
International Journal of DIGITAL TECHNOLOGY & ECONOMY Volume 1 | Number 1 | 2016

| 43 |

An Application of Fuzzy Inductive Logic Programming for
Textual Entailment and Value Mining

Sandro Skansi Branimir Dropuljić Robert Kopal

IN2data
Data Science Company Ltd.,

Zagreb, Croatia

IN2data
Data Science Company Ltd.,

Zagreb, Croatia

IN2data
Data Science Company Ltd.,

Zagreb, Croatia

sandro.skansi@in2data.eu branimir.dropuljic@in2data.eu robert.kopal@in2data.eu

Abstract: The aim of this preliminary report is to give an overview of textual
entailment in natural language processing (NLP), to present our approach
to research and to explain the possible applications for such a system.
Our system presupposes several modules, namely the sentiment analysis
module, the anaphora resolution module, the named entity recognition
module and the relationship extraction module. State-of-the-art modules
will be used but no amount of research will go into this. The research fo-
cuses on the main module that extracts background knowledge from the
extracted relationships via resolution and inverse resolution (inductive
logic programming). The last part focuses on possible economic applica-
tions of our research.

Keywords: natural language processing, value mining, textual entailment, inductive
logic programming

Preliminary report / Prethodno priopćenje
Manuscript received: 2016-04-25

Revised: 2016-05-29
Accepted: 2016-05-31

Pages: 43 - 51

An Application of Fuzzy Inductive Logic Programming, Skansi et al. [43-51]

| 44 |

INTRODUCTION
Natural language processing is an old part of artificial intelligence (AI), which is the old-
est and most prolific field of computer science. Natural language processing, as a goal
for AI has been stressed at the Dartmouth conference in 1956 [18], and received a sub-
stantial boost in the Cold War in an effort to make feasible machine translation systems.
AI during this period was catering to NLP. These were mainly crisp rule based systems
with obvious shortcomings. By the early 1980’s, machine learning (ML) received a new
boost and applications to NLP were abundant [9]. During the 1990’s, a related field,
information retrieval (IR) came of age with the advent of search engines.
NLP today relies heavily on both ML and IR. The advent of user-friendly computing
(where there is no requirement on precision placed on the user), advocated mainly by
the tech giants brought new funding to NLP, and various new areas surfaced.
Big Data offered a major paradigm shift. As Halevy, Norvig and Pereira underlined [3],
today much more focus is placed on data than on algorithms. Although the author begs
to differ, the fundamental idea holds: today’s algorithms need to be first and foremost
scalable, and then, only at a distant second place, they need to be precise. This is best
illustrated by the stochastic gradient descent example, where it is better (in terms of
overall performance) to have a quick and suboptimal method for finding local minima,
and reiterate this process with random initial parameters for thousands of times, than
to have a slow but excellent method for finding the global minimum. This change in
paradigm only boosted NLP.
Simpler and quicker algorithms and architectures were developed, which fed on data
rather than being made by a skilled programmer. An excellent example is the now wide-
ly used sentiment analysis (SA) algorithm1.
The algorithm first takes the text, parses it to a bag or even set, discards all the stop-
words (sometimes this is done by length), uses an optional stemmer and runs a Naïve
Bayes classifier on it, or a linear regression if there is a need for a fine grained classi-
fication. The most common dataset used is the Movies Reviews and Amazon reviews,
where the stars are mapped to votes (-2,-1,0,1,2) or in case of a binary classification, 1
and 2 stars are mapped to -1, and 4 and 5 stars to 1, and 3 star reviews are discarded.

Figure 1: Amazon comment example.
1 We use a singular voice, although there are many algorithms for SA, but this approach seems to be the

most commonly used with excellent results.

