Induced representations of Hilbert modules over locally C*-algebras and the imprimitivity theorem

Khadijeh Karimi¹ and Kamran Sharifi^{1,2} ,*

¹ Department of Mathematics, Shahrood University of Technology, P. O. Box 36199951 61-316, Shahrood, Iran

² Mathematisches Institut, Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstrasse 62, 48 149 Münster, Germany

Received July 26, 2015; accepted November 8, 2015

Abstract. We study induced representations of Hilbert modules over locally C*-algebras and their non-degeneracy. We show that if V and W are Morita equivalent Hilbert modules over locally C*-algebras A and B, respectively, then there exists a bijective correspondence between equivalence classes of non-degenerate representations of V and W.

AMS subject classifications: 46L08, 46K10, 46L05

 ${\bf Key\ words}:$ Hilbert modules, locally C*-algebras, module maps, Morita equivalence, induced representations

1. Introduction

Morita equivalence and induced representations of C*-algebras were first introduced by Rieffel [16, 17]. Two C*-algebras A and B are Morita equivalent if there exists a full Hilbert A-module E such that B is isomorphic to the C*-algebra $K_A(E)$ of all compact operators on E. Some properties of C*-algebras that are preserved under Morita equivalence were investigated in [2, 4, 15, 21]. Indeed, Rieffel defined induced representations of C*-algebras, that are now known as Rieffel induced representations, by using tensor products of Hilbert modules and established an equivalence between the categories of non-degenerate representations of Morita equivalent C*-algebras. Joita [10, 11] defined the notions of Morita equivalence and induced representations in the category of locally C*-algebras. Joita and Moslehian [12] have recently introduced a notion of Morita equivalence in the category of Hilbert C*-modules considered to obtain induced representations of Hilbert modules over locally C*-algebras. This enables us to prove the imprimitivity theorem for induced representations of Hilbert modules over locally C*-algebras.

Let us quickly recall the definition of locally C*-algebras and Hilbert modules over them. A locally C*-algebra is a complete Hausdorff complex topological *algebra A whose topology is determined by its continuous C*-seminorms in the sense that the net $\{a_i\}_{i\in I}$ converges to 0 if and only if the net $\{p(a_i)\}_{i\in I}$ converges to 0 for every continuous C*-seminorm p on A. Such algebras appear in the study of

http://www.mathos.hr/mc

©2016 Department of Mathematics, University of Osijek

^{*}Corresponding author. *Email addresses:* kh_karimi5005@yahoo.com (Kh.Karimi), sharifi.kamran@gmail.com (K.Sharifi)

certain aspects of C*-algebras such as tangent algebras of C*-algebras, a domain of closed *-derivations on C*-algebras, multipliers of Pedersen's ideal, noncommutative analogues of classical Lie groups, and K-theory. These algebras were first introduced by Inoue [6] as a generalization of C*-algebras and studied more in [5, 14] with different names. A (right) *pre-Hilbert module* over a locally C*-algebra A is a right A-module E compatible with the complex algebra structure and equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to A$, $(x, y) \mapsto \langle x, y \rangle$, which is A-linear in the second variable y and has the properties:

 $\langle x, y \rangle = \langle y, x \rangle^*$, and $\langle x, x \rangle \ge 0$ with equality if and only if x = 0.

A pre-Hilbert A-module E is a Hilbert A-module if E is complete with respect to the topology determined by the family of seminorms $\{\overline{p}_E\}_{p\in S(A)}$, where $\overline{p}_E(\xi) = \sqrt{p(\langle \xi, \xi \rangle)}, \xi \in E$. Hilbert modules over locally C*-algebras have been studied systematically in the book [8] and the papers [7, 14, 20].

Joita and Moslehian [12], and Skeide [18] defined Morita equivalence for Hilbert C*-modules with two different methods. In the recent sense of Joita and Moslehian, two Hilbert modules V and W over C*-algebras A and B, respectively, are called Morita equivalent if $K_A(V)$ and $K_B(W)$ are strong Morita equivalent as C*-algebras. We consider this definition, which is weaker than Skeide's definition and also fitted to our paper.

In this paper, we first present some definitions and basic facts about locally C^{*}algebras and Hilbert modules over them. In [19], Skeide proved that if E is a Hilbert module over a C^{*}-algebra A, then every representation of A induces a representation of E. We use this fact to reformulate the induced representations of Hilbert C^{*}modules and some of their properties which have been studied in [1]. These enable us to obtain the notion of induced representations of Hilbert modules over locally C^{*}-algebras. We finally define the concept of Morita equivalence for Hilbert modules over locally C^{*}-algebras. We prove that two full Hilbert modules over locally C^{*}algebras are Morita equivalent if and only if their underlying locally C^{*}-algebras are strong Morita equivalent and then we give a module version of the imprimitivity theorem. Indeed, we show that for Morita equivalent Hilbert modules V and Wover locally C^{*}-algebras A and B, respectively, there is a bijective correspondence between equivalence classes of non-degenerate representations of V and W.

