
Promet – Traffic&Transportation, Vol. 28, 2016, No. 4, 321-329 321

OSCAR A. ROSAS-JAIMES1

(Corresponding author)
E-mail: oscar.rosasjaimes@yahoo.com
LUIS ALBERTO QUEZADA-TÉLLEZ2

E-mail: alquezada@ciencias.unam.mx
GUILLERMO FERNÁNDEZ-ANAYA2

E-mail: guillermo.fernandez@ibero.mx
1 Facultad de Ciencias de la Electrónica, 
 Benemérita Universidad Autónoma de Puebla
 Prolongacion 24 Sur S/N Ciudad Universitaria,  
 San Manuel, 72570 Puebla, México
2 Departmento de Física y Matemáticas, 
 Universidad Iberoamericana
 Prol. Paseo de la Reforma 880, Álvaro Obregón, 
 Lomas de Sta. Fe, Cd. de México, México

ABSTRACT

Vehicular traffic can be modelled as a dynamic discrete 
form. As in many dynamic systems, the parameters model-
ling traffic can produce a number of different trajectories or 
orbits, and it is possible to depict different flow situations, in-
cluding chaotic ones. In this paper, an approach to the well-
known density-flow fundamental diagram is suggested, us-
ing an analytical polynomial technique, in which coefficients 
are taken from significant values acting as the parameters 
of the traffic model. Depending on the values of these pa-
rameters, it can be seen how the traffic flow changes from 
stable endpoints to chaotic trajectories, with proper analysis 
in their stability features.
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1.  INTRODUCTION

Vehicular traffic studies have been carried out over 
the last few decades using average quantities, which 
can be obtained in many different and accurate ways 
in order to be analysed in different branches of traffic 
engineering [1, 2]. These quantities are related in a 
well-known manner through what has been called a 
Fundamental Diagram [3, 4], which is often present-
ed as a plot of the traffic flow-density relation. Such 
graphic representation, along with its mathematical 
expressions, is an idealization of the sets of points ob-
tained from real measurements. Different mathemat-
ical expressions have been proposed to adjust them, 
recognized as good approximations which provide 
enough information for deterministic analysis.

In this paper, a polynomial approximation tech-
nique has been employed [5] to fit some significant 

points identified as those values that are common and 
important in every fundamental diagram, constituting 
a new and proper model to describe such a relation.

Additionally, this model has been modified in a dis-
crete form, in such a way that it is possible to obtain 
different trajectories from an iterative scheme. This 
proposal has arisen because a similar approach has 
been attempted with the well-known logistic equation, 
taken as a valid traffic relation [6] but missing some 
specifications that a fundamental diagram does have, 
resulting in an interesting but incomplete analysis 
[12].

 As we will show, distinct types of traffic situations 
can be analysed, spanning from those cases of a free-
flow regime to congested-flow situations, where it is 
possible to find stable points or even cyclic events. 
There are some scenarios, however, where no pattern 
seems to exist in the traffic behaviour. Traffic values 
may oscillate, but in an unpredictable non-periodic 
way, cases in which traffic is said to develop chaotic 
behaviour [12].

The polynomial model presented here permits ob-
taining and illustrating all these behaviours by modify-
ing a single parameter in it, the traffic average velocity 
v, showing that vehicular traffic is a dynamic nonlinear 
system that also produces what is known as bifurca-
tions and quasi-periodic trajectories [7].

2.  THE FUNDAMENTAL DIAGRAM
A macroscopic approach to vehicular traffic fo-

cuses on aggregate variables, as mean velocities, 
flows, and vehicular densities. In this case, velocity 
v is referred to as the speed of the wave front of ve-
hicles, often considered to be the maximum speed 
reached by the average car moving in a free-flow,  
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non-congested situation. From Figure 1 it is possible to 
observe that this quantity is very close in value to a 
tangent line from most of the values in the ascending 
part of the curve, but this feature changes as the flow 
approaches its maximum value qmax. Congestion ap-
pears, and it can be more valuable to know the back-
ward front of congestion velocity w, a quantity that 
measures the wave front that moves in the opposite 
direction to traffic flow, closely related to the descend-
ing part of the curve [3].

kJ

kwv

q

qmax

0 kc

Figure 1 – Flow – Density (q vs. k) classic fundamental 
diagram

Flow q is a quantity related to a set of vehicles mov-
ing with time. It can be a number of cars passing a 
point in a time interval or a set of cars traversing a 
section within a time interval [1, 3].

