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ABSTRACT 

Modeling the water content in soil is important for the development of agricultural 

information systems. Various data are necessary for such modelling. In this paper the 

authors are proposing a methodology for a frequent situation, i.e., when the modeler is 

facing a problem due to the lack of available data. Soil water prediction, e.g., for irrigation 

planning, should be performed with a daily time step. Unfortunately, past measurements 

of soil moisture, which are necessary for the calibration of a model, are often not available 

at such a frequency. In the case study presented the soil moisture data were acquired 

every two weeks. The authors have tested a model utilizing the Random Forests (RF) 

algorithm, which was used for the conversion of the original data to data with a daily time 

step. The accuracy of the application of RF to this task is compared with a neural network-

based model. The testing accomplished shows that the RF algorithm performs with a 

higher degree of accuracy and is more suitable for this task. 
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INTRODUCTION 

The spatial and temporal distribution of soil water is a critical part of many disciplines, 

including agriculture, forest ecology, hydro-climatology, civil engineering, water 

resources modelling, etc. The hydrological processes involved in creating a soil water 

regime particularly include precipitation, evapotranspiration, the infiltration into the soil 

of surface water, the movement of groundwater, the infiltration of moisture from 

groundwater, etc. A soil moisture regime, especially in the root zone of plants, is 

important according to different aspects, e.g., when a decrease in soil moisture below a 

certain value occurs, the soil water becomes less available to plants [1]. The long-term 

monitoring of a soil water regime is useful for understanding the conditions of a region's 

ecology or food production. With the increasing recognition of the importance of soil 

moisture as a geophysical variable [2], soil moisture monitoring networks began to be 

established [3] and large databases of soil moisture information made available [4]. In 

[5], the influence of land use on soil moisture dynamics is investigated for monitoring 
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purposes. However, such monitoring consumes a lot of time, equipment, staff and funds. 

The monitoring of soil moisture is an important tool, but in many cases it can be 

complemented by other methods, including mathematical modeling. The accuracy of any 

modeling, besides the selection of a suitable model, largely depends on the available input 

data. However, it often happens that the available data are not representative or detailed 

enough for the process to be modelled. 

While one is modelling natural processes, both state variables and time series data are 

needed. This study is focused on solving a situation when no appropriate time series is 

available; more specifically, when the past measurement of soil moisture at the required 

frequency (a daily step) is not available. Only measurements which were accomplished 

with a larger gap between each other are at the researcher’s disposal. 

Infilling missing data has traditionally been done using different statistical methods, 

although various problems with their application are known. E.g., Dumedah et al. [6] 

examines 5 statistical methods and 9 artificial neural networks to assess their suitability 

to infill missing soil moisture data. In particular, multiple regression has problems of 

multicollinearity, heteroscedasticity, and data normality assumptions [7]. In most 

meteorological time series, nonlinearity is another problem that may hamper time series 

analysis using linear methods. In particular, soil moisture data suffer from nonlinearity 

in addition to the problem of missing values. Dumedah and Coulibaly [8] evaluated 

statistical infilling methods for soil moisture and found that even simple methods such as 

monthly average replacement and rank stability methods outperformed regression-based 

techniques. For this reason, many of the techniques presented in this paper will focus on 

infilling data on the basis of time series methods; we would especially like to show the 

benefits of multivariate machine learning techniques, because they can better account for 

the stochastic components [9], higher order interactions, and hysteresis in the data [10]. 

The novelty of this paper consists in the application of prediction tools for 

interpolation tasks. Various methods used for infilling missing data could be applied [11].  

There are various types of models for hydrological predictions: physically-based, 

conceptual and data-driven models are among the most well-known. While physically-

based models mainly depend on our knowledge of physical laws, data-driven models 

extract knowledge only from the monitored data describing the inputs and outputs of the 

process modelled, i.e., they are better suited for solving a problem. Artificial Neural 

Networks (ANN) [8] and other data-driven models such as RF [12], Support Vector 

Machines [13], etc., can, under certain conditions, enter into gaps of a mathematical 

description and replace them with the knowledge stored in the data. Their usage is based 

on the principle that from the known inputs and outputs (e.g., measured), they learn how 

to generate the correct output from the input [14]. Then in the application phase, the 

unknown outputs can be generated from the known inputs. The advantages of ANN and 

RF data-driven models are their ability to learn from the model and generalize knowledge 

from them, often without a detailed knowledge of the various state variables of the 

process. That makes them a suitable alternative tool to address complex processes. 