2. Preliminaries

Let A be a locally C*-algebra, S(A) the set of all continuous C*-seminorms on A and $p \in S(A)$. We set $N_p = \{a \in A : p(a) = 0\}$, then $A_p = A/N_p$ is a C*-algebra in the norm induced by p. For $p, q \in S(A)$ with $p \ge q$, the surjective morphisms $\pi_{pq} : A_p \to A_q$ defined by $\pi_{pq}(a+N_p) = a+N_q$ induce the inverse system $\{A_p; \pi_{pq}\}_{p,q\in S(A), p\ge q}$ of C*-algebras and $A = \varprojlim_p A_p$, i.e., the locally C*-algebra A can be identified with $\varprojlim_p A_p$. The canonical map from A onto A_p is denoted by π_p and a_p is reserved to denote $a + N_p$. A morphism of locally C*-algebras is a continuous morphism of *-algebras. An isomorphism of locally C*-algebras is

a morphism of locally C*-algebras which possesses an inverse morphism of locally C*-algebras.

A representation of a locally C*-algebra A is a continuous *-morphism $\varphi : A \to B(H)$, where B(H) is the C*-algebra of all bounded linear maps on a Hilbert space H. If (φ, H) is a representation of A, then there is $p \in S(A)$ such that $\|\varphi(a)\| \leq p(a)$, for all $a \in A$. The representation (φ_p, H) of A_p , where $\varphi_p \circ \pi_p = \varphi$ is called a representation of A_p associated to (φ, H) . We refer to [5, 11] for basic facts and definitions about the representation of locally C*-algebras.

Suppose E is a Hilbert A-module and $\langle E, E \rangle$ is the closure of linear span of $\{\langle x, y \rangle : x, y \in E\}$. The Hilbert A-module E is called *full* if $\langle E, E \rangle = A$. One can always consider any Hilbert A-module as a full Hilbert module over locally C*-algebra $\langle E, E \rangle$. For each $p \in S(A)$, $N_p^E = \{\xi \in E : \bar{p}_E(\xi) = 0\}$ is a closed submodule of E and $E_p = E/N_p^E$ is a Hilbert A_p -module with the action $(\xi + N_p^E)\pi_p(a) = \xi a + N_p^E$ and the inner product $\langle \xi + N_p^E, \eta + N_p^E \rangle = \pi_p(\langle \xi, \eta \rangle)$. The canonical map from E onto E_p is denoted by σ_p^E and ξ_p is reserved to denote $\sigma_p^E(\xi)$. For $p, q \in S(A)$ with $p \ge q$, the surjective morphisms $\sigma_{pq}^E : E_p \to E_q$ defined by $\sigma_{pq}^E(\sigma_p^E(\xi)) = \sigma_q^E(\xi)$ induce the inverse system $\{E_p; A_p; \sigma_{pq}^E, \pi_{pq}\}_{p,q \in S(A), p \ge q}$ of Hilbert C*-modules in the following sense:

- $\sigma_{pq}^{E}(\xi_{p}a_{p}) = \sigma_{pq}^{E}(\xi_{p})\pi_{pq}(a_{p}), \ \xi_{p} \in E_{p}, \ a_{p} \in A_{p}, \ p,q \in S(A), \ p \ge q,$
- $\bullet \ \langle \sigma^E_{pq}(\xi_p), \sigma^E_{pq}(\eta_p) \rangle = \pi_{pq}(\langle \xi_p, \eta_p \rangle), \ \xi_p, \eta_p \in E_p, \ p,q \in S(A), \ p \geq q,$
- $\sigma_{qr}^E \circ \sigma_{pq}^E = \sigma_{pr}^E$ if $p, q, r \in S(A)$ and $p \ge q \ge r$,
- $\sigma_{pp}^{E}(\xi_{p}) = \xi_{p}, \ \xi \in E, \ p \in S(A).$