Density k is defined as the number of vehicles oc-
cupying a section of a lane or stretch of a road. A di-
rect measure of density can be obtained with aerial 
photographs, video images or in situ observations, i.e. 
limiting a length of a way and counting the vehicles 
present on it at the moment of time [3, 8].

These three quantities are simplistically related 
through q=Q(k,v), and represented in Figure 1.

The form of this curve is rather descriptive and 
idealized. It depends on the particular cases of roads 
and their conditions. It is a complete and continuous 
function, but finding the whole range of values for 
each variable experimentally is not very likely. The data 
obtained in real life have multiple discontinuities, in 
which many parts of this curve are not present [9].

This curve illustrates several significant points. 
Note that null flow occurs in two different conditions:
1) When there are no cars on the road, density and 

flow are zero. The velocity will be that of the first 
driver to appear, generally a high value. This veloc-
ity is represented in the fundamental diagram as 
slope v of a straight line passing through the origin, 
known as the free-flow velocity.

2) When density becomes so high that all vehicles 
are forced to stop, flow is zero again, as there is no 

movement. The density in this situation is known 
as jam density and it is referred to as kJ.

Between these two extremes there are many con-
ditions of vehicular flow. As density increments from 
zero, flow does the same, as there are more cars on 
the road, but as this goes on velocity declines, be-
cause of the growing interactions between vehicles. 
This decrement in velocity is imperceptible when den-
sities and flows are low or even medium, but increases 
noticeably as density k and flow q increase, removing 
the linear behaviour.

Velocity drop is remarkable before the flow reaches 
its maximum value. This condition is shown in Figure 1 
in a point where the critical density kC and maximum 
flow qmax are found. Then velocity and flow decrease 
while density increases, starting the congested states 
in the fundamental diagram. Another important slope 
related to this portion of this curve is visible, corre-
sponding directly to the backward front velocity of con-
gestion w, and associated with a straight line plotted 
from the jam density point kj as depicted in Figure 1. 
As can be observed, any flow, except for the highest 
value, can occur in two different conditions, one with 
low density and another with high density.

3.  POLYNOMIAL APPROXIMATION

The density-flow fundamental diagram is the best 
known plot in the vehicular traffic community, and one 
of the traffic system’s most analysed features. Direct-
ly related to the LWR Hydrodynamic Model [10, 11], 
and confirmed by thousands of road measurements 
all over the world [1, 2, 3], it is the starting point for 
establishing traffic models [4].

Several authors have proposed mathematical 
expressions to achieve an approximation accurate 
enough to model the real phenomena and to perform 
theoretical analysis. Some of them are made from con-
tinuous functions [6, 13] and others are constructed 
in a piecewise manner [3]. All of them try to include 
the variables and parameters that are involved in the 
traffic phenomena in order to achieve a better fitness 
of the corresponding data that validate those models. 
This paper presents a polynomial approximation, with 
some remarkable advantages that will be introduced 
through its description and analysis in this paper.

In order to get an accurate approximation to a 
fundamental diagram, its main points and specifica-
tions as well have been taken into account (Figure 2). A 
three-degree polynomial has been proposed,

q(k) = a0+a1k+a2k2+a3k3 (1)

This function is chosen because of the non-sym-
metric form observed in real density-flow diagram, in-
stead of a quadratic form that would necessarily sup-
pose a symmetric parabola [6].
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Equation 1 can be written in an equivalent factor-
ized form,

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

q k a k k k k k k
a k k k k k k
a k k k k k k
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Coefficient a0 can be obtained by making k=k0

( ) ( ) ( ) ( )

( ) ( ) ( )
( )
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Coefficients a1, a2, a3 are obtained in a similar way, 
by making k=k1, k=k2, k=k3, respectively and their sub-
stitution into Equation 2 can be written in the compact 
and general form,

( ) ( ) ( )q k L k q ki i
i

n

0
=
=
/

 (4a)

( )L k k
k k

i
i h

h

h

n

0
= -

-
=
%  (4b)

with i=0, 1, ...n, h=0, 1, ... n and i ≠ h. The expressions 
4 are known as Lagrange Polynomial [5], and for our 
specific case n=3. To perform a normalized analysis, 
let kC=¼kJ, v=4w and kJ=1. These values and propor-
tions are in agreement with those observed experi-
mentally [3], i.e. with minimal variation, it has been 
observed that the backward wave velocity w is approx-
imately a quarter of its absolute value with respect to 
the magnitud of the free-flow velocity v.

