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 It is well known that non-linear vibrations of long 

span cables present a considerable problem of 

lightweight structures like suspended roofs, cable 

stayed bridges and cable stayed masts. In the 

analysis of global structural behaviour, cables are 

often modelled as equivalent tendon elements. The 

importance of modelling coupled cable-structure 

dynamics has been demonstrated by a number of 

researchers. Dynamic response of non-linear 

systems can lead to internal or auto-parametric 

resonance in the case of integer frequency ratio. 

The analysis of cable-stayed system frequency 

spectra can show parameter values for which 

integer frequency ratio condition is fulfilled. In this 

paper an analytic model of simplified cable-stayed 

system is formulated. Parabolic cable is modelled 

using the assumption of quasi-static stretching, 

while the structure is modelled as Euler-Bernoulli 

beam. Equations of motions are derived by 

Hamilton’s principle and then linearized around a 

static equilibrium configuration. Differential 

equations of motion are solved by the method of 

variable separation. System deformation is 

described using analytical functions. Equations of 

motions together with boundary conditions are 

solved in closed form to obtain a characteristic 

equation. For chosen system parameters, the 

eigenvalue spectra are determined. Parametric 

analysis of dynamical properties is carried out and 

integer frequency ratios along with the associated 

modes are pointed out. Analytic solutions are 

verified with finite element modelling. 
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1 Introduction 
 

In modern architecture, cable-supported structures 

are characterized by a variety of aesthetic shapes 

that are often accomplished with long span cables.  

 

A cable transfers the load by using tensile force and 

changes in its geometry. The tensile load transfer 

ensures a better use of material without the risk of 

various stability problems and high flexibility 

makes them quite geometrically non-linear. Because  
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of flexibility, small mass and low damping cables 

are sensitive to dynamic excitations and are prone to 

exhibit large amplitude oscillations. Some of the 

long span cable structures that frequently 

experience vibration problems caused by dynamic 

loads (traffic, wind or earthquakes) are cable-stayed 

bridges. In engineering models, cables are very 

often treated as equivalent tendon elements and 

most of studies concerning non-linear behavior of 

the cables due to static or dynamic actions are 

carried out on a cable model separated from the 

structure.  

The mathematical model of cable oscillations 

includes quadratic and cubic nonlinearities resulting 

from initial cable curvature and stretching. Cubic 

nonlinearities are more significant and have a great 

influence on the response of low-sag and highly 

pretension cables often used as structural elements 

in civil engineering.  Luo et al. [1] in their study 

showed that the dynamic response of multi-degree-

of-freedom system with cubic nonlinearities 

subjected to soft harmonic excitation in the case of 

well separated natural frequencies is dominated by a 

primarily excited mode. However, cable structures 

are specific because of integer ratio of cable natural 

frequencies and therefore today we have some 

research concerning non-linear coupling of cable 

modes. In the research [2], free cable vibrations are 

analyzed using analytically formulated model and 

numerical methods. For certain system parameters, 

the condition of integer frequency ratio is fulfilled 

and dynamic response can be influenced by internal 

resonance depending on modes involved in the 

response and amplitude value. Dynamic excitation 

of cables can come from various sources like wind, 

snow, rain or earthquakes, but also cable motion can 

cause dynamic response of other structural parts. 

Several studies have shown that external and 

parametric excitations of the cable are result of 

small displacement of the support, i.e., connecting 

joint with the structure [3, 4, 5]. Also, the coupling 

of primary and parametric resonance is possible in 

the case of integer frequency ratio [6]. 

Small scale physical model of cable-stayed bridge 

was experimentally investigated by Caetano [7]. 

The research showed that there is considerable 

dynamic interaction between the cables and the 

deck/towers. Lin et al. [8] analyzed frequencies 

using a full scale finite element model of cable-

stayed bridge and then pointed out that there are 

several frequencies with integer ratio that include 

local cable and global modes of the structure. For 

one-to-one internal resonance case, they formed a 

simplified analytical model and analyzed reduced 

system response which showed that large oscillation 

amplitudes of the cable are induced by dynamic 

excitation of the beam. Gattulli et al. [9] analyzed 

dynamic properties of a cable-stayed beam and 

showed that the system has global, local and 

coupled modes. Also, the frequencies of the local 

cable and global/coupled system modes in the range 

of technically relevant parameter values have 

integer frequency ratio. In a related study [10], the 

system is reduced on two-degree-of-freedom to 

analyze non-linear interaction of the cable and the 

beam. The analysis showed that a small level of 

dynamic excitation can produce periodic, quasi-

periodic and chaotic system response for 2:1 and 

1:2 frequency ratios between global and local 

modes. 