In this case, $\varprojlim_p E_p$ is a Hilbert A-module which can be identified with E. Let E and F be Hilbert A-modules and $T: E \to F$ an A-module map. The module map T is called bounded if for each $p \in S(A)$ there is $k_p > 0$ such that $\bar{p}_F(Tx) \leq k_p \ \bar{p}_E(x)$ for all $x \in E$. The module map T is called adjointable if there exists an A-module map $T^*: F \to E$ with the property $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x \in E, y \in F$. It is well-known that every adjointable map is bounded. The set $L_A(E, F)$ of all bounded adjointable A-module maps from E into F becomes a locally convex space with the topology defined by the family of seminorms $\{\tilde{p}\}_{p\in S(A)}$, where $\tilde{p}(T) = \|(\pi_p)_*(T)\|_{L_{A_p}(E_p, F_p)}$ and $(\pi_p)_*: L_A(E, F) \to L_{A_p}(E_p, F_p)$ is defined by $(\pi_p)_*(T)(\xi + N_p^E) = T\xi + N_p^F$ for all $T \in L_A(E, F)$, $\xi \in E$. For $p, q \in S(A)$ with $p \geq q$, the morphisms $(\pi_{pq})_*: L_{A_p}(E_p, F_p) \to L_{A_q}(E_q, F_q)$ defined by $(\pi_{pq})_*(T_p)(\sigma_q^E(\xi)) = \sigma_{pq}^F(T_p(\sigma_p^E(\xi)))$ induce the inverse system

$$\{L_{A_p}(E_p, F_p); (\pi_{pq})_*\}_{p,q \in S(A), p \ge q}$$

of Banach spaces such that $\varprojlim_p L_{A_p}(E_p, F_p)$ can be identified to $L_A(E, F)$. In particular, topologizing, $L_A(E, E)$ becomes a locally C*-algebra which is abbreviated by $L_A(E)$. The set of all compact operators $K_A(E)$ on E is defined as the closed linear subspace of $L_A(E)$ spanned by $\{\theta_{x,y} : \theta_{x,y}(\xi) = x \langle y, \xi \rangle$ for all $x, y, \xi \in E\}$. This is a locally C*-subalgebra and a two-sided ideal of $L_A(E)$; moreover, $K_A(E)$ can be identified to $\varprojlim_n K_{A_p}(E_p)$. Let V and W be Hilbert modules over locally C*-algebras A and B, respectively, and $\Psi : A \to L_B(W)$ a continuous *-morphism. We can regard W as a left A-module by $(a, y) \to \Psi(a)y$, $a \in A$, $y \in W$. The right B-module $V \otimes_A W$ is a pre-Hilbert module with the inner product given by $\langle x \otimes y, z \otimes t \rangle = \langle y, \Psi(\langle x, z \rangle)t \rangle$. We denote by $V \otimes_{\Psi} W$ the completion of $V \otimes_A W$, cf. [9] for more detailed information.

3. Induced representations of Hilbert modules

In this section, we first study induced representations of Hilbert C*-modules and then we reformulate them in the context of Hilbert modules over locally C*-algebras.

Let H and K be Hilbert spaces. Then the space B(H, K) of all bounded operators from H into K can be considered as a Hilbert B(H)-module with the module action $(T,S) \to TS, T \in B(H,K)$ and $S \in B(H)$ and the inner product defined by $\langle T, S \rangle = T^*S, T, S \in B(H, K)$. Murphy [13] showed that any Hilbert C^{*}-module can be represented as a submodule of the concrete Hilbert module B(H, K) for some Hilbert spaces H and K. This allows us to extend the notion of a representation from the context of C^{*}-algebras to the context of Hilbert C^{*}-modules. Let V and W be two Hilbert modules over C*-algebras A and B, respectively, and $\varphi: A \to$ B be a morphism of C*-algebras. A map $\Phi: V \to W$ is said to a φ -morphism if $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$ for all $x, y \in V$. A φ -morphism $\Phi : V \to B(H, K)$, where $\varphi : A \to B(H)$ is a representation of A is called a representation of V. When Φ is a representation of V, we assume that an associated representation of A is denoted by the same lowercase letter φ , so we will not explicitly mention φ . Let $\Phi : V \to B(H,K)$ be a representation of a Hilbert A-module V. We say Φ is a non-degenerate representation if $\Phi(V)(H) = K$ and $\Phi(V)^*(K) = H$. Two representations $\Phi_i : V \to B(H_i, K_i)$ of V, i = 1, 2 are said to be unitarily equivalent if there are unitary operators $U_1: H_1 \to H_2$ and $U_2: K_1 \to K_2$, such that $U_2\Phi_1(v) = \Phi_2(v)U_1$ for all $v \in V$. Representations of Hilbert modules have been investigated in [1, 3, 19].

Lemma 1. Let V be a full Hilbert A-module and $\Phi_1 : V \to B(H_1, K_1)$ and $\Phi_2 : V \to B(H_2, K_2)$ two non-degenerate representations of V. If Φ_1 and Φ_2 are unitarily equivalent, then φ_1 and φ_2 are unitarily equivalent.