Taking these facts into account, it is possible to 
propose values to calculate the coefficients of Equa-
tions 4, given in Table 1.

q(kc)

q(k1)
q(k2)

0

v

k1 k2 kJkC

v
4-

Figure 2 – Straight simplification of a normalized density-
flow diagram (kJ = 1), showing four main points and two 

lines with related slopes

Table 1 – Polynomial nodal points

p k Q

1 k0 = 0 q0 = 0

2 k k4
3

16
3

c1 = = q q k vk1 1 1= =^ h

3 k k k k4c c2 1= + -^ h q q k q k2 1 2= =^ ^h h
4 k k 1J3 = = q3 = 0

The polynomial that touches the points (0,0), (k1, 
q(k2)), (k2, q(k2)) and (kJ, 0) given in Table 1 is,

( )
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Some advantages of this approach can be iden-
tified: points of minimum and maximum density and 
flow are taken into account in the design of the func-
tion representing the fundamental diagram, corre-
sponding to measured and theoretical concepts.

On the other hand, it is noticeable that the follow-
ing relations hold,

( , )q k v k v k v k v4
3

16
3

C J1 1= = =  (6)

From the specific cases of Equation 6, it is possible 
to note that given two of the variables the third can be 
calculated, but depending on these values the height, 
width, and general proportions of the curve change, 
and it is expected that the traffic behaviour repre-
sented by it changes as well. In this way, taking the 
values in Table 1, and those expressed by Equation 6, 
Equation 5 can be written as

( , ) ( , )q k v k k k v P k v13
20

52
159

52
793 2= - =+a k  (7)

Equation 7 is a concave curve as expected (Figure 3), 
the domain of which must be restricted to 0≤k≤1 for 
the purposes of normalization of our model. The points 
where k=0 and k=1 are those two points where densi-
ty is the lowest and the highest, as defined. This poly-
nomial has a maximum at

.k 0 331C ,  (8)

On the other hand, the vertical scale related to flow 
q is not fixed in the same manner as the scale for den-
sity k, because it is affected by velocity v. This variable 
is bound by physical constraints related to the stream 
of vehicles unlike density related to road and its ge-
ometry.

Velocity v is considered constant for a particular 
process, which means that such a quantity modifies 
the values of the coeficients in Equation 7 and there-
fore it is possible to work with a polynomial Q(k)=P(k,v) 
of the density variable only, preserving proper units in 
the respective coefficients.
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( )Q k v k v k v k13
20

52
159

52
793 2= - +a k  (9)

Equation 9 preserves the shape of the fundamental 
diagram as depicted in Figure 3, but it depends only on 
a single variable. By the normalization made to this 
variable, where k! [0,1], it is possible to see that Q(k)
! [0,1] also. Then it is also possible to perform an it-
erative process of the form ki+1=Q(ki), where index i is 
now used to indicate this iterative process, preserving 
all the properties of the obtained polynomial, but treat-
ing it as a discrete dynamic system, and therefore, re-
sulting in the following expression

( )k v k v k v k Q k13
20

52
159

52
79

i i ii i1
3 2= =- ++ a k  (10)
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Figure 3 –  Polynomial shapes, from Equation (7), as 
velocity v is varied

The actual values of ki on Equation 10 condition the 
next state ki+1, i.e. by starting from an initial condition 
k0, Equation 10 will generate a new value k1, continuing 
in a sequence {kn}={k0, k1...ki+1} as other works have 
done with logistic-type functions [7, 8, 12].

As claimed in the Introduction of this paper, one of 
the main purposes of this work is to adjust the shape 
of the curve used to perform the same iterative pro-
cesses that appear in such publications, where the 
iterations are performed over one-dimension func-
tions with expressions such as Xi+1=F(Xi). Even though 
Equation 10 comes evidently from a two-dimension 
function, due to the normalization that preserves the 
properties of the fundamental diagram restricted to a 
unit square [7, 11], the processes are valid.

