technical Gazette 23, 6(2016), 1649-1658

q(article, xml search)}, {q(journal, NULL), q(article,
transaction database), q(NULL, xml search)}. These
queries are valid, so we finally translate the original query
to three SSQs.

6 Experimental studies

In this section, we conduct a set of experiments to

verify the SSQ model and the proposed methods.

6.1 Experimental setup

We have implemented the proposed method. We use
the keywords inverted lists to store the occurrences of
keywords. The inverted lists are built by Lemur toolkit
[6]. All algorithms are implemented in C++. The
experiments are conducted on a machine with Intel
2.30GCPU and 2G RAM running Windows.

We use two real datasets: DBLP 230M [7] and
Mondial [8]. We test several keyword queries for each
dataset. The queries are listed in Tab. 1. Queries DQ1-
DQ10 are designed for DBLP dataset, MQ1-MQ10 for
Mondial dataset. These queries exhibit different features
and selectivity. Each query is actually transformed from a
set of structured queries, thus the corresponding database
terms can be inferred manually, and we can use them as
the ground truth. For example, in DQ1: "journal ieeetran
article pattern recognition", the desired sequence of
database terms should be "journal(T) ieee(C) tran(C)
article(T) pattern(C) recognition(C)", where "T" refers to
a term from schema vocabulary, and "C" refers to a term
from domain vocabulary.

Table 1 Query Set

No. Query
DQ1 journal ieeetran article pattern recognition
DQ2 article title XML database
DQ3 article cluster web search results
DQ4 xml document index query
DQ5 journal vldb year 2004
DQ6 title search score rank
DQ7 title software journal ieee computer
DQ8 article author jimgray
DQ9 article image retrieval feedback
DQ10 article title database transaction
MQ1 country language french
MQ2 arab organization
MQ3 world trade organization
MQ4 city yorkcanada
MQ5 new york
MQ6 religion muslim
MQ7 republic government
MQ8 city Mexico city
MQ9 continent America country
MQ10 located_atsea

6.2 Experimental results

We report the experimental results in this section.
1) Effectiveness of HMM
First, we check if the sequences of database terms

generated by the HMM model are correct. Note that the
HMM model generates a set of sequences, each with a

probability. We examine the top 3 sequences, ordered by
their probabilities, and then examine if they are or include
correct sequence. The result is shown in Fig. 3. We can
see that most of the time, the sequences with best
probabilities are exactly what we want. If we examine the
top 2 sequences, we find that they all contain the desired
sequence on DBLP dataset. For Mondial dataset, the top 3
sequences contain the desired sequence. From this set of
experiments, we can see that the HMM model used to
decode the keyword query is effective.

Figure 3The effectiveness of the HMM model

2) Effectiveness of SSQ generation algorithm
Then, we check if the algorithm used to generate SSQ

is effective, i.e., if it generates the desired SSQ. We use
the correct sequence of database terms as input, and then
check if the generated SSQs include desired SSQ. The
measures we use in the experiments are precision and
recall. The formula is as follows.

𝑝𝑝𝑓𝑓𝑓𝑓𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑝𝑝 =
𝑝𝑝𝑢𝑢𝑚𝑚𝑏𝑏𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝑑𝑑𝑓𝑓𝑠𝑠𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑 𝑄𝑄𝑄𝑄𝑄𝑄 𝑠𝑠𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑎𝑎𝑡𝑡𝑓𝑓𝑑𝑑

𝑝𝑝𝑢𝑢𝑚𝑚𝑏𝑏𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝑠𝑠𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑎𝑎𝑡𝑡𝑓𝑓𝑑𝑑 𝑄𝑄𝑄𝑄𝑄𝑄

𝑓𝑓𝑓𝑓𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙 =
𝑝𝑝𝑢𝑢𝑚𝑚𝑏𝑏𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝑑𝑑𝑓𝑓𝑠𝑠𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑 𝑄𝑄𝑄𝑄𝑄𝑄 𝑠𝑠𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑎𝑎𝑡𝑡𝑓𝑓𝑑𝑑

𝑝𝑝𝑢𝑢𝑚𝑚𝑏𝑏𝑓𝑓𝑓𝑓 𝑜𝑜𝑓𝑓 𝑑𝑑𝑓𝑓𝑠𝑠𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑 𝑄𝑄𝑄𝑄𝑄𝑄

The result is shown in Fig. 4. The precision and recall

are averaged over all queries on the datasets. For most of
the query, there is only one desired SSQ, and they have
been successfully collected, that's why the recall is 1 in
both datasets. The precision is not high on DBLP dataset,
because each configuration can generate several possible
SSQs. This problem can be approached by using a
ranking function to rank the SSQs, so that the most
probable SSQs will be discovered. The ranking of the
SSQs is not the topic of this paper.

Figure 4 The effectiveness of the algorithm

7 Related work

Extensive research has been done on XML keyword
search. We will review some of them in this section.