Proof. Let $U_1 : H_1 \to H_2$ and $U_2 : K_1 \to K_2$ be unitary operators and $U_2\Phi_1(x) = \Phi_2(x)U_1$ for all $x \in V$. Then we have

$$U_1\varphi_1(\langle x, y \rangle)h = U_1\Phi_1(x)^*\Phi_1(y)h = \Phi_2(x)^*\Phi_2(y)U_1h = \varphi_2(\langle x, y \rangle)U_1h,$$

for every $x, y \in V$ and $h \in H_1$. Since V is full, we conclude that $U_1\varphi_1(a)h = \varphi_2(a)U_1h$ for every $a \in A$ and $h \in H_1$, and consequently, φ_1 and φ_2 are unitarily equivalent.

Skeide [19] recovered the result of Murphy by embedding every Hilbert A-module E into a matrix C*-algebra as a lower submodule. He proved that every representation of B induces a representation of E. We describe his induced representation as follows.

Construction 1. Let B be a C*-algebra and E a Hilbert B-module and $\varphi : B \to B(H)$ a *-representation of B. Define a sesquilinear form $\langle ., . \rangle$ on the vector space $E \otimes_{alg} H$ by $\langle x \otimes h, y \otimes k \rangle = \langle h, \varphi(\langle x, y \rangle) k \rangle_H$, where $\langle ., . \rangle_H$ denotes the inner product on the Hilbert space H. By [19, Proposition 3.8], the sesquilinear form is positive and so $E \otimes_{alg} H$ is a semi-Hilbert space. Then $(E \otimes_{alg} H)/N_{\varphi}$ is a pre-Hilbert space with the inner product defined by

$$\langle x \otimes h + N_{\varphi} , y \otimes k + N_{\varphi} \rangle = \langle x \otimes h, y \otimes k \rangle,$$

where N_{φ} is the vector subspace of $E \otimes_{alg} H$ generated by $\{x \otimes h \in E \otimes_{alg} H : \langle x \otimes h, x \otimes h \rangle = 0\}$. The completion of $(E \otimes_{alg} H)/N_{\varphi}$ with respect to the above inner product is denoted by $_{E}H$. We identify the elements $x \otimes h$ with the equivalence classes $x \otimes h + N_{\varphi} \in _{E}H$. Suppose $x \in E$ and $L_{x}h = x \otimes h$ then $||L_{x}h||^{2} = \langle h, \varphi(\langle x, x \rangle)h \rangle \leq ||h||^{2} ||x||^{2}$, i.e. $L_{x} \in B(H,_{E}H)$. We define $\eta_{\varphi} : E \to B(H,_{E}H)$ by $\eta_{\varphi}(x) = L_{x}$. Then for $x, x' \in E$, $h, h' \in H$ and $b \in B$ we have $\langle \eta_{\varphi}(x), \eta_{\varphi}(x') \rangle = \varphi(\langle x, x' \rangle)$ and $\eta_{\varphi}(xb) = \eta_{\varphi}(x)\varphi(b)$, and so η_{φ} is a representation of E.

Lemma 2. Let $\varphi_1 : B \to B(H_1)$ and $\varphi_2 : B \to B(H_2)$ be two non-degenerate representations of B. If φ_1 and φ_2 are unitarily equivalent, then η_{φ_1} and η_{φ_2} are unitarily equivalent.

Proof. Suppose $U: H_1 \to H_2$ is a unitary operator such that $U\varphi_1(b) = \varphi_2(b)U$ for all $b \in B$. Then $id_E \otimes U: E \otimes_{alg} H_1 \to E \otimes_{alg} H_2$ given by $x \otimes h_1 \mapsto x \otimes h_2$ can be extended to a unitary operator V from $_EH_1$ onto $_EH_2$ and $V\eta_{\varphi_1}(x) = \eta_{\varphi_2}(x)U$ for all $x \in E$. Hence, η_{φ_1} and η_{φ_2} are unitarily equivalent.

The above argument enables us to extend the Rieffel induced representations from the case of C*-algebras to the context of Hilbert C*-modules. For this, let Vand W be two full Hilbert modules over C*-algebras A and B, respectively. Let E be a Hilbert B-module and A acts as adjointable operators on the Hilbert C*-module E, and $\Phi : W \to B(H, K)$ is a non-degenerate representation of W. Using [15, Proposition 2.66], the formula ${}^{A}_{E}\varphi(x \otimes h) = (a.x) \otimes h$ extends to obtain a (Rieffel induced) representation of A as bounded operators on Hilbert space ${}^{E}H$. In view of Construction 1, the representation ${}^{A}_{E}\varphi: A \to B(EH)$ of the C*-algebra A obtains the representation $\eta_{A}_{E}\varphi: V \to B(EH, V(EH))$ of the Hilbert A-module V. The constructed representation $\eta_{A}_{E}\varphi$ is called the *Rieffel induced representation* from Wto V via E and denoted by ${}^{V}_{E}\Phi$. The following result can be found in [1, Proposition 3.3] that we derive from Lemmas 1 and 2. Our argument seems to be shorter.