4.  STABILITY ANALYSIS

4.1 Fixed points

From Equation 10 it is possible to calculate some 
interesting properties of this discrete model. To do it, 

some useful definitions and propositions are needed 
first.
Definition 1. If Q is a function in such a way that 
Q(k*)=k*, then k* is a fixed point of Q [7, 12].

In other words, Equation 10 has a fixed point k*=ki if 
the point (ki, ki) exists on the plot of the iteration-gen-
erated set, i.e. the fixed point also exists in a 45° line 
over the same plot of the discrete system.

Taking into account Definition 1, from Equation 10 
it is possible to obtain three possible fixed points k* 
for density k, being k*=0 one of them, trivially ob-
tained, while the other two fixed points can result from 
Equation 11, which results in terms of the velocity v 
only.

k v v160
159

160
1 1 16640* != +^ h  (11)

Since the proposed polynomial is a third degree 
expression, only these three fixed points are expect-
ed each time a new iterative process is calculated, 
by changing velocity v in each one of such processes. 
Figure 4 depicts the behaviour for such fixed points. 
However, because the effective set of density values 
is 0≤k≤1, one of the fixed points (k1

* in Figure 4) is not 
useful for our analyses, because k1

*>1. On the other 
hand, there are two fixed points whose range of val-
ues are included in such an interval, k2

* (as indicated 
in Figure 4), which is effective from | .v 0 658k 0*2 ,=
and k3

* (as shown in Figure 4) which is always 0. These 
fixed points signal those values where density k is af-
fected by velocity v, producing different behaviours on 
the evolution of this variable.
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Figure 4 – Fixed points for the proposed model, as ve-
locity v is varied

4.2 Behavioural intervals
Definition 2. A point k is known as a periodic point [7, 
12] of function Q with period m if Qm(k)=k, i. e. k is a 
periodic point of Q with period m if k is a fixed point of 
Qm.

Point k has prime period m0 if Qm0(k)=k and Qn(k)≠k 
whenever 0<n<m0, i. e. k has prime period m0 if k re-
turns back to a previous point for the first time after m0 
iterations of Q.
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The set of all iterations of k is called the orbit of k 
and if k is a periodic point then the set of its iterations 
is called a periodic orbit or a cycle.
Definition 3. Let Q be a function and p a periodic point 
of Q with prime period m. Then k is forward asymptotic 
to p if there is a sequence k, Qm(k), Q2m(k), Q3m(k), that 
converges to p, i.e. logn→∞ Qnm(k)=p. The stable set of 
p, denoted by Ωs(p), includes all of the points which 
are forward asymptotic to p [7, 12].
Theorem 1. Let Q be a continuous and derivable func-
tion and let p be a fixed point of Q. Then, the absolute 
value of the derivative of Q in p, |Q’(p)|<1 implies that 
there is a neighbourhood around p which is contained 
in Ωs(p) and |Q’(p)|>1 implies that there is a neigh-
bourhood around p whose points make the values of Q 
to leave under iteration. The proof of this Theorem can 
be found in reference [12].
Definition 4. Let p be a periodic point of Q with prime 
period m. If |(Qm)’(p)|<1, then p is an attracting pe-
riodic point of Q. If |(Qm)’(p)|>1, then p is a repelling 
periodic point of Q [7, 12] .

Definition 5. [15] The zero solution of Equation 10 is 
said to be exponentially stable if there is M≥0 and 

[ , )0 1!b  such that

, , ;
: , ,k Q k M k
Z

R* *n
0 0

0
*0

6

6

! $

! #

a a a a

a a ba a
+

-^ h  (12)

Theorem 2. Every fixed point k* in polynomial 10 is ex-
ponentially stable.