International Journal of DIGITAL TECHNOLOGY & ECONOMY Volume 1 | Number 1 | 2016

| 45 |

As an example take the review shown on Figure 1: this review can be trimmed to a list
by simply using the following python code:
output=[x for x in set(initialText.lower().split()) if len(x)>2]

Which produces the following output (combined with the 4 star translation in integers,
which depending on the information source might require quite sophisticated comput-
er vision algorithms):
[[‘and’, ‘old’, ‘amateurish.’, ‘deathstar’, ‘character’, ‘some’, ‘second’,
‘mask.’, ‘have’, ‘chewbaca’, ‘fun.’, ‘seem’, ‘seemed’, ‘humor’, ‘needed’,
‘telegraphed’, ‘movie.’, ‘should’, ‘better’, ‘acting’, ‘production’, ‘too’,
‘way’, ‘new’, ‘was’, ‘good.’, ‘nice’, ‘never’, ‘1/2’, ‘than’, »didn’t«, ‘solo’,
‘welcome’, ‘retread’, ‘ford’, ‘but’, ‘characters’, ‘half’, ‘fisher’, ‘removed’,
‘with’, ‘great.’, ‘scene’, ‘like’, ‘return.’, ‘back.’, ‘stars.’, ‘ren’, ‘1-3.’,
‘were’, ‘fresh’, ‘the’, ‘having’, ‘first’],1]

The idea behind it is that there will be enough information to learn the relevant infor-
mation about sentiment in general even though it is genre specific (movies, books). E.
g. by offering a »bad movie« and a »good movie« review, the classifier learns to ignore
»movie« and just use the »good« and »bad«, so the classifier trained on these datasets
generalizes well despite it being trained on a particular topic. In this way it is possible
to efficiently process a large number of reviews. The same is true for most fragmentary
NLP tasks.
The topic of textual entailment is different. The problem is the explosive growth of the
searchspace when considering background premises. The first formulation of this task
was using rule-based systems of the 1970’s, and a unified account was given by Norvig
in 1986 [8]. These early systems did not work well due to the limited technology of the
time, and in no small part, due to the fact that probabilistic approaches where only ru-
dimentary for NLP (Norvig was one of the pioneers, as well as Manning, who afterwards
systematized the field in [5]). The revival came in 2004 with the paper [2].
Norvig in his debate with Chomsky [15] points out that NLP is inherently probabilistic.
But we beg to differ. A probabilistic model gives a probability, but then it collapses to
right/wrong when the event happens. E. g. the proposition »It will rain tomorrow« with
a probability of 90% is probabilistic. But the proposition »By »sometimes« people mean
X« which is true in 90% of the cases is not probabilistic but fuzzy, since there is no future
state that will collapse the 90% to a »True« or »False«, as there is in the probabilistic case.
This might seem like a minor distinction, but it is an important one, since probability
tends to wait and revise, while fuzzy sets try to work with the information at hand, and
methodology diverges considerably.
Despite the differences, they both improve drastically on computational speed, since it
can be precisely formulated in which order to search, in terms of trimming the search
tree.
This brings us back to the problem of the exponential increase in size of the search
space. The list for SA shown above has the text and a number indicating the sentiment.
If instead of the sentiment we search for all hidden premises by ML, we would need to
have a set of all possible premises at hand, and append all their possible combinations

An Application of Fuzzy Inductive Logic Programming, Skansi et al. [43-51]

| 46 |

to the text (as features), and tag the result with 1 or 0. Even for moderate dataset of
10000 Facebook comments and 100 premises, this would result in more than a googol-
plex (billions of times more than the number of subatomic particles in the universe).
This means that a different approach must be undertaken. The revival of textual entail-
ment was slow, and the first tries were very modest. I came in the form of recognizing
textual entailment, where the algorithm took two texts as a tuple, and the outputted a
simple yes/no according to whether the first test entailed the second. A quick addition
was the degree of confidence, so the Boolean output was recast in probability. These
algorithms used primarily the similarity of the two texts. E.g.: »The guy sitting in the
White House is great« and »Obama rules FTW« would get a 0% of entailment, even
though they are almost equivalent statements. Even stemming and string distance does
not offer much in the way of optimization.
This sets the stage for our research. We want to find the hypotheses needed for one
text to entail the other, but we focus on a subproblem: what does a text need to imply
a proposition. A proposition is the meaning of a sentence, so e.g. »The snow is white«
and »La neve e’ bianca« share the same proposition. In our case, for each topic subject
we have two propositions. The debate starts with a question, and the answers to the
question form the two propositions. E. g. if the question of the discussion is »Is Obama
a good president?« the possible answers »Obama is a good president« and »Obama is
not a good president«.