Lemma 3. Let W be a full Hilbert B-module and $\Phi_1 : W \to B(H_1, K_1)$ and $\Phi_2 : W \to B(H_2, K_2)$ two non-degenerate representations of W. If Φ_1 and Φ_2 are unitarily equivalent, then ${}_E^V \Phi_1$ and ${}_E^V \Phi_2$ are unitarily equivalent.

Corollary 1. If $\Phi : W \to B(H, K)$ and $\bigoplus_{i \in I} \Phi_i : W \to B(\bigoplus_{i \in I} H_i, \bigoplus_{i \in I} K_i)$ are unitarily equivalent, then ${}_E^V \Phi$ and $\bigoplus_{i \in I} {}_E^V \Phi_i$ are unitary equivalent.

Now, we reformulate representations of the Hilbert module from the case of C^{*}algebras to the case of locally C^{*}-algebras. Let V and W be two Hilbert modules over locally C*-algebras A and B, respectively, and $\varphi : A \to B$ a morphism of locally C*algebras. A map $\Phi : V \to W$ is said to be a φ -morphism if $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$, for all $x, y \in V$. A φ -morphism $\Phi : V \to B(H, K)$, where $\varphi : A \to B(H)$ is a representation of A, is called a representation of V. We can define non-degenerate representations and unitarily equivalent representations for Hilbert modules over locally C*-algebras like a Hilbert C*-modules case.

Suppose A is a locally C*-algebra, V is a Hilbert A-module and $\varphi : A \to B(H)$ is a representation of A on some Hilbert space H. Suppose $p \in S(A)$ and φ_p is a representation of A_p associated to φ ; then there exist a Hilbert space K and a representation $\Phi_p : V_p \to B(H, K)$ which is a φ_p -morphism. For details we refer to the proof of [13, Theorem 3.1]. It is easy to see that the map $\Phi : V \to B(H, K)$, $\Phi(v) = \Phi_p(\sigma_p^V(v))$ is a φ -morphism, i.e., it is a representation of V.

Lemma 4. Let V be a Hilbert module over locally C*-algebra A and $\Phi : V \rightarrow B(H, K)$ a representation of V. If $p \in S(A)$ and φ_p is a representation of A_p associated to φ , then the map $\Phi_p : V_p \rightarrow B(H, K)$, $\Phi_p(\sigma_p^V(v)) = \Phi(v)$ is a φ_p -morphism. Specifically, Φ_p is a representation of V_p and Φ is non-degenerate if and only if Φ_p is. In this case, we say that Φ_p is a representation of V_p associated to Φ .

Proof. Let $v, v' \in V$ and $\overline{p}_V(v - v') = 0$. Since $\|\varphi(a)\| \leq p(a)$ for all $a \in A$, we have $\langle \Phi(v - v'), \Phi(v - v') \rangle = \varphi(\langle v - v', v - v' \rangle) = 0$, which shows Φ_p is well-defined. We also have

$$\langle \Phi_p(\sigma_p^V(v)), \Phi_p(\sigma_p^V(v')) \rangle = \langle \Phi(v), \Phi(v') \rangle = \varphi(\langle v, v' \rangle) = \varphi_p \circ \pi_p(\langle v, v' \rangle)$$

= $\varphi_p(\langle \sigma_p^V(v), \sigma_p^V(v') \rangle).$

Then, by definition of Φ_p , the representation Φ is non-degenerate if and only if Φ_p is non-degenerate.

Let V and W be two full Hilbert modules over locally C*-algebras A and B, respectively. Let E be a Hilbert B-module, $\Psi : A \to L_B(E)$ a non-degenerate continuous *-morphism and $\Phi : W \to B(H, K)$ a non-degenerate representation of W. We construct a non-degenerate representation from W to V via E as follows.