The work submitted compares soil water content models based on a data-driven 

methodology with the aim of accomplishing an interpolation task and obtaining a time 

series of soil moisture with a daily time step. The particular focus of this paper is the use 

of the alternative data-driven method RF, which was firstly used as a classifier. It’s 

functionality was then extended to regression, which makes it suitable for a soil moisture 

interpolation task. In the following part of the paper “Methods”, the methods of the 

specific machine learning algorithms involved in this study are briefly explained. Then 

in the “Case study description” the data acquisition and preparation is presented. In the 

“Results” part, the settings of the experimental computations are described and the results 
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evaluated. Finally, the “Conclusion” part of the paper summarizes the main achievements 

and conclusions of the work and proposes ideas for future work in this area. 

METHODS 

From a methodology point of view, the novelty of this paper consists in the 

application of a regression type of data-driven algorithm to an interpolation task. As can 

be seen hereinafter, this is somewhat similar to commonly used applications of these 

algorithms to make predictions. A brief introduction of the methods which were used 

now follows. 

Random forests 

RF is a fully non-parametric data mining method requiring no distributional 

assumptions of the covariate relation to the response. This methodology was already 

successfully tested in soil mapping, e.g. [15]. RF are robust and optimize predictive 

accuracy by fitting an ensemble of trees to stabilize model estimates. RF consists of a set 

of regression trees (if we are addressing a regression problem as in this work). The 

resulting RF prediction is an average of the values of these many tree outputs, each one 

of which is grown on a bootstrap sample of the training data. The user chooses the number 

of trees that will be in the RF ensemble. A bootstrap sample means that each tree is trained 

using a sample obtained by randomly drawing N cases with replacements from the 

original dataset, where N is the number of variables in that dataset. With each of these 

bootstrapped training sets, a different tree is obtained. For the regression, the values 

predicted by each tree are averaged to obtain the RF prediction. More details and more 

mathematically founded explanations can be found in [12]; the modeller or user of the 

RF job is more focused on setting the proper parameters of this algorithm, e.g., the 

optimisation of the model. 

Optimization of the model 

RF has three tuneable parameters:  

 Ntree − the number of trees to grow; 

 Mtry − the number of variables randomly sampled as candidates at each tree split; 

 Nodesize − the minimum size of the terminal nodes, which has the main effect on 

the final precision of the model.  

Two concepts are applied in this work as the means used for optimally setting these 

parameters: grid search and repeated cross-validation. These two concepts run together, 

but for the sake of a simpler explanation, they are separately described in the next two 

paragraphs. 

The grid search is designed in the optimization process to choose the values for each 

parameter of the model from a grid of predefined values. The grid search involves running 

the model with the parameters actually chosen in the current iteration, in which the model 

tries to learn the dependencies between the inputs and outputs. The evaluation of the 

results is accomplished with a statistical coefficient (Root Mean Square Error (RMSE) 

was used in this study). Then the best combination of the parameters is finally chosen 

from that iteration in which the highest degree of precision of the model was achieved.  

This precision is evaluated as the average value from more runs of the so-called cross-

validation process. In each run of the grid search of the parameters of the model, this 

process is accomplished. A so-called “repeated cross-validation” is used in the present 

paper [16], which consists of randomly dividing the training data into several 

approximately equal-sized data sets called “folds.” The training process uses all the folds 

except one as the inputs to the model, and the one unused fold is used as the validating 
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data. This process runs as many times as the number of folds that were created. Each fold 

is used as the validating data in this procedure. “Repeated cross-validation” means that 

the initial random splitting of the training data into folds is repeated more than once.  

The abovementioned precision of the model in each iteration of the grid search is now 

the average value of the assessed statistic (e.g., RMSE) from all the runs of the model, 

e.g., if there are two repetitions and five folds, the resulting statistic is the average value 

from ten particular values. 

The use of cross-validation in the optimization process improves the selection of the 

parameters and is a necessity for small amounts of available training data, which is our 

case in the case study presented. 

Multilayer perceptron 

ANN are inspired by biological processes in the human brain and are applied to 

various technical problems for which sufficient, representative data are available. 