Proof: consider polynomial Q(k) in Equation 10 and 
consider its derivative form

'Q k vk13
60
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159

52
79

ii
2= - +a k  (13)

If k* is a fixed point and if |Q(k*)|<1 then
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For a fixed point Q(k*)=k*
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Q k k 1<*

*

*k k

-
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Because polynomial Q(k,v) is continuous and its 
derivative in k* exists, then

( )lim k k
Q k k M k 1< <

* *

*
*

k k
0b-

-
"

a a-
 (16)

There is a δ>0 such that , ,k k k 0 1* * +! dd- +^ h 6 @
and therefore

( )
k k
Q k k M k C 1< < <*

*
*0b-

- a a-
 (17)

Thus

| ( ) | | |Q k k C k k<* *- -  (18)

As the distance from k to k* is less than δ, i.e. 
|Q(k)-k* |<δ, then

(( , ) [ , ]) ( , ) [ , ]Q k k k k0 1 0 1* * * *+ +1d d d d+ +- -  (19)

This can be extended to any iteration number 
n N!

| ( ) | | |Q k k C k k<* *
n

n- -  (20)

Therefore, ( , ) [ , ]k k k 0 1* * +6 ! dd- + , iterative 
polynomial Qn (k) is exponentially stable and then 
Qn(k)→k*. QED

5.  DYNAMIC BEHAVIOUR

From Theorems 1 and 2 it is possible to know the 
way in which the convergence to a fixed point is per-
formed around the maximum of the density. In fact, 
if the fixed point is before the maximum of density, 
then the derivative of Q is positive, 0<M<1, and the 
iterations behave in a monotonic fashion. If the fixed 
point is located after the maximum of density, then the 
derivative of Q is negative, -1<M<0, and the iterations 
behave in a cyclic way.

This behaviour is not independent from the value 
of velocity v. In fact, from the calculations plotted in 
Figure 4 it is possible to see that for v→0, fixed point 
k*= 0 (k3

* in Figure 4) is an attracting periodic point in 
a forward asymptotic behaviour as stated by Definition 
3 and 4, as there is no other fixed point in the interval 
k! [0,1] . When starting with an initial density of k=0.2 
and a velocity v=0.50, the behaviour of the iterated 
trajectory is towards zero monotonically (Figure 5), as 
mentioned. This situation is closely related to a traffic 
road observed with initial values of low density of ve-
hicles evolving toward an empty condition, a situation 
mostly observed during those hours between the night 
and the next morning. 

Increasing velocity v, reaching | .v 0 658k 0*2 ,= , a 
second fixed point (k2

* in Figure 4) appears and Theo-
rem 2 can be validated for 0≤ k*2 ≤0.5 and for all k3

*. In 
this case k3

* is a repelling periodic point and k2
* is an 

attracting one (Definition 4), in a forward asymptotic 
manner also (Definition 3). When starting again with 
an initial density of k=0.2 but with velocity v=0.75, the 
behaviour of the iterated trajectory moves away the  
origin and now approaches the fixed point k=0.063 ap-
proximately (Figure 6), also in a monotonic manner, in 
agreement with the definitions and analyses annotat-
ed in the last section. This is a situation that relates to 
those real circumstances where evolution of the traffic 
goes to stable values of low densities. 

Cases depicted by Figures 5 and 6 have in com-
mon velocity v that affects the shape of the polyno-
mial in such a way that the 45° line does not surpass 
the maximum value for this function .k 0 331,  when 
crossing it. With this value of k and from Equation 11, it 
is possible to obtain v=1.481 as the limit value where 
the behaviour of the trajectories changes to oscilla-
tions, but it still behaves as exponentially stable in 
agreement with Theorem 2.
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Figure 5 – Trajectory for v = 0.50 (initial density k = 0.2, 
final value k = 0)
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Figure 6  –Trajectory for v = 0.75 (initial density k = 0.2, 
final value k = 0.628)

This can be seen in Figure 7, for velocity v=2.40, 
with initial density k=0.3. In this case, the attracting 
fixed point is k=0.473 approximately. As in the last two 
cases, traffic evolves to a stable condition, but in this 
specific situation traffic is congested, because density 
values are high in comparison, and the flow starts to 
tend towards low values. On the other hand, in these 
three cases depicted here, stability in traffic is shown 
as a set of points that converge towards a single end 
point. Even though they can be started from different 
initial conditions, it can be verified that the form of the 
trajectories will be practically the same after the tran-
sients vanish.

It is useful to plot another figure in which final val-
ues are drawn against the velocity v value from which 
they were generated. Figure 13 shows the positions for 
those final values. In this way, it is possible to see that 
from v=0 to .v 6580, all the trajectories fall towards 
zero, as was already mentioned for this interval. After 

this value of v, the possible trajectories also converge 
to an attracting fixed value, which increases as velocity 
v also increases.