FORMATTING THE DATA
In this section we explain how our module will receive data. Since this is report on the
research in progress for our module, this section will constitute the core part of this
paper and explain how to format data for our textual entailment module.
In the context of our textual entailment algorithm all of this counts as preprocessing,
although this is not text preprocessing in the usual sense, since it encompasses many
advanced algorithms. The overall process can be found in the picture below.
We will explain the modules in more detail. The raw text in the chart refers to text that
has been collected and segmented in individual comments with an unused delimiter
(e.g. | might be a good choice since it seldom appears in natural language texts). But
asides from this we assume no preprocessing in the raw text part. Since the design of
the parsing module is one of the most challenging tasks, and depends on the needs of
other modules, we will address this module last.
For named entity recognition one of the standard approaches today is via conditional
random field sequence models (cf. [11]) and we will use the Stanford NER software2.
For sentiment analysis a simple approach as the one described above would serve our
purpose well. Top performing algorithms for anaphora resolution can be found in [6],
and the Lappin and Leass algorithm for pronominal anaphora resolution is still widely
used [4]. Pronominal anaphora resolution is the most common type of anaphora reso-
lution, resolving pronouns, and it is the one we need.
2 available via GNU license from http://nlp.stanford.edu/software/CRF-NER.shtml

International Journal of DIGITAL TECHNOLOGY & ECONOMY Volume 1 | Number 1 | 2016

| 47 |

Raw text Parsing

Tidy-up
module

Named Entity
Recognition

Anaphora
Resolution

Sentiment
Analysis

Relationship
Extraction

Figure 2: System architecture.

Relationship extraction is technically a part of IR, and not of NLP, and this means it
received quite a bit more attention, and the most influential software is IBM Watson
[17]. The main results in relationship extraction today are based on kernel methods for
relationship extraction first proposed in [13]. Modern approaches build on this and em-
phasize hybrid methods [10]. Most of the system used are used for one-off relationship
extraction, but there has been a number of interesting papers dealing with automatic
evaluation (and reevaluation) of industrial relation extraction systems, and we single
out the excellent paper from Bronzi, Guo, Mesquita, Barbosa and Merialdo [1].
The aim of our research is not to produce state of the art production software but
to make a European Commission Technology Readiness Level 5 (TRL 5) [16], since the
current level for the integrated system is TRL2. As such, we do not optimize individual
modules, and leave this open for further research.
One last thing that needs to be explicated. We will not train the different modules with
our raw text data, but on separate datasets designed to enable optimal training of the
separate modules, since they will offer superior performance with the modules for our
purpose.

PROTOTYPE TIDY-UP MODULE
Our main manifold module is nicknamed the Tidy-up module. The Tidy-up module is a
helper module that connects the other modules. The purpose of this module is to take
the results from the previous modules and the raw text and reformat the information

An Application of Fuzzy Inductive Logic Programming, Skansi et al. [43-51]

| 48 |

in extended relations. E.g. from: »The character of Ren was needed but he should never
have removed the mask«, the modules extract a positive sentiment, »Ren« and »mask«
as named entities, »Ren« is substituted in place of »he« and a simple calculus (based on
logical equivalence) yields For(Ren) and For(RenWithMask). Here we go in deep granu-
larity with the second statement, but this kind of granularity is not needed.
The Tidy-up module is the main focus of current development and the biggest challenge
in our research. The worst case scenario is that we need to employ a brute forcing ML
approach, but we hope to get a more precise module. The finished Tidy-up module will
take as input the information from the other modules and return the local logical repre-
sentation of the key values and propositions expressed in the text.

