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STEINER POINT OF A TRIANGLE IN AN ISOTROPIC

PLANE

Ružica Kolar–Šuper, Zdenka Kolar–Begović and Vladimir
Volenec

Abstract. The concept of the Steiner point of a triangle in an
isotropic plane is defined in this paper. Some different concepts connected
with the introduced concepts such as the harmonic polar line, Ceva’s tri-
angle, the complementary point of the Steiner point of an allowable trian-
gle are studied. Some other statements about the Steiner point and the
connection with the concept of the complementary triangle, the anticom-
plementary triangle, the tangential triangle of an allowable triangle as well
as the Brocard diameter and the Euler circle are also proved.

1. Introduction

The isotropic (or Galilean) plane is a projective–metric plane, where the
absolute consists of one line, the absolute line ω, and one point on that line,
the absolute point Ω. The lines through the point Ω are isotropic lines, and
the points on the line ω are isotropic points (the points at infinity). In an
isotropic plane, the distance between the two points Pi = (xi, yi) (i = 1, 2)
is defined by P1P2 = x2 − x1 and two lines with the equations y = kix + li
(i = 1, 2) form the angle k2−k1. Two points P1, P2 with x1 = x2 are said to be
parallel, and we shall say they are on the same isotropic line. Any isotropic line
is perpendicular to any nonisotropic line. Two lines with k1 = k2 are parallel.
For two parallel points P1, P2 their span is defined by s(P1, P2) = y2 − y1.
The required facts about the isotropic plane can be found in [9] and [10].

A triangle is said to be allowable if none of its sides is isotropic. Each
allowable triangle ABC can be set by a suitable choice of the coordinate
system in the standard position, in which its circumscribed circle has the
equation y = x2, its vertices are the points

(1.1) A = (a, a2), B = (b, b2), C = (c, c2),
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and its sides BC, CA, AB have the equations

(1.2) y = −ax − bc, y = −bx − ca, y = −cx − ab,

where

(1.3) a + b + c = 0.

We shall say then that ABC is the standard triangle (Figure 1). To prove
geometric facts for each allowable triangle it is sufficient to give a proof for
the standard triangle (see [7]).

With the labels

(1.4) p = abc, q = bc + ca + ab

a number of useful equalities are proved in [7], as e.g. a2 = bc − q, q + 3bc =
−(b − c)2, 2q − 3bc = (c − a)(a − b), b2c2 + c2a2 + a2b2 = q2.

In an isotropic plane, the concept of Steiner ellipses of a triangle has been
considered in [12]. In this paper we investigate the concept of the Steiner
point of a triangle in an isotropic plane.

2. Steiner point of a triangle in an isotropic plane

In [12], the Steiner point of the allowable triangle ABC is defined as the
fourth (in addition to A, B, C) common point S of the circumscribed circle
and the circumscribed Steiner ellipse of that triangle (Figure 1). In the case
of the standard triangle ABC this point is of the form

(2.1) S =

(

−3p

q
,

9p2

q2

)

.

For each point P , let U = BC ∩ AP , V = CA ∩ BP , W = AB ∩ CP , and
for each line P , let U ′ = BC ∩ P , V ′ = CA ∩ P , W ′ = AB ∩ P . We shall
say that the line P is the harmonic polar line of the point P with respect
to the triangle ABC if the pairs of points: B, C; U, U ′ and C, A; V, V ′ and
A, B; W, W ′ are in harmonicity.

Theorem 2.1. The joint line of the centroid and the symmedian center
of an allowable triangle is a harmonic polar line of its Steiner point (Figure
1).

(In [2], Cesaro gives the statement in the Euclidean case.)

Proof. The line with the equation

(2.2) y =

(

a − 3p

q

)

x +
3ap

q

obviously passes through the points A = (a, a2) and S from (2.1), so it is the
line AS. From equation (2.2) and the equation y = −ax − bc of the line BC
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for the abscissa of the point AS ∩ BC we get the equation
(

2a − 3p

q

)

x = −3ap

q
− bc,

i.e., a(2q − 3bc)x = −bc(q + 3a2), which due to

q + 3a2 = q + 3(bc − q) = −(2q − 3bc)

has the solution

(2.3) x =
bc

a
.