When velocity v increases to .v 3
8 2 667,= , the 

corresponding fixed point is k 2
1*

2 = , and it is no lon-
ger possible to verify the result of Theorem 2. Even 
though it is possible to watch a stable behaviour, this 
is distinct in nature, marking a different kind of iter-
ation process. Figure 8 shows a trajectory that does 
not converge to a single point, but a limit cycle. Here, 
v=2.90 and it is possible to see in Figure 13 that this 
value corresponds to a region where two final val-
ues of the polynomial 10 can be obtained, which is in 
correspondence with the periodical trajectory found. 
In other words, this trajectory, or orbit, will exhib-
it k=0.346 and k=0.648 for any pair of future itera-
tions after stabilization. Then, as stated by Definition 
2, it has prime period m0=2. Notice that the corre-
sponding fixed value is in agreement with the calcu-
lations that are depicted in Figure 4 from Equation 11. 
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Figure 7 – Trajectory for v = 2.40 (initial density k = 0.3, final 
value k = 0.473 approximately)
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Figure 8 – Trajectory for v = 2.90 (initial density k = 0.3, 
final values k = 0.346 and k = 0.648 approximately)
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It is important to note that such behaviour is also ob-
served in real traffic [3].

This cyclic phenomenon increases its complexity 
as v is varied as Figure 9 shows. From such a map-
ping, if velocity is increased to approximately v=3.3 
periodicity changes. Figure 9 depicts a limit cycle 
with m0=4 and values: k=0.239, k=0.697, k=0.314 
and k=0.743. As seen in Figure 13 this value of v cor-
responds to a region where there are four branches 
which split from the anterior two-branch region. If this 
process is further repeated, now for v=3.45 (Figure 10), 
m0=8, and the bifurcation map is in a region of eight 
branches (Figure 13), with final cyclic orbits with values 
of k=0.343, k=0.771, k=0.203, k=0.674, k=0.366, 
k=0.766, k=0.212 and k=0.687 approximately.
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Figure 9 – Trajectory for v = 3.33 (initial density k = 0.3, 
final values k = 0.239, k = 0.697, k = 0.314 and k = 0.743 

approximately)
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Figure 10 – Trajectory for v = 3.45 (initial density k = 0.3, 
final values k = 0.343, k = 0.771, k = 0.203, k = 0.674, k = 

0.366, k = 0.766, k = 0.212, k = 0.687)

If this process is further repeated, now for v = 3.45 
(Figure 10), m0=8, and the bifurcation map is in the re-
gion of eight branches (Figure 13), with final cyclic or-
bits with values of k=q=0.343, k=q=0.771, k=0.203, 
k=0.674, k=0.366, k=0.766, k=0.212 and k=0.687 
approximately. In real situations, these last three cas-
es would correspond to situations that change from 
almost optimum values of flow to severe congestion in 
an oscillating manner as noted in real scenarios [3].

As it is already known for similar iterative schemes 
[6, 7, 12], this cyclic behaviour doubles its period in a 
manner described by the mapping in Figure 13. Velocity 
v is a parameter that triggers such behaviour as estab-
lished now. It is possible to find more of these regions 
that double the periodicity as the velocity parameter 
increases.

However, as can be seen in the same Figure 13, the 
size of intervals decreases progressively and then an 
n-periodicity will merge easily with the next 2n-peri-
odicity and rapidly with the next doubling periodicity 
region. This behaviour is technically deterministic but 
practically unpredictable, and it is said that a chaotic 
system has been found.

For v=3.9 the system is in a chaotic region, with un-
determined periodicity, which means that even though 
this system is deterministic, as it follows a well-defined 
mathematical model, deviations in trajectories that 
start very close will magnify as iterations pass. For 
example, Figure 11 shows the polynomial with v=3.9, 
beginning at k=0.7, and after a number of 120 itera-
tions the final value reached is k=0.408. For a slight 
deviation in the initial condition, namely k=0.701 
(Figure 12), leaving all other values equal, the final val-
ue obtained is k=0.777.