Construction 2. We define a sesquilinear form $\langle ., . \rangle$ on the vector space $E \otimes_{alg} H$ by $\langle x \otimes h, y \otimes k \rangle = \langle h, \varphi(\langle x, y \rangle) k \rangle_H$ and make the Hilbert space $_EH$ as in Construction 1. The map $_E^A \varphi : A \to B(_EH)$ defined by

$${}^{A}_{E}\varphi(a)(x\otimes h) = \Psi(a)x\otimes h, \quad a\in A, \ x\in E, \ h\in H,$$

is a representation of A. The representation $({}_{E}H, {}_{E}^{A}\varphi)$ is called the Rieffel induced representation from B to A via E, cf. [11]. Since A acts as an adjointable operator on Hilbert B-module E, we can construct interior tensor product $V \otimes_{\Psi} E$ as a Hilbert B-module. Hence, we find the Hilbert spaces ${}_{E}H$ and ${}_{V\otimes_{\Psi}E}H$. Let $v \in V$; then the map $E \times H \to {}_{V\otimes_{\Psi}E}H$, $(x,h) \mapsto v \otimes x \otimes h$ is a bilinear form and so there is a unique linear transformation ${}_{E}\Phi(v) : E \otimes_{alg} H \to {}_{V\otimes_{\Psi}E}H$ which can be extended to a bounded linear operator ${}_{E}^{V}\Phi(v)$ from ${}_{E}H$ to ${}_{V\otimes_{\Psi}E}H$. To see this, suppose $q \in S(B)$, $x \in E, h \in H$ and (φ_{q}, H) is a representation of B_{q} associated to (φ, H) . We have

$$\begin{split} \langle {}_{E}\Phi(v)(x\otimes h) \ , \ {}_{E}\Phi(v)(x\otimes h) \rangle &= \langle v \otimes x \otimes h, v \otimes x \otimes h \rangle \\ &= \langle h, \varphi(\langle v \otimes x, v \otimes x \rangle)h \rangle_{H} \\ &= \langle h, \varphi(\langle v, \Psi(\langle v, v \rangle)x \rangle)h \rangle_{H} \\ &= \langle h, \varphi_{q} \circ \pi_{q}(\langle \Psi(\langle v, v \rangle)^{1/2}x, \Psi(\langle v, v \rangle)^{1/2}x \rangle)h \rangle_{H} \\ &= \langle h, \varphi_{q}(\langle \sigma_{q}(\Psi(\langle v, v \rangle)^{1/2}x), \sigma_{q}(\Psi(\langle v, v \rangle)^{1/2}x) \rangle)h \rangle_{H} \\ &= \langle h, \varphi_{q}(\langle (\pi_{q})_{*}(\Psi(\langle v, v \rangle)^{1/2})(\sigma_{q}(x)), (\pi_{q})_{*}(\Psi(\langle v, v \rangle)^{1/2})(\sigma_{q}(x)) \rangle)h \rangle_{H} \\ &\leq \tilde{q}(\Psi\langle v, v \rangle) \langle h, \varphi_{q}(\langle \sigma_{q}(x), \sigma_{q}(x) \rangle)h \rangle_{H} \\ &= \tilde{q}(\Psi\langle v, v \rangle) \langle h, (\varphi_{q} \circ \pi_{q})(\langle x, x \rangle)h \rangle_{H} \\ &= \tilde{q}(\Psi\langle v, v \rangle) \langle h, \varphi(\langle x, x \rangle)h \rangle_{H} \\ &= \tilde{q}(\Psi\langle v, v \rangle) \langle x \otimes h, x \otimes h \rangle. \end{split}$$

The following equalities hold for every $v, v' \in V, x, x' \in E$ and $h, h' \in H$

$$\begin{split} \langle x \otimes h \ , \ {}_{E}^{V} \Phi^{*}(v) \ {}_{E}^{V} \Phi(v^{'})(x^{'} \otimes h^{'}) \rangle &= \langle {}_{E}^{V} \Phi(v)(x \otimes h) \ , \ {}_{E}^{V} \Phi(v)(x^{'} \otimes h^{'}) \rangle \\ &= \langle v \otimes x \otimes h \ , \ v^{'} \otimes x^{'} \otimes h^{'} \rangle \\ &= \langle h, \varphi(\langle v \otimes x, v^{'} \otimes x^{'} \rangle)h \rangle_{H} \\ &= \langle h, \varphi(\langle x, \Psi(\langle v, v^{'} \rangle)x^{'} \rangle)h^{'} \rangle_{H} \\ &= \langle x \otimes h \ , \ \Psi(\langle v, v^{'} \rangle)x^{'} \otimes h^{'} \rangle \\ &= \langle x \otimes h \ , \ {}_{E}^{A} \varphi(\langle v, v^{'} \rangle)(x^{'} \otimes h^{'}) \rangle, \end{split}$$