The line with the equation

(2.4) y =
2q2

9p
x − 2

3
q

passes through the points

G =

(

0, −2

3
q

)

, K =

(

3p

2q
, − q

3

)

,

owing to [7] and [6], the centroid and the symmedian center of the triangle
ABC. From equation (2.4) and the equation y = −ax − bc of the line BC for
the abscissa of the point GK ∩ BC we get the following equation

(

2q2

9p
+ a

)

x =
2

3
q − bc.

Since

2q2 + 9ap = 2q2 + 9bc(bc − q) = 2q2 − 9bcq + 9b2c2 = (2q − 3bc)(q − 3bc),
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this equation has the solution x = x′, where

(2.5) x′ =
3p

q − 3bc
.

The points of the line BC with the abscissas b, c and x, x′ are in harmonicity
if and only if

(x − b)(x′ − c) + (x − c)(x′ − b) = 0,

i.e.,
2xx′ + 2bc = (x + x′)(b + c).

Owing to (2.3) and (2.5) we get

2xx′ + 2bc + a(x + x′) =
1

q − 3bc
[6b2c2 + 2bc(q − 3bc) + bc(q − 3bc) + 3a2bc]

=
3bc

q − 3bc
(q − bc + a2) = 0.

Theorem 2.2. The joint lines of the corresponding vertices of the anti-
complementary and the tangential triangle of the allowable triangle ABC are
the sides of Ceva’s triangle of its Steiner point (Figure 2).

Proof. If AnBnCn and AtBtCt are the anticomplementary and the tan-
gential triangle of the triangle ABC, respectively, then according to [7] and
[1], we have e.g.

An = (−2a, −2bc), At =
(

−a

2
, bc
)

.

The line with the equation

y =
2bc

a
x + 2bc

obviously passes through these two points, so it is the line AnAt. From this
equation and the equation y = −bx − ca of the line CA we get the equation

(

2bc

a
+ b

)

x = −2bc − ca,

i.e., b(2c + a)x = −ac(a + 2b) or b(c − b)x = −ac(b − c) with the solution
x = ca

b for the abscissa of the point CA ∩ AnAt. Analogously, the abscissa

of the point AB ∩ AnAt is x = ab
c . The obtained abscissas are hence the

abscissas of the points BS ∩ CA and CS ∩ AB because they are analogous to
the abscissa (2.3) of the point AS ∩ BC.

Theorem 2.3. If D, E, F are the intersections of the corresponding sides
of the complementary triangle AmBmCm and the orthic triangle AhBhCh of
the allowable triangle ABC, then the points D, E, F lie on the polar lines of
the points A, B, C with regard to the Euler circle of the triangle ABC, and the
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lines AmD, BmE, CmF pass through the point S ′ which is a complementary
point to the Steiner point of that triangle (Figure 3).

(In the Euclidean case, Godt gives this statement in [4] and [5].)

Proof. According to [7], the lines BmCm and BhCh have the equations
y = −ax + bc

2 − q and y = 2ax + 2bc − q. The point D =
(

− bc
2a , a2

)

lies on

these lines because of bc − q = a2. According to [1], the Euler circle of the
triangle ABC has the equation y = −2x2 − q, and with regard to that circle
the polar of the point (xo, yo) has the equation y + yo = −4xox − 2q. With
xo = a, yo = a2, there follows y + a2 = −4ax − 2q, i.e., y = −4ax − bc − q,
the equation of the polar of the point A with regard to the Euler circle. The
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point D lies on that polar because of

−4a

(

− bc

2a

)

− bc − q = bc − q = a2.

According to [7], we have the point

Am =

(

−a

2
, −bc

2
− q

2

)

.

That point and the point D lie on the line with the equation

(2.6) y =

(

a − 3p

q

)

x − q +
3

2
bc − 3

2q
b2c2
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because of
(

a − 3p

q

)

(

−a

2

)

− q +
3

2
bc − 3

2q
b2c2 = −a2

2
+

3bc

2q
(a2 − bc) − q +

3

2
bc

= −1

2
(bc − q) − 3bc

2
− q +

3

2
bc

= −bc

2
− q

2
,

(

a − 3p

q

)(

− bc

2a

)

− q +
3

2
bc − 3

2q
b2c2 = bc − q +

3bc

2q

(p

a
− bc

)

= a2.