TEXTUAL ENTAILMENT MODULE
Our main module receives as input relations. We will need a cleaner example. Suppose
the starting sentence is that speaker S utters is »I don’t like Obama because he doesn’t
like guns« is to be reduced to ForS(Guns) by the Tidy-up module.
We will describe the textual entailment module in detail. The basic module contains a
set of axioms, the extracted statement and the topic subject PRO/CON as a goal (Image
3) to be interpreted as a literal in the engine (we use resolution and inductive logic
programming [7]):

Axiom 1

Axiom 2
For(Guns)

CON Obama good

Figure 3: Inductive Logic Programming, general setting.

This is the ideal case. The problem is that the set of axioms might not be complete. We
have two possible strategies here: (i) we could augment the axioms with a new axiom
(of the form P=>Q), or (ii) we could add a reason (of the form P), which will be used as
an auxiliary statement.
The main problem with (i) is that a new axiom must connect P and Q, and this connec-
tion is either trivial (in the sense that it connects a needed P with a random Q found in
other axioms), or highly complex. To see this complexity take the axiom set to be {A=>G,

International Journal of DIGITAL TECHNOLOGY & ECONOMY Volume 1 | Number 1 | 2016

| 49 |

C=>D} and that the goal is G, and the statement is {C,H}. We have the trivial option of
just adding D=>G, or we could just add H=>G and we do not have to use any axiom at all.
Adding an axiom is the natural way to go, since it captures our intuitions, but formally it
would have to add relevance, fuzziness and probably dispensability. Such an approach
would make extensive use of substructural fuzzy-relevance logic which is a system less
than a year old [12], but this is the way to go for a stable system, and this is the long
term research goal.
There are however a couple of remarks to be made. First, the goal G must appear in the
consequent of at least one axiom. Second, there is an option to prefer either the shortest
or the longest chain. By preferring the shortest chain of inference, we obtain the neces-
sary hidden premises, but to get any possible premise we could prefer the longest (with all
the possible detours). Then simply we take all the chain elements including the statement
and the goal, and we have what the speaker believes in. We could also place confidence
metrics. This is superior provided we can count this confidence/importance along the
chains in a meaningful way. As we will see, the final suggested approach will be a hybrid.

Axiom 1

Axiom 2 For(Guns)

Reason 1

CON Obama good

Figure 4: ILP, adding a reason.

The idea behind (ii) is to add reasons to the derivation, since they can be controlled in
terms of axioms (Image 4). This has the advantage of a natural confidence scoring. The
smallest amount of reasons to derive a goal is the most likely set of background informa-
tion used. They also convey an epistemological aspect: what is that the speaker knows but
he did not made explicit in his statement? The reasons can be also given a confidence level
to measure this. A case could be made that the axioms constitute the societal background
knowledge, whereas the reasons constitute the speaker’s background knowledge, and
the interaction between the two could provide additional insight.

An Application of Fuzzy Inductive Logic Programming, Skansi et al. [43-51]

| 50 |

APPLICATIONS
The completed system could have a great advantage over the state-of-the-art, namely
that it is capable of filtering user values from their online posts. This may seem of lim-
ited practical use, but subjective information is harder to filter out automatically, and
as such in more demand. There are two areas which could benefit greatly from such a
system. The first is political campaigns of all kinds. Being able to identify the values of
the people on social media makes it possible to individually target actions to gain their
support.
The second, and much larger area of application is marketing. Customer values are a
core component in building a good relation, and it is even more vital for targeted prod-
uct placement. Since »privacy« is also a value that can be identified, this enables to
classify customers according to their privacy preference, and include value-targeted
advertisement for the customer with a low privacy preference. E.g. a green person who
does not emphasize privacy, would get an ecological product basket, whereas if she
were have privacy as her value, she could be getting the same product offers but scram-
bled with non-eco products.