which imply $\langle {}^V_E \Phi(v), {}^V_E \Phi(v') \rangle = {}^V_E \Phi^*(v) {}^V_E \Phi(v') = {}^A_E \varphi(\langle v, v' \rangle)$. That is, the map ${}^V_E \Phi : V \to B(EH, {}_{V \otimes \Psi E}H)$ is a ${}^A_E \varphi$ -morphism and so it is a representation of V. We now show that ${}^V_E \Phi$ is non-degenerate. To see this, recall that $\overline{\Psi(A)(E)} = E$ and $\overline{\langle V, V \rangle} = A$, which imply $\overline{\Psi(\langle V, V \rangle)(E)} = E$. Suppose $x, x' \in E$ and $h \in H$, we have

$$\begin{aligned} \|(x-x^{'})\otimes h\|^{2} &= \langle h, \varphi(\langle x-x^{'}, x-x^{'}\rangle)h \rangle_{H} \\ &\leq \|h\|^{2} \|\varphi(\langle x-x^{'}, x-x^{'}\rangle)\| \\ &\leq \|h\|^{2} q(\langle x-x^{'}, x-x^{'}\rangle) = \|h\|^{2} \bar{q}_{E}(x-x^{'}). \end{aligned}$$

Given $\epsilon > 0$, there exist $v_i, v'_i \in V$ and $x_i \in E$ such that $\bar{q}_E(\sum_i \Psi(\langle v_i, v'_i \rangle) x_i - x) < \epsilon$. In view of the above inequality, the term $\sum_i \Psi(\langle v_i, v'_i \rangle) x_i \otimes h$ approximates $x \otimes h$ in $_EH$. But we have

$$\sum_{i} \Psi(\langle v_{i}, v_{i}^{'} \rangle) x_{i} \otimes h = \sum_{i} \frac{A}{E} \varphi(\langle v_{i}, v_{i}^{'} \rangle) (x_{i} \otimes h)$$
$$= \sum_{i} \frac{V}{E} \Phi^{*}(v_{i}) \frac{V}{E} \Phi(v_{i}^{'}) (x_{i} \otimes h)$$
$$= \sum_{i} \frac{V}{E} \Phi^{*}(v_{i}) (v_{i}^{'} \otimes x_{i} \otimes h),$$

which implies ${}^{V}_{E}\Phi(V)^{*}(_{V\otimes_{\Psi}E}H) = {}_{E}H$. The equality ${}^{V}_{E}\Phi(V)(_{E}H) = {}_{V\otimes_{\Psi}E}H$ follows from the definition of ${}^{V}_{E}\Phi$, i.e., ${}^{V}_{E}\Phi$ is non-degenerate.

Definition 1. The representation ${}^{V}_{E}\Phi$ in Construction 2 is a called Rieffel induced representation from W to V via E.

Theorem 3. Let V and W be two full Hilbert modules over locally C*-algebras A and B, respectively. Let E be a Hilbert B-module, $\Psi : A \to L_B(E)$ a non-degenerate continuous *-morphism and $\Phi : W \to B(H, K)$ a non-degenerate representation. If $q \in S(B)$ and (φ_q, H) is a non-degenerate representation of B_q associated to (φ, H) , then there is $p \in S(A)$ such that A_p acts non-degenerately on E_q and the representations $\frac{V}{E}\Phi$ and $\frac{V_p}{E_q}\Phi_q \circ \sigma_p^V$ of V are unitarily equivalent.

Proof. Continuity of Ψ implies that there exists $p \in S(A)$ such that $\tilde{q}(\Psi(a)) \leq p(a)$ for each $a \in A$, which guarantees $\Psi_p : A_p \to L_{B_q}(E_q), \Psi_p(\pi_p(a)) = (\pi_q)_*(\Psi(a))$ is a *-morphism of C*-algebras. Moreover, Ψ_p is non-degenerate since

$$\overline{\Psi_p(A_p)(E_p)} = \overline{\Psi_p(\pi_p(A))(\sigma_p^E(E))} = \overline{(\pi_q)_*(\Psi(A)\sigma_q^E(E))}$$
$$= \sigma_q^E \overline{(\Psi(A)(E))}$$
$$= \sigma_q^E(E) = E_q.$$