Due to [7], the point

S ′ =

(

3p

2q
, −9p2

2q2 − q

)

is a complementary point to the point S. It also lies on the line (2.6) because
of
(

a − 3p

q

)

3p

2q
− q +

3

2
bc − 3

2q
b2c2 =

3bc

2q
(a2 + q − bc) − 9p2

2q2 − q = −9p2

2q2 − q.

The corresponding sides of the triangle ABC and its orthic triangle
AhBhCh intersect at three points which lie on the same line. By analogy
with the Euclidean case, this line is called an orthic axis of the observed tri-
angle. In [7], it is shown that the orthic axis H of the standard triangle ABC
has the equation y = − q

3 .

The points A and D lie on the line with the equation y = a2 and we get
AD||H and similarly BE||H, CF ||H i.e.

Corollary 2.4. With the labels from Theorem 2.3, the lines AD, BE,
CF are parallel to the orthic axis of the triangle ABC (Figure 3).

Theorem 2.5. Lines parallel to the sides of the allowable triangle ABC
through its Steiner point S meet its circumscribed circle again in the points Sa,
Sb, Sc such that the Brocard diameter of the triangle ABC is a perpendicular
bisector of the segments ASa, BSb, CSc (Figure 4).

(Thébault [11] gives this statement in the Euclidean case.)

Proof. The line with the eqaution

y = −ax +
9p2

q2 − 3ap

q

is parallel to the line BC and it passes through the point

S =

(

−3p

q
,

9p2

q2

)

.



90 R. KOLAR–ŠUPER, Z. KOLAR–BEGOVIĆ AND V. VOLENEC

C

B

K
c

A

S

K

S
a

S
b

S
c

Figure 4

Besides that, it also passes through the point

Sa =

(

3p

q
− a,

(

3p

q
− a

)2
)

because of
(

3p

q
− a

)2

+ a

(

3p

q
− a

)

− 9p2

q2 +
3ap

q
= 0.

The point Sa obviously lies on the circumscribed circle with the equation
y = x2. A perpendicular bisector of ASa has the equation x = 3p

2q , so due to

[6], it is the Brocard diameter of the triangle ABC.

Theorem 2.6. If the lines parallel to the lines BC, CA, AB through the
points A, B, C meet the circumscribed circle of the allowable triangle ABC
at the points Anh, Bnh, Cnh again and if As, Bs, Cs are the intersections
BC ∩ BnhCnh, CA ∩ CnhAnh, AB ∩ AnhBnh, then the lines AAs, BBs, CCs

pass through the Steiner point S of the triangle ABC (Figure 5).



STEINER POINT OF A TRIANGLE IN AN ISOTROPIC PLANE 91
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Proof. Let us consider the points

(2.7) Anh = (−2a, 4a2), Bnh = (−2b, 4b2), Cnh = (−2c, 4c2)

on the circumscribed circle of the triangle ABC. The line AAnh has the slope
a − 2a = −a, so it is parallel to the line BC. The line with the equation

y = 2ax − 4bc

passes through the points Bnh and Cnh since e.g. for the point Bnh we have
−4ab − 4bc = 4b2, so it is the line BnhCnh. The point

As =

(

bc

a
, −2bc

)

,
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lies on that line and it also lies on the line BC with the equation y = −ax−bc,
thus we have As = BC ∩BnhCnh. This point has bc

a as its abscissa, and then,
owing to the proof of Theorem 2.1, we get As = AS ∩ BC.

From the previous proof and the proof of Theorem 2.2 there follows:

Corollary 2.7. Ceva’s triangle AsBsCs of the Steiner point S of the
standard triangle ABC has the vertices

As =

(

bc

a
, −2bc

)

, Bs =
(ca

b
, −2ca

)

, Cs =

(

ab

c
, −2ab

)

,

and its sides BsCs, CsAs, AsBs have the equations

y = 2
bc

a
x + 2bc, y = 2

ca

b
x + 2ca, y = 2

ab

c
x + 2ab.

In [7], it is shown that the orthic triangle AhBhCh of the triangle ABC
has e.g. the vertex Ah = (a, q − 2bc). According to (2.7), because of

2(q − 2bc) + 4a2 = 2q − 4q = 3

(

−2

3
q

)

we have the equality

2Ah + Anh = 3G.