CONCLUDING REMARKS
The aim of our research is to construct a finished module, whose architecture is pre-
sented in the present paper. Possible improvements are due to the possible hybridiza-
tion of our approaches provided it will gain more accuracy and not be too expensive
(in the computational sense) at the same time. New approaches such as substructural
fuzzy relevance logic will be considered and implemented, and the finished module will
be tested against a benchmark dataset.

REFERENCES
[1]	 Bronzi,	M.,	Guo,	Z.,	Mesquita,	F.,	Barbosa,	D.	and	Merialdo,	P.	(2012).	Automatic	Evaluation	

of	Relation	Extraction	systems	on	Large-scale.	In	AKBC-WEKEX ‘12 Proceedings of the Joint
Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction,
pp. 19-24.

[2]	 Dagan,	I.	and	Glickman,	O.	(2004).	Probabilistic	Textual	Entailment:	Generic	Applied	Model-
ling	of	Language	Variability.	In	PASCAL Workshop on Learning Methods for Text Understand-
ing and Mining.

[3]	 Halevy,	A.,	Norvig,	P.	and	Pereira,	F.	(2009).	The	Unusual	Effectivness	of	Data.	IEEE Intelligent
Systems, vol.24, no. 2, pp. 8-12.

[4]	 Lappin,	S.	and	Leass,	H.	J.	(1994).	An	Algorithm	for	Pronomial	Anaphora	Resolution.	Compu-
tational Linguistics, vol. 20, no. 4, pp. 535-561.

[5] Manning, C. (1999). Statistical Natural Language Processing.	Cambridge:	MIT	Press.
[6]	 Mitkov,	R.	(2002).	Anaphora Resolution (Studies in Language and Linguistics).	London:	Routledge.
[7]	 Nienhuys-Cheng,	S.-H.	and	de	Wolf,	R.	(1997).	Foundations of Inductive Logic Programming.

Berlin:	Springer.

International Journal of DIGITAL TECHNOLOGY & ECONOMY Volume 1 | Number 1 | 2016

| 51 |

[8]	 Norvig,	P.	(1986).	A Unified Theory of Inference for Text Understanding.	Ph.D.	thesis,	printed	
as	Berkeley	EECS	Dept.	Report	No.	UCB/CSD	87/339.

[9]	 Russell,	S.	and	Norvig,	P.	(2009).	Artificial Intelligence: a Modern Approach.	Harlow:	Pearsons	
Education	Ltd.

[10]	 Shen,	W.,	Wang,	J.,	Luo,	P.	and	Wang,	M.	(2015).	A	Hybrid	Framework	for	Semantic	Relation	
Extraction	over	Enterprise	Data. International Journal on Semantic Web & Information Sys-
tems, vol. 11, no. 3, pp 1-24.

[11]	 Sutton,	C.	and	McCallum,	A.	(2012).	An	Introduction	to	Conditional	Random	Fields.	Founda-
tions and Trends in Machine Learning, vol. 4, no. 4, pp. 267-373.

[12]	 Yang,	E.	(2015).	Substructural	Fuzzy-Relevance	Logic.	Notre Dame Journal of Formal Logic,
vol. 56, no. 3, pp. 471-491.

[13]	 Zelenko,	D.,	Aone,	C.	and	Richardella,	A.	(2003).	Kernel	Methods	for	Relation	Extraction.
Journal of Machine Learning Research, vol. 3, no. 1, pp. 1083-1106.

[14]	 (2016-05-20)	ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/
h2020-wp1415-annex-g-trl_en.pdf	

[15]	 (2016-05-25)	norvig.com/chomsky.html
[16]	 (2016-05-20)	www.cs.cmu.edu/~nbach/papers/A-survey-on-Relation-Extraction.pdf	
[17]	 (2016-05-20)	www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/relation-

ship-extraction.html
[18]	 (2016-05-25)	www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