Generally an ANN is defined as a computing system that has the ability to learn and retain 

information (and the relationships between them) and allows their further use. The most 

commonly used ANN is a Multilayer Perceptron (MLP). It is a feed forward network 

with a controlled type of learning. The input signals pass through this type of network in 

a forward direction, from input layer to output layer. The basic element of an MLP is a 

neuron, which generally has more inputs and one output. The neurons in the network are 

linked to each other, and these connections transform the signal coming from the previous 

neurons by the connection’s weights. The sum of these weighted signals is then 

transformed by the activation function of the neuron (nonlinear), which affects the output 

to the next neuron. An MLP uses three or more layers of neurons – the input layer, one 

or more hidden layers, and the output layer, all with a nonlinear activation function. The 

nonlinearity included in this flow of the input signal (the activation function, hidden layer, 

etc.) allows the network to learn complex nonlinear tasks. 

The application of an ANN model is divided into three separate parts. The first is 

called the “learning phase” and is about training the model with the training input data. 

The actual output of the network must be known for this type of ANN in the learning 

stage. The learning of the MLP is accomplished by the error back propagation method. 

An error in this sense means the difference between the expected and actual output of the 

MLP. The signal transmitted between the neurons is changed depending on adjustable 

parameters called “weights”, as was mentioned in the previous paragraph. The main goal 

of the learning process is to define these weights. Finding the appropriate network 

parameters is repeated until the error between the desired and actual output from the ANN 

is minimal. 

More details of the back propagation learning method are described in the general 

literature on this subject [14]. Therefore, we will not deal with this in more detail here.  

In the next “verification” phase of the ANN application, the trained network is 

verified with the test data (the actual output of the network must be known at this stage 

too); if this is accomplished with satisfactory results, the model is ready to use an actual 

application (where the output data are unknown). 

DESCRIPTION OF THE CASE STUDY 

For the testing purposes of the methods described in the previous section, data were 

taken from a probe installed in the village of Bac on the Danubian Lowlands (Slovakia) 

(Figure 1). In this and other nearby locations moisture in the unsaturated soil zone and 

ground water levels are monitored. In some of these localities continuous monitoring has 

been performed since 1999, but samples are taken at two-week intervals from the Bac 
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probe. The interpolation of these measured values to a daily interval should be 

accomplished by the data-driven models presented in this study to obtain homogeneous 

data in the area with the aim of obtaining the spatial interpolation of the soil moisture and 

a prediction of the irrigation needs. The soil profile at the Bac area has a complicated 

layered structure. There is loam on the surface that passes into sandy loam; at a depth of 

about 90-100 cm, sand is present, and under it gravel soil is found. This is the most 

important reason why the researchers decided to use data-driven modelling in this task 

instead of the more complicated, additional data requiring physically-based models. The 

moisture content of the soil profile was monitored using neutron probes at a distance of 

10 cm from each other. The measurements were made at a 2-week frequency. At each 

site, calibration curves were taken at different seasons. They served for the refinement of 

the computational relationships recommended by the manufacturer of the neutron probe. 

 

 
Figure 1. Map of the area studied with the soil probes and a meteorological gauge station 

 

The measured moisture content of the soil from five horizons at the Bac probe (0, 20, 

30, 40, 50 cm) was used for the modelling purposes. These data were collected at the 

mentioned 2-week intervals during the period April 1999-December 2009. A total of 189 

data vectors is available, but data from November to February were excluded, as there is 

no need to model soil moisture in winter. Thus 117 data vectors were used. These data 

about soil moisture were used in further calculations as dependent variables that will be 

calculated on the basis of data taken from the nearby Gabcikovo meteorological station. 

As can be seen in Figure 2, the soil moisture between the various layers is highly 

correlated, and this fact will be used in the proposed model.  

The following data were available from the Gabcikovo climatic station: the average daily 

temperature, relative humidity, wind speed, sunshine and daily precipitation (Figure 3). 

After the results of correlation analysis and other issues were considered, only the average 

daily temperature and daily precipitation totals were used. These two variables are used 

as inputs. They are taken from a various time interval before the day in which the value 

of the soil moisture was computed (e.g. Tt-3, is the temperature 3 days before the day on 

which the prediction of the soil moisture is computed). In such a way in every model 

every variable from more than one day preceding day in which prediction is accomplished 

is taken. This structure of the input data is introducing into the calculations time dynamics, 

since the RF model itself is basically static. As the input, the total precipitation amounts 

for the previous 20 days (U20) and the average temperature for the same interval (T20) are 

also used in some of the models. These two variables are intended to represent the past 
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meteorological conditions in the study area, which affect the consequences of the rainfall 

and temperatures from previous days on the soil moisture value. 