In this paper, dynamic properties of a cable-stayed 

system are analyzed using extended analytic model 

based on the cable-stay system proposed by Gattulli 

[9]. Differential equations of motion are derived 

using the Hamilton’s principle. Equations have been 

expressed in dimensionless form and cable and 

system parameters have been defined. The method 

of variable separation was applied to dimensionless 

equations, assuming continuous functions for 

system deformation the characteristic equation was 

obtained in an analytical form. The analysis of 

dynamic properties is carried out for different cable 

and system parameters. The verification of the 

analytic results for certain system parameters is 

done with the finite element model. 

  

2 Analytical model of continuous system 
 

The model of cable-stayed system is shown in Fig. 

1(a). This very simple model is chosen because of 

its simplicity and possibility to model a system 

analytically. The interaction between cable and 

beam is generated through the force and the 

displacement of the connecting joint. If right 

conditions for frequency ratio and amplitude value 

are fulfilled, dynamic response of the beam can 

excite external and/or parametric oscillations of the 

cable or cable oscillations can generate the periodic 

force that is at one end imposed on the beam, also 

generating external and/or parametric excitation on 

the beam. The necessary condition for excitation of 

non-linear auto-parametric oscillations is integer 
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ratio of system frequencies. Therefore, a detailed 

analysis of frequency spectra prior to non-linear 

analysis is required.  

Cables with bigger span are usually more prone to 

the oscillation with large amplitudes. An analytical 

model analyses only longer cable dynamic, 

therefore, in order to form even a simpler model, the 

shorter cable is treated as the massless elastic 

tendon. Modelling a real cable stay as equivalent 

tendon is possible by taking into account its 

elasticity and a variation in its geometry. It can be 

described as if two springs of elastic and one of 

geometric stiffness were connected in series. That 

behavior is often taken into account with tangent 

modulus of elasticity derived by H.J. Ernest [11]. 

The dynamic behavior of shorter cable will be 

neglected and it is replaced with elastic spring in the 

middle of beam span. We assume small 

displacement and impose the geometric constraint 

of the tendon and the beam in node A: 

 

 sin ,    (1) 

 

where Δ is total elongation of the tendon and δ is 

vertical beam displacement. The tendon geometric 

stiffness is neglected and equivalent spring stiffness 

is determined by equating potential energy of the 

tendon and elastic spring: 

 

 2sin .t t

t

E A
k

L
  (2) 

 

In expression (2), Et At denote axial tendon stiffness 

and Lt=l/(2cosγ) its length.  

 

2.1 Equations of motion 
 

According to Hamilton’s principle, the governing 

equations of motion can be obtained by the 

following equation: 

  

  
2

1

0,d
t

t
T U t δ  (3) 

 

where T is kinetic and U total potential energy. 

We consider cable and beam to be homogenous 

one-dimensional elastic continuum, obeying a linear 

stress-strain relation. We assume an ideally flexible 

cable and neglect its torsional and shear rigidities. 

The beam is modeled neglecting its axial, torsional, 

shear strain and geometric non-linarites. With 

regard to the static equilibrium position, the 

potential energy of the system is: 

 

 

 
 

Figure 1. Model of cable-stayed system. 
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In the equation (4), the cable longitudinal and 

transverse components of dynamic displacements 

are u(xc,t) and w(xc,t), respectively. The transverse 

dynamic displacement of the beam is denoted as 

v(xb,t). The first and second term represent potential 

energy of the beam due to bending and cable elastic 

strain energy. Remaining terms are gravitational 

potential energy. Due to static and dynamic actions, 

beam curvature κ is defined by linear geometric 

approximation and superposition: sv v   , 

where prime denotes derivation with respect to the 

spatial variable xb. 