Therefore, the point Anh is anticomplementary to the point Ah, i.e.,
AnhBnhCnh is the orthic triangle of the anticomplementary triangle AnBnCn

of the triangle ABC. For this reason, the statement of Theorem 2.6 is in fact
the statement of Theorem 2.3 for the anticomplementary triangle AnBnCn of
the triangle ABC.

From the proof of Theorem 2.6 there follows:

Corollary 2.8. The orthic triangle AnhBnhCnh of the anticomplemen-
tary triangle of the standard triangle ABC has the vertices given by formulae
(2.7) and sides given by equations

(2.8) y = 2ax − 4bc, y = 2bx − 4ca, y = 2cx − 4ab.

Theorem 2.9. The equality

AS2

BC2 +
BS2

CA2 +
CS2

AB2 = 2

holds for the Steiner point S of the triangle ABC.

(Thébault [11] gives this statement in the Euclidean case.)

Proof. Due to (1.1) and (2.5), we get

AS = −3p

q
− a = −a

q
(q + 3bc) =

a

q
(b − c)2,
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and analogous equalities follow for BS and CS. Hence we obtain

AS2

BC2 +
BS2

CA2 +
CS2

AB2 =
1

q2 [a2(b − c)2 + b2(c − a)2 + c2(a − b)2]

=
1

q2 [2(b2c2 + c2a2 + a2b2) − 2abc(a + b + c)]

=
1

q2 · 2q2 = 2.

Corollary 2.10. With the same labels, the equality

AS

BC
+

BS

CA
+

CS

AB
= 0

also holds.

Theorem 2.11. The circles, whose tangents at the vertices A, B, C of
the allowable triangle ABC are parallel to the lines BC, CA, AB and which
pass through the Steiner point S of that triangle, have radii (Figure 6)

BC2

2 · CA · AB
,

CA2

2 · AB · BC
,

AB2

2 · BC · CA
.

(Gallatly ([3]) gives incorrect expressions for these radii in the Euclidean
case.)
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Proof. The circle with the equation

(2.9) (aq + 3p)y = (3p − 2aq)x2 + 3a(aq − 3p)x + 9a2p

passes through the point S since we get

(3p − 2aq)
9p2

q2 − 3a(aq − 3p)
3p

q
+ 9a2p =

9p2

q2 (aq + 3p).



94 R. KOLAR–ŠUPER, Z. KOLAR–BEGOVIĆ AND V. VOLENEC

From the equation of this circle and the equation y = −ax+2a2 of the line
parallel to the line BC which obviously passes through the point A = (a, a2),
for the abscissa x of their intersection we obtain the following equation:

(aq + 3p)(−ax + 2a2) = (3p − 2aq)x2 + 3a(aq − 3p)x + 9a2p.

As we have
3a(aq − 3p) + a(aq + 3p) = −2a(3p − 2aq),

9a2p − 2a2(aq + 3p) = a2(3p − 2aq),

this equation has the form (3p − 2aq)(x2 − 2ax + a2) = 0 and it has a double
solution x = a, thus the circle (2.9) and the considered line touch each other
at the point A. The circle with the equation y = ux2 + vx + w has the radius
1

2u . Because of that, the circle (2.9) has the radius

1

2
· aq + 3p

3p − 2aq
=

1

2
· q + 3bc

3bc − 2q
=

1

2
· (b − c)2

(c − a)(a − b)
=

BC2

2 · CA · AB
.
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Steinerova točka trokuta u izotropnoj ravnini

Ružica Kolar–Šuper, Zdenka Kolar–Begović, Vladimir Volenec

Sažetak. Pojam Steinerove točke trokuta u izotropnoj
ravnini je uveden u ovom članku. Proučavani su različiti poj-
movi povezani s uvedenim pojmom, kao što su harmonička po-
lara, Cevin trokut, komplementarna točka Steinerovoj točki do-
pustivog trokuta. Dokazane su tvrdnje o Steinerovoj točki i vezi s
komplementarnim i antikomplementarnim trokutom, tangencijal-
nim trokutom dopustivog trokuta kao i Brocardovim dijametrom
i Eulerovom kružnicom.
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