For the data-driven modelling two data sets were used: the training set (1999-2005) 

to build the model (determine its parameters) and the test set (2006-2007) to measure its 

performance. 

 

 
 

Figure 2. Correlogram of the soil moisture values at different depths. Texts “10cm”, “20cm” 

etc., in the diagonal are variable names for soil moisture in depth 10 cm, 20 cm etc. On the right 

side of diagonal are correlation coefficients, on the left side are scatter graphs smoothed by 

Lowes line  

 
Figure 3. Climatic data for Gabcikovo in year 2007 

RESULTS 

The following data model structures for evaluating soil moisture θt were evaluated 

using RF and MLP. T are temperatures and Z precipitations from previous days: 

 Model 1: θt = f(Tt-1, Tt-2, Tt-3, Tt-4, Tt-5, Zt-1, Zt-2, Zt-3, Zt-4, Zt-5, U20, T20); 

 Model 2: θt = f(Tt-1, Tt-2, Tt-3, Tt-4, Tt-5, Zt-1, Zt-2, Zt-3, Zt-4, Zt-5); 

 Model 3: θt = f(Tt-1, Tt-2, Tt-3, Tt-4, Tt-5, Tt-6, Tt-7, Tt-8, Tt-9, Tt-10, Zt-1, Zt-2, Zt-3, Zt-4, 

Zt-5, Zt-6, Zt-7, Zt-8, Zt-9, Zt-10); 

 Model 4: θt = f(Tt-1, Tt-2, Tt-3, Zt-1, Zt-2, Zt-3, U20, T20); 

 Model 5: θt = f(Zt-1, Zt-2, Zt-3, Zt-4, Zt-5, U20, T20). 

These data were used for the computation of the soil moisture in the first layer at a 

depth of 10 centimetres. Moreover, for determining the soil moisture in the deeper layers 

(20, 30, 40 and 50 cm below the soil surface), the previously mentioned correlation of 

the soil moisture between the adjacent layers was used (Figure 2). This was accomplished 

in that the layers were successively evaluated from top to bottom and, starting from the 
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second layer, the previously computed soil moisture from the upper layer was also used 

as an input.  

To increase the accuracy of the simulation, a normalization of the input data was 

accomplished. A normalization should be made to eliminate the possibility that some 

variables will have a greater impact on the learning than the others. In the normalization 

process, all the variables were transformed into the range (-1, 1), which guarantees that 

they will have equal importance in the resulting model. 

Tuning the ANN was made by the trial-and-error process with various settings 

(different amounts of neurons in the hidden layer; the learning rule was either momentum 

or Levenberg-Marquardt and other parameters). In this way a suitable architecture of the 

ANN was found (with one hidden layer containing 5 neurons, an activation function 

hyperbolic tangent in the hidden layer, and the linear function was selected in the output 

layer). The Levenberg-Marquardt algorithm was chosen as a learning rule, and the 

calculations were carried out by the NeuroSolutions neural network simulator.  

The results were statistically evaluated by the Mean Square Error (MSE) and 

correlation coefficient (R). 
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where:  

 θ is the measured value;  

 θm is the predicted value;  

  is the average value;  

  and y are the standard deviations of the measured and modeled data; 

 n is the amount of the data information.  

The results for the testing data and five data models mentioned using MLP are 

evaluated in Table 1 and for RF in Table 2. The total of R and MSE in the last column of 

these tables is evaluated too; it evaluates the overall precision in all five layers. 