Total elastic strain of the cable is given with the 

expression: 

 

     
1/2

2 2
1 1 ,s u z w           (5) 
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where εs is static strain and rest of the terms 

represent dynamic strain. The function z(xc) denotes 

function of the cable static equilibrium 

configuration and prime is derivation with respect 

to the spatial variable xc. 

The kinetic energy of the system is defined with: 

 

2 2 21 1 1
2 2 20 0 0

d d d ,
l L L

b b c c c cT m v x m u x m w x       (6) 

 

where dot represents derivation with respect to the 

time variable t.  

After determining potential and kinetic energy 

variation, expressions are substituted into 

Hamilton’s principle and the static equilibrium 

equations are taken into account. Then, the 

equations are separated by displacement 

components and the following equations of motion 

are obtained: 

 

   ' 0,c c cE A u z w m u      (7) 

  

   ' 0,c c s c c cE A w E A z w u z w m w            (8) 

 

 0.IV

b b bE I v m v   (9) 

 

According to quasi-static stretching assumption 

[12], the longitudinal cable displacement defined by 

the equation (7) can be condensed. The expression 

(7) can directly be integrated after neglecting the 

inertia in longitudinal direction and by taking into 

account the boundary conditions: 

 

 (0) (0)sin , ( ) 0.u v u L    (10) 

 

So, the stretching is defined by the expression: 

  

 
0

(0)sin 1
,

L

c

v
e z w dx

L L


     (11)  

 

where e=e(t) is the cable stretching. For low sag 

and high pretension force, it follows that 

secc c sE A H  , where H represents horizontal 

component of the cable static tension. After 

condensation procedure, the equation (8) that 

defines cable transverse vibrations is: 

 

   'sec 0.c c cm w H w E A z w e        (12)  

By transforming the equations into dimensionless 

forms, the number of system parameters is reduced. 

Dimensionless relations of the variables and the 

system parameters are:  
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 (13)  

 

Time variable is transformed into dimensionless 

form by using first natural system frequency ω1. 

The cable parameters are static elasticity measure η 

and sag to span ratio υ. Cable parameter η is 

inversely proportional to cable static stretching and 

its value mostly dependent on material elasticity. 

More elastic materials have smaller value of η, 

while for example steel cables, due to small 

deformation, have large parameter values (η > 250). 

Parameter υ defines cable geometry by describing 

depth of static profile. For υ < 1/8, the parabolic 

assumption for the static profile can be used. 

Usually, this assumption greatly simplifies 

analytical analysis of the cable. The system 

parameter χ is ratio of beam and cable rigidity and ρ 

is cable and beam linear mass ratio. Both of these 

parameters greatly depend on material. It is 

intuitively clear that ρ should have small values, 

while value of χ is not only dependent on flexural 

stiffness of the beam and axial cable stiffness but 

also on the beam span. So, the analysis considers a 

wide interval for parameter χ values. 

After transformation into dimensionless form, the 

equation (11) becomes: 

 

 
1

0
(0)sin cos .ce v z w dx       (14)  

 

Static profile of the low sag cable can be described 

by the parabola  2( ) 4 c cz x x x  .  

We neglect higher order terms in the equation (12) 

and transform equations of motion into the 

dimensionless form: 
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2
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4

2
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E I
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Given equations need to satisfy following geometric 

and mechanical boundary conditions: 
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 (17)  

 

Lv  and Rv  denote left and right function v(xb,t) 

values to the elastic spring in the middle of the 

beam span. 

 

2.2 Derivation of characteristic equation  

 

The solution of equations (15) and (16) is obtained 

by separating variables: 

 

 
1

1

( , ) ( )exp( ),

( , ) ( )exp( ).

c c

b b

w x t x i t
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
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 (18)  

 

Whereupon the following equations are obtained:  

 

 
2 8 ,c e      (19)  
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where:  
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     
1

1
0

(0)sin cos 4 1 2 .c c ce x x dx        (22) 

  

The function describing the mode shape of the beam 

is defined as 1 2( ) ( ) ( )b b bx x x    . The function 

1( )bx  is defined on the interval  1
2

0,bx   and 

2 ( )bx  is defined on the interval  1
2

1,bx  . 