This quantity will be different if a different number 
of iterations are performed, with no periodicity iden-
tified. This happens inside the boundaries that the 
same systems have, that is to say, none of the trajecto-
ries will tend to infinity. Unlike other situations shown, 
where no deviation in final values is expected for slight 
differences in the initial conditions, two chaotic sys-
tems are characterized by growing differences in their 
final values as iterations pass. The trajectories them-
selves are seen to behave differently if a detailed com-
parison is made of both figures.
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Figure 11 – Trajectory for v = 3.90 (initial density k = 0.7, 
final values k = 0.408 approximately)

Q(
k)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

k

Figure 12 – Trajectory for v = 3.90 (initial density k = 0.701, 
final values k = 0.777 approximately)

Figure 13 shows its own features by itself. Between 
approximately values v=3.9 and v=4.1, it seems that 
periodicity is recovered for some periodic values, but 
suddenly aperiodicity appears again after some short 
regions of bifurcations that are not well defined.

As has been shown, all these behaviours have been 
dependent of the variation of velocity v. Each time this 
parameter increases, the shape of the polynomial 9 
changes. This condition has a limit and it is possible 
to calculate the highest value for velocity as v=4.47, 
reached when Q(ki)=1 at the maximum of the normal-
ized fundamental diagram when density .k 0 331, .

6.  CONCLUSIONS

A three-degree polynomial approach to obtain a 
model of a fundamental diagram is presented, and its 

accuracy depends on the important points of this type 
of traffic behaviour representation.

It has been shown that for some sets of values of 
velocity v, the behaviour is stable with states that ap-
proach a single end value, or one with periodic values. 
The periodicity can be only 2 if the velocity parameter v 
lies in certain interval or 4 if this parameter increases. 
It can be found that this periodicity doubles to 8, 16 or 
more for higher values of v. The periodicity becomes 
so high that it is impossible to predict a final value for 
two sets of iterations performed with slightly different 
initial conditions, as their trajectories diverge. This 
traffic model is said to have become chaotic.

This diffuse transition between bifurcations, which 
correspond to oscillatory convergence as has been 
seen, is a different feature with respect to the use of 
two-degree polynomial that is the logistic equation 
used in [8], for example. The suggested polynomial 
approach has the advantage of showing convergent 
oscillatory phenomena, expected in real situations, 
besides those described by the parabolic polynomial 
already mentioned.

It has the additional advantage of being more 
closely related to the fundamental diagrams that are 
well known in traffic fields, as its design is based on 
nodal points, related to some important concepts in 
traffic theory. These points and the approximation 
given by the Lagrange polynomial of a higher degree 
avoid an unrealistic symmetry and approach a more 
familiar fundamental diagram.

There are other functions that approach data de-
picting the fundamental diagram, proposed by other 
researchers (Greenshields, Greenberg, Underwood, 
etc.). The common feature of all of them is that they 
take nodal points as the basis to design and to sug-
gest such models, in a similar manner in which our 
polynomial has been constructed. It is not strange 
then that all the definitions, analyses and simulations 
performed here in this paper can be made on those 
other models. This is part of our future work on which 
we will be focusing.
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Figure 13 – Density-Flow Mapping as velocity v changes.
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ENFOQUE POLINOMIAL Y ANÁLISIS NO LINEAL PARA 
UN DIAGRAMA FUNDAMENTAL DE TRÁFICO  
VEHICULAR 

RESUMEN

El tráfico vehicular puede modelarse como una forma 
dinámica discreta. Como en muchos sistemas dinámicos, 
los parámetros que modelan tráfico pueden producir un 
número de diferentes trayectorias u órbitas y es posible  
representar diferentes situaciones de flujo, incluyendo las 
que presentan caos. En este documento, un enfoque sobre 
el bien conocido diagrama fundamental de densidad-flujo 
es propuesto, usando una técnica polinomial analítica, 
en la cual los coeficientes se toman a partir de valores  
significativos que actúan como los parámetros del modelo 
de tráfico. Dependiendo de los valores de estos parámetros, 
se puede ver como el flujo de tráfico cambia de puntos fina-
les estables a trayectorias caóticas, con el análisis apropia-
do en sus características de estabilidad.

PALABRAS CLAVE

diagrama fundamental de tráfico vehicular; comportamien-
to no lineal; aproximación polinomial;
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