0%
20%
40%
60%
80%

100%

DBLP Mondial

top-1 top-2 top-3

0
0,2
0,4
0,6
0,8

1

DBLP Mondial

precision recall

Xiping Liu i dr. Prikaz pretrage XML ključne riječi primjenom skrivenog Markovljevog modela

Tehnički vjesnik 23, 6(2016), 1649-1658 1657

As the semantics of an XML keyword query is vague,
a lot of researches are devoted to the query semantics
interpretation. Up to now, a number of query semantics
has been proposed, most of them are based on LCA
semantics. According to the LCA semantics, an answer is
the lowest common ancestor of matches of query
keywords. The basic LCA semantics is deficient, so many
variants are proposed. XRank [12] and ELCA [13]
connect keyword matches by the LCA nodes that contain
at least one occurrence of all keywords, but it excludes
the occurrences of keywords in sub-elements that already
contain all keywords. XSEarch [14] is based on the
concept of interconnection. Two keyword matches are
interconnected if the path from these two nodes and to
their LCA may not contain distinct nodes with the same
labels except for themselves. Similar concept can be
found in [15]. In [4], Y. Xu et al propose the notion of the
SLCA which is an extension of LCA. An SLCA is a
smallest LCA. Here "smallest" means that it does not
have further LCA nodes among their descendants. MLCA,
proposed in [16], is very similar to SLCA but it has
additional constraints on the node labels. Recently, [19]
propose MCN to capture the relationships of the query
keywords from XML document graph by considering
reference relationship. XBridge [20] proposes an
estimation-based approach to compute the promising
result types for a keyword query.

In order to search effectively, many researchers try all
efforts to analyse the XML documents, e.g. building
various indexes, pre-computing a lot of statistics, etc.
Recently, analysis of query has attracted some attention.
XSeek [11] classifies query keywords into two categories:
search predicates and return nodes, and inference rules are
also proposed. Similarly, XReal also notices that a
keyword can have different roles: it can appear both as an
XMLtag name and as a text value of some other node.
However, these studies do not go further to find out the
structure hidden in the query. Nalix [17] was proposed to
build a natural language query interface for a database. It
supports a large class of natural language queries which
can be translated into structured, e.g. XQuery, expressions.
Our method differs from Nalix in that we interpret a
keyword query in a lightweight way: we model a keyword
query as a set of semi-structured query; we use HMM
instead of NLP techniques to parse the keyword query. As
a result, our method will be more efficient and suitable for
keyword search.

Another research field is the ranking of XML search
results. XRank [12] mimics PageRank in that it considers
the XML document as a graph and computes the rank of
elements based on the edges linking the element.
XSEarch [14] employed the classical tf*idf formula in IR
field. EASE [18] considers not only tf*idf-based IR
ranking, but also structural compactness-based DB
ranking. XReal [22] computes the confidence of node
types as search for/search via nodes, and designs a novel
XMLTF*IDF similarity ranking scheme. It also takes the
co-occurrence of keywords into consideration. Our work
is orthogonal to these works.

8 Conclusion

In this paper, we propose a new query model (SSQ)
for XML keyword search, which interprets a keyword
query as a set of semi-structured queries. We take two
steps to infer the SSQs from a keyword query. First, we
map the keyword query into configurations, i.e. sequences
of database terms, where a database term is from schema
vocabulary or domain vocabulary. We propose a
probabilistic approach based on a Hidden Markov Model
to compute the best mapping of the query keywords into
the database terms. Second, we generate SSQs based on
the configurations. Experimental results verified the
effectiveness of our method.

Acknowledgements

This work was partially supported by Natural Science
Foundation of China (NSFC) under Grant No. 61363010,
61173146, 61363039, 61662027 and 61262033, and the
Science and Technology Project of Education Department
of Jiangxi Province of China under Grant No. GJJ12732.

9 References

[1] Chen, Y.; Wang W.; Liu, Z.; Lin, X. Keyword Search on

Structured and Semi-structured Data. // In Proceedings of
SIGMOD 2009, pp. 1005-1010. DOI:
10.1145/1559845.1559966

[2] Coffman, J. An Empirical Performance Evaluation of
Relational Keyword Search Techniques. // IEEE
Transactions on Knowledge and Data Engineering. 26,
1(2014), pp. 1041-4347. DOI: 10.1109/TKDE.2012.228

[3] Manning, C. D.; Raghavan, P.; Schtze, H. Introduction to
Information Retrieval. Cambridge University Press, 2008.
DOI: 10.1017/CBO9780511809071

[4] Xu, Y.; Papakonstantinou, Y. Efficient Keyword Search for
SmallestLCAs in XML Databases. // In Proceedings of
SIGMOD 2005, pp. 537-538.