Functions ( )cx , 1( )bx , and 2 ( )bx  need to 

fulfill boundary conditions (17). This procedure is 

performed using Wolfram Mathematica program 

and the following equation is obtained: 
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where: 
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The equation (23) is analogous to the solution 

derived by Gattulli [9] if we set μ=0: 
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If the beam is not elastically supported, its 

deformation is defined using only one function 

1( ) ( )b bx x  . In that case, mode shape analytical 

functions are given by the following expressions: 
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where constant 
1

(0) / 2A   depends on the shape 

function normalization. 

 

3 Analysis of the results  
 

For the parametric analysis of system dynamic 

properties, fixed values are given to the parameters 

η, υ and ρ, while the parameter χ is varied to obtain 

different values for βc and βb. We consider two 

cable-stayed models. The beam of the model A is 

not supported by the elastic spring (μ=0) and 

eigenvalue equation is defined by the expression 

(26), while the beam of the model B is supported by 

the elastic spring (μ≠0) and corresponding 

frequency equation is defined by the expression 

(23). In all models, the angle of cable to the beam is 

given by geometric relation tanφ=1/2. Solution of  

 

the equations (23) and (26) is determined 

numerically by Wolfram Mathematica. 

 

3.1 Model A results 

 
For cable parameters η=800 and υ=5·10-4, 

eigenvalues βc and βb for the first six modes are 

determined and displayed in Fig. 2. For dynamic 

properties analysis only upper spectrum which 

shows the cable eigenvalues βc can be used. The 

eigenvalue βc is proportional to system frequency ω 

as given in the expression (21). The ratio of 

eigenvalues βc corresponds to the ratio of system 

frequencies, so βc can be considered as 

dimensionless system frequency. The relation of βb 

with ω and βc that is given by the expressions (21) 

and (24) is not linear, so it was not used in the result 

analysis. In the Fig. 2 can be noticed the 

eigenvalues βc≈nπ, for n=1,2,3… These eigenvalues 

are well known taut cable dimensionless 

frequencies [12]. Figure 3 displays system shape 

functions and three types of modes can be 

identified. First mode is global and mainly involves 

deformation of the beam while the cable behaves as 

tendon. Second, fourth and sixth mode are local 

cable modes, while third and fifth modes are hybrid 

because the beam and the cable are involved in the 

motion.  
 

 

 
 

Figure 2. Model A eigenvalues spectra for parameters η=800 and υ=5·10-4: βc (a,b,c); βb (d,e,f).
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System frequency values are increased with an 

increase in ρ and χ parameters, which can be seen 

on βc spectra. For ρ=0.001, Fig. 2(a) shows that for 

very low χ values (χ<0.002), the beam is very 

flexible and in low order modes cable acts as tendon 

or a flexible support of the beam. The change 

between local cable and system modes happens for 

χ≈0.0025 and χ≈0.019. With an increase in the 

parameter χ value, the beam is stiffer and 

frequencies of modes including notable beam 

deformation are higher. This kind of behavior can 

be observed for all constant values of ρ. The 

influence of the parameter ρ can be observed in 

adjacent βc spectra displayed in Fig. 2 (a) – (c). 

Also, in this case, smaller value of the parameter 

indicates the system having a more flexible beam. 

For parameter values η=800, υ=5·10-4, ρ=5·10-3 and 

χ=3.75·10-3 (Fig. 3), frequency ratio between global 

and local mode is ω1≈ω2/2. In this case, cable 

oscillations can be induced by beam through angle-

variation mechanism [10]. The same type of 

resonance is possible between third (hybrid) and  

fifth (local) mode for parameter values η=800, 

υ=5·10-4, ρ=5·10-3 and χ=7.5·10-3 (Fig. 4). 

Parameter values for which the system frequencies 

meet one-to-one internal resonance condition can 

easily be identified in the βc spectrum because there 

is veering of the system frequencies values. 

 

 

 

 
 

Figure 3. Model A mode shapes for parameters η=800, υ=5·10-4, ρ=5·10-3 and χ=3.75·10-3. 

 

 

 
 

Figure 4. Model A mode shapes for parameters η=800, υ=5·10-4, ρ=5·10-3 and χ=7.5·10-3.  
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Figure 5. Model A mode shapes for parameters η=800, υ=5·10-4, ρ=5·10-3 and χ=1.5·10-2. 