 
Table 1. MLP model evaluation by R and MSE (test data 2006-2007) 

 

Model  10 cm 20 cm 30 cm 40 cm 50 cm Sum 

M1 
R 0.889 0.842 0.801 0.718 0.716 3.967 

MSE 0.0012 0.00117 0.00164 0.00237 0.00184 0.00823 

M2 
R 0.671 0.700 0.715 0.613 0.597 3.296 

MSE 0.00314 0.0025 0.00224 0.00295 0.00237 0.0132 

M3 
R 0.713 0.668 0.609 0.556 0.576 3.122 

MSE 0.00321 0.0032 0.00376 0.00426 0.00264 0.01708 

M4 
R 0.878 0.870 0.840 0.839 0.851 4.279 

MSE 0.00123 0.00106 0.00131 0.00152 0.00121 0.00633 

M5 
R 0.666 0.739 0.751 0.776 0.783 3.715 

MSE 0.00683 0.00329 0.00221 0.0018 0.00127 0.0154 
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Table 2. RF model evaluation by R and MSE (test data 2006-2007) 

 

Model  10 cm 20 cm 30 cm 40 cm 50 cm Sum 

M1 
R 0.868 0.886 0.854 0.831 0.831 4.270 

MSE 0.00186 0.00101 0.00121 0.00377 0.00128 0.00912 

M2 
R 0.779 0.795 0.760 0.739 0.742 3.815 

MSE 0.00326 0.00154 0.0038 0.00305 0.00306 0.01471 

M3 
R 0.816 0.841 0.812 0.802 0.792 4.063 

MSE 0.00188 0.00127 0.00283 0.00181 0.00192 0.00971 

M4 
R 0.865 0.878 0.856 0.839 0.828 4.266 

MSE 0.00152 0.0011 0.0012 0.00133 0.00123 0.00637 

M5 
R 0.859 0.885 0.862 0.839 0.843 4.286 

MSE 0.00464 0.00303 0.00361 0.00133 0.00304 0.01566 

 

The correlation coefficients for the calculations using MLP ranged from 0.556 to 

0.889, with the average value of 0.735. For RF the correlation coefficients ranged from 

0.739 to 0.886 with an average value of 0.828. This means that RF offers more stable 

results. For this reason, the RF model was selected as more suitable for the final 

interpolation and the input data into the final model was selected according to the first 

M1 model, which has the best performance. In addition, the authors also consider the RF 

model as preferable because it does not suffer from the difficulties of accidentally falling 

into the local minima, which frequently happens with a neural network model. Figure 4 

illustrates the daily values of moisture evaluated at a depth of 20 cm for the growing 

season in the year 2007 (which was selected for the testing purposes). 

 

  
Figure 4. Interpolation of the soil moisture to the daily values in year 2007 

CONCLUSION 

The development of machine learning has made significant progress in the last two 

decades, and these systems are also finding their applications in water management and 

hydrology. In the work presented the authors evaluated the model for a soil water content 

simulation and interpolation, the aim of which was to obtain a daily time series of the soil 

moisture data. The methodology was based on the neural network methodology (MLP) 

together with the newer type of data-driven model RF. Both models were based on 

temperature and precipitation data from the Gabcikovo climatic station and on the soil 

moisture data measured in the past at approximately two-week time intervals at the Bac 

probe (Slovakia). Both methods have been evaluated using the same training and testing 

data sets, with the aim of comparing them. The results of the models are herein presented 
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graphically (Figure 4) and by using statistical measures (Tables 1, 2). From this 

comparison it can be seen that the results of the RF method are more accurate with respect 

to the measured data. This work also confirms the better potential of RF for application 

from another point of view, i.e., its results are quite stable and similar in repeated 

calculations, unlike the MLP, where the results did not show such stability and were often 

changing in the recalculation process.  

In view of the fact that the proposed model predicted soil moisture using only data 

about temperature and precipitation, the authors considers the accuracy achieved 

sufficient. Presented statistical model can be used in situations, when more extensive and 

detailed data that would be needed for physical-based modeling (e.g., by Hydrus) are not 

available. Some inaccuracies in the calculation of soil moisture, especially in the values 

following the greater rainfalls, are resulting from a smaller quantity of data for model 

calibration during such events. In the future, it would be useful to develop methods that 

allow to deal with this (usual) lack. It would also be necessary to have climatic 

measurements closer to the area of measuring soil moisture. Bigger rains (after which 

some inacuraces in soil moisture computations ocuur) are often local in nature and 

amount of precipitation fallen in the weather station may not exactly match the amount 

of rainfall at the soil moisture measurement probe (Figure 1). This could be another 

source of error in soil moisture model during its calibration and application. 

Both methods could be used as an alternative method to standard measurements, and 

the simulation of the soil moisture and particularly RF suitability for the interpolation 

task were confirmed. 
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