[5] Aho, A. V.; Hopcroft, J. E.; Ullman, J. D. On finding
lowest common ancestors in trees. // In Proceedings of
ACM STOC 1973, pp. 115-132.

[6] The Lemur Toolkit for Language Modelling and
Information Retrieval. 2013. URL:www.lemurproject.org/.

[7] Ley, M. DBLP Bibliography. 2013. URL:
www.informatik.uni-trier.de/ley/db/.

[8] Miklau, G. The Mondial dataset. 2002. URL:
http://www.cs.washington.edu/research/xmldatasets/.

[9] Brin, S.; Page, L. The anatomy of a large-scale hypertextual
Web search engine. // Computer Networks and ISDN
Systems. 30, (1998), pp. 107-117. DOI: 10.1016/S0169-
7552(98)00110-X

[10] Seshadri, N.; Sundberg, C.-E. W. List Viterbi decoding
algorithms with applications. // IEEE Transactions on
Communications. 42, 234(1994), pp. 313-323. DOI:
10.1109/TCOMM.1994.577040

[11] Liu, Z.; Chen, Y. Identifying meaningful return information
for XML keyword search. // In Proceedings of SIGMOD
2007, pp. 329-340. DOI: 10.1145/1247480.1247518

[12] Guo, L.; Shao, F.; Botev, C. XRANK: Ranked Keyword
Searchover XML Documents. // In Proceedings of
SIGMOD 2003, pp. 16-27. DOI: 10.1145/872757.872762

[13] Xu, Y.; Papakonstantinou, Y. Efficient LCA based keyword
search in XML data. // In Proceedings of EDBT 2008, pp.
535-546. DOI: 10.1145/1353343.1353408

Interpreting XML keyword query using hidden Markov model Xiping Liu et al.

1658 Technical Gazette 23, 6(2016), 1649-1658

[14] Cohen, S.; Mamou, J.; Kanza, Y. XSEarch: A Semantic
Search Engine for XML. // In Proceedings of VLDB 2003,
pp. 45-56. DOI: 10.1016/b978-012722442-8/50013-6

[15] Li, G.; Feng, J.; Wang, J. Effective keyword search for
valuablelcas over XML documents. // In Proceedings of
CIKM 2007, pp. 31-40.

[16] Li, Y.; Yu, C.; Jagadish, H. V. Schema-Free XQuery. // In
Proceedings of VLDB 2004, pp. 72-83. DOI: 10.1016/b978-
012088469-8.50010-3

[17] Li, Y.; Yang, H.; Jagadish, H. V. NaLIX: A generic natural
language search environment for XML data. // ACM Trans.
Database Syst. 32, 4(2007). pp. 30. DOI:
10.1145/1292609.1292620

[18] Li, G.; Ooi, B. C.; Feng, J. EASE: an effective 3-in-1
keyword search method for unstructured, semi-structured
and structured data. // In Proceedings of SIGMOD 2008, pp.
903-914. DOI: 10.1145/1376616.1376706

[19] Zhou, J.; Bao, Z.; Ling, T. W. MCN: A New Semantics
Towards Effective XML Keyword Search. // In
Proceedings of DASFAA 2009, pp. 511-526. DOI:
10.1007/978-3-642-00887-0_45

[20] Li, J.; Liu, C.; Zhou, R.; Wang, W. Suggestion of
promising result types for xml keyword search. // In
Proceedings of EDBT 2010, pp. 561-572. DOI:
10.1145/1739041.1739108

[21] Evert, S. The Statistics of Word Concurrences: Word Pairs
and Collocations. // PhD thesis, University of Stuttgart,
Stuttgart, Germany (2004).

[22] Bao, Z.; Ling, T. W.; Chen, B. et al. Effective XML
keyword search with relevance oriented ranking. // In
Proceedings of ICDE2009, pp. 517-528 DOI:
10.1109/icde.2009.16

Authors’ addresses

Xiping Liu, Dr. in Computer Science
School of Information Technology,
Jiangxi University of Finance and Economics,
No. 169, East Shuanggang Road,
Nanchang 330013, Jiangxi, P. R. China
E-mail: lewislxp@gmail.com

Changxuan Wan, Prof. in Computer Science
School of Information Technology,
Jiangxi University of Finance and Economics,
No. 169, East Shuanggang Road,
Nanchang 330013, Jiangxi, P. R. China
E-mail: wanchangxuan@263.net

Dexi Liu, Dr. in Computer Science
School of Information Technology,
Jiangxi University of Finance and Economics,
No. 169, East Shuanggang Road,
Nanchang 330013, Jiangxi, P. R. China
E-mail: dexi.liu@163.com

	1 Introduction
	2 Motivation
	3 The SSQ model
	4 Computing configurations using a HMM
	5 Generating SSQs
	6 Experimental studies
	6.1 Experimental setup
	6.2 Experimental results

	7 Related work
	8 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