 

Table 1. Model A natural frequencies for η=800, υ=5·10-4 and ρ=5·10-3 

 

  ω1 ω2 ω3 ω4 ω5 ω6 

χ=3.75·10-3 
Analytic 21.93 43.90 51.53 88.03 121.31 132.20 

SAP 21.76 44.02 51.25 87.99 117.78 131.39 

χ=7.5·10-3 
Analytic 25.31 44.02 66.05 88.13 132.02 169.24 

SAP 25.26 43.98 64.96 87.77 130.81 164.52 

χ=1.5·10-2 
Analytic 28.33 44.06 86.97 89.91 132.07 176.04 

SAP 28.23 43.95 86.01 88.75 130.65 172.87 

 

 

There can be also noted that for certain values of 

the parameters, a necessary condition for multiple-

resonance is also fulfilled. By comparing the ratio 

of βc values of modes displayed in Fig. 5, it follows 

that system meets the requirements for 1:1 internal 

resonance of third and fourth mode, and auto-

parametric resonance 1:2 between third/forth mode 

and second system mode. Commercial software 

package CSI SAP2000 v15 was used to form finite 

element model of the system. In finite element 

model, the following physical parameters were 

selected: beam length l=10 [m], axial stiffness of 

cable AcEc=1.6·105 [kN] and cable mass mc=8.15 

[kg/m′]. Flexural stiffness and mass of the beam are 

selected to obtain dimensionless parameters ρ and χ 

values. The cable is modeled using 20 cable 

elements. To fit the cable parameters υ=5·10-4 and 

η=800, nonlinear static analysis is performed to 

obtain cable target force T≈200 [kN]. After 

obtaining nonlinear static equilibrium configuration, 

dynamic properties are determined, i.e., frequencies 

 

and mode shapes. Mode shapes displayed in Figs. 

3–5 correspond to those determined by the finite 

element model. Frequencies values for assigned 

physical parameters in model A are given in Table 

1. The finite element model results show a very 

good correspondence with the analytic model.  

The eigenvalue βc spectra for other taut cable 

parameter values are displayed in Fig. 6. Spectra 

displayed in Fig. 6 (a) – (c) show that smaller value 

of cable parameter η induces more global and 

hybrid modes in low order system modes. This is 

because the elastic pretension of cable significantly 

contributes to overall structural stiffness. Spectrum 

displayed in Fig. 6 (d) – (f) shows the system with 

larger value of cable sag to span ratio υ. The cable 

sag influences cable symmetric modes so that their 

frequency has a higher value [12]. The spectra are 

very similar to those shown in Fig. 2, but for higher 

values of mass ratio, the veering region of the low-

order system modes is wider. 
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Figure 6. Model A eigenvalues βc spectra: η=400 and υ=5·10-4 (a,b,c); η=800 and υ=5·10-3 (d,e,f). 

 

 

3.2 Model B results 

 
The system rigidity in a model B is influenced by 

elastic spring stiffness related to the axial tendon 

stiffness value. By assuming that the cable and 

tendon have the same axial stiffness, i.e., EtAt=EcAc, 

the parameter μ is: 

 

 
22cos sin

.
 




  (28) 

 

The same system parameter values as the ones of 

the model A are considered. Spectra for eigenvalues 

βc are displayed in Fig. 7. Integer frequency ratios, 

which are similar to the previous examples, can be 

easily identified on the spectra. It can be noted that 

elastic support of the beam influences dynamic 

properties by increased frequency values of global 

and hybrid modes. Eigenvalues spectra of models A 

and B are almost without change for mass ratio 

ρ=0.001. A slightly higher eigenvalue can be 

noticed only for low order global modes. 

Significantly larger eigenvalues of the global and 

hybrid modes in model B exist for higher mass ratio 

ρ. This is because more local cable modes occur in 

low-order system modes.  

Particularly interesting is the spectra for ρ=0.01 and 

η=800 displayed in Fig. 7(c) because continuous 

veering of the first and the second mode happens. It 

means that such a system satisfies one-to-one 

internal resonance condition of low-order modes in 

wide range of the parameter χ values. In the case of 

smaller cable sag υ=5·10-3, Fig. 7(i) shows that 

eigenvalues of the first and the second mode are 

very close in broad interval of parameter χ values.  

Also, these modes have very similar mode shapes 

that are displayed in Fig. 8. Veering region modes 

involve coupled motion of the cable and the beam 

with considerably larger cable displacements. 

It can be pointed out that shape functions with 

eigenvalue βc < π but also not too close to π, are 

global and the cable behaves as a tendon, which can 

be seen in Fig. 9. For eigenvalues βc ≥ π, all modes 

are either local or coupled beam-cable motion. 

Hybrid modes that are close to local cable modes 

involve very small displacements of the beam and 

large displacements of the cable. While for well 

separated frequencies, hybrid mode shapes can be 

classified as global because the beam and the cable 

displacement are of the same order. 

To verify the replacement of the tendon with the 

spring, two finite element models are formed. One 

system is modeled with the spring having equivalent 

stiffness given by expression (2) and the other with 

massless tendon element. As the beam is 

additionally supported in the middle of the span, its 

length is l=20 [m], while cable stiffness is the same 

as in the model A. Cable target force and mass are 

selected to fit different values to the cable  
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Figure 7. Model B eigenvalues βc spectra: η=800 and υ=5·10-4 (a,b,c); η=400 and υ=5·10-4 (d,e,f); η=800 

and υ=5·10-3 (g,h,i).

  

 

 
 

Figure 8. Model B mode shapes for parameters η=800, υ=5·10-3, ρ=10-2 and χ= 5·10-3. 
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Figure 9. Model B mode shapes for parameters η=400, υ=5·10-4, ρ=10-3 and χ= 1.5·10-2. 

  

Table 2. Model B natural frequencies for η=800 

 

  ω1 ω2 ω3 ω4 ω5 ω6 

υ=5·10-3 

ρ=0.01 

χ=5·10-3 

Analytic 9.24 10.92 19.58 21.11 29.54 39.33 

SAP-spring 9.31 10.99 19.38 21.01 29.28 38.46 

SAP-tendon 9.30 10.98 19.38 20.98 29.28 38.45 

υ=5·10-4 

ρ=1·10-3 

χ=1.5·10-2 

Analytic 7.71 21.49 31.14 53.23 62.25 93.33 

SAP-spring 7.83 21.38 30.87 52.82 61.54 91.83 

SAP-tendon 7.82 21.36 31.15 52.76 61.53 92.57 

 

 

parameters η and υ, and beam properties are 

adopted to obtain the parameter values ρ and χ 

given in Figs. 8 and 9. 

Table 2 shows the frequency values for all models 

and there is very good agreement of the analytical 

results with both finite element models. Mode 

shapes of finite element model correspond to those 

shown in Figs. 8 and 9.  

 

4 Conclusion  
 

The parametric analysis of cable-stayed system 

dynamic properties using eigenvalue spectra and 

mode shapes showed several interesting features. 

The system has global beam-tendon behavior for the 

eigenvalue βc < π. Mode shapes that have larger 

eigenvalues are either local cable modes or hybrid 

involving coupled cable-beam motion. Analysis of 

eigenvalue spectra showed that integer frequency 

ratio condition exists for various system parameters 

and system dynamic response could lead to 

potential internal resonances and/or auto-parametric 

resonance. Also, for certain parameter values, 

conditions for multiple resonances are fulfilled. 

Finite element models verified the results obtained 

by analytical modeling. 

Analysis of dynamic properties showed that motion 

of the beam and cable could be highly coupled in a 

certain frequency range. Therefore, the models in 

which cables are treated solely as tendon members 

may be inadequate. The significance of presented 

analytical model is that it allows simple and fast 

analysis of frequency variation correlated with 

dimensionless system parameters. Also, the integer 

frequency ratio can easily be noticed on eigenvalue 

spectra. Engineering requirements for cable stayed 

system properties (cable stays in [11]) 

recommended that system frequency values should 

be well separated from local cable frequencies, 

which is sometimes hard to achieve, especially for 

various integer frequency ratios. The presented 

model could be used for further study of cable-beam 

interaction caused by dynamic excitations in order 

to evaluate frequency ratios that could be 

particularly unfavorable in real structures. 
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