If Φ_q is a non-degenerate representation of W_q associated to Φ , then $\frac{V_p}{E_q} \Phi_q : V_p \to B(_{E_q}H, _{V_p\otimes \Psi_q E_q}H)$ defined by $\frac{V_p}{E_q} \Phi_q(\sigma_p^V(v))(\sigma_q^E(x)\otimes h) = \sigma_p^V(v)\otimes \sigma_q^E(x)\otimes h$ is a non-degenerate representation of V_p which is also a $\frac{A_p}{E_q}\varphi_q$ -morphism. Indeed, $\frac{V_p}{E_q}\Phi_q$ is the Rieffel induced representation from W_q to V_p via E_q . Hence, $\frac{V_p}{E_q}\Phi_q \circ \sigma_p^V$ is a non-degenerate representation of V and it is a $\frac{A_p}{E_q}\varphi_q \circ \pi_p$ -morphism. The representations $(\frac{A}{E_q}\varphi_q \circ \pi_p , E_qH)$ of A are unitarily equivalent by [11, proposition 3.4]. We define the linear map $U_1 : E \otimes_{alg} H \to E_q \otimes_{alg} H, U_1(x \otimes h) = \sigma_q^E(x) \otimes h$ which satisfies

$$\langle U_1(x \otimes h), U_1(x \otimes h) \rangle = \langle \sigma_q^E(x) \otimes h, \sigma_q^E(x) \otimes h \rangle$$

= $\langle h, \varphi_q(\langle \sigma_q^E(x), \sigma_q^E(x) \rangle) h \rangle_H$
= $\langle h, \varphi_q(\pi_q(\langle x, x \rangle)) h \rangle_H$
= $\langle h, \varphi(\langle x, x \rangle) h \rangle_H$
= $\langle x \otimes h, x \otimes h \rangle,$

for all $x \in E$ and $h \in H$. Then U_1 can be extended to a bounded linear operator, which is again denoted by U_1 from ${}_EH$ onto ${}_{E_q}H$. It is easy to see that U_1 is a unitary operator. We define the linear map $U_2: V \otimes_{alg} E \otimes_{alg} H \to V_p \otimes_{alg} E_q \otimes_{alg} H$ by $U_2(v \otimes x \otimes h) = \sigma_p^V(v) \otimes \sigma_q^E(x) \otimes h$. For every $v \in V$, $x \in E$ and $h \in H$ we have

$$\begin{aligned} \langle U_2(v \otimes x \otimes h), U_2(v \otimes x \otimes h) \rangle &= \langle \sigma_p^V(v) \otimes \sigma_q^E(x) \otimes h, \sigma_p^V(v) \otimes \sigma_q^E(x) \otimes h \rangle \\ &= \langle h, \varphi_q \Big(\langle \sigma_p^V(v) \otimes \sigma_q^E(x), \sigma_p^V(v) \otimes \sigma_q^E(x) \rangle \Big) h \rangle_H \\ &= \langle h, \varphi_q \Big(\langle \sigma_q^E(x), \Psi_p(\langle \sigma_p^V(v), \sigma_p^V(v) \rangle) \sigma_q^E(x) \rangle \Big) h \rangle_H \\ &= \langle h, \varphi_q \Big(\langle \sigma_q^E(x), \Psi_p(\pi_p(\langle v, v \rangle)) \sigma_q^E(x) \rangle \Big) h \rangle_H \end{aligned}$$

$$\begin{aligned} \langle U_2(v \otimes x \otimes h), U_2(v \otimes x \otimes h) \rangle &= \langle h, \varphi_q \Big(\langle \sigma_q^E(x), (\pi_q)_* (\Psi(\langle v, v \rangle)) \sigma_q^E(x) \rangle \Big) h \rangle_H \\ &= \langle h, \varphi_q \Big(\langle \sigma_q^E(x), \sigma_q^E(\Psi(\langle v, v \rangle) x) \rangle \Big) h \rangle_H \\ &= \langle h, \varphi_q \Big(\pi_q(\langle x, \Psi(\langle v, v \rangle) x) \Big) h \rangle_H \\ &= \langle h, \varphi(\langle x, \Psi(\langle v, v \rangle) x) h \rangle_H \\ &= \langle v \otimes x \otimes h, v \otimes x \otimes h \rangle, \end{aligned}$$

and so U_2 can be extended to a bounded linear operator U_2 from $_{V \otimes \Psi E}H$ onto $_{V_p \otimes \Psi_q E_q}H$. It is easy to see that U_2 is unitary. Moreover, $U_2 \stackrel{V}{_E}\Phi(v) = \binom{V_p}{E_q}\Phi_q \circ \sigma_p^V$ of all $v \in V$. Hence, the representations $\stackrel{V}{_E}\Phi$ and $\stackrel{V_p}{_E_q}\Phi_q \circ \sigma_p^V$ are unitarily equivalent.

Theorem 4. Let $\Phi_1 : W \to B(H_1, K_1)$ and $\Phi_2 : W \to B(H_2, K_2)$ be two nondegenerate representations of W. If Φ_1 and Φ_2 are unitarily equivalent, then ${}_E^V \Phi_1$ and ${}_E^V \Phi_2$ are unitarily equivalent, too.

Proof. Let $q, q' \in S(B)$, (φ_{1q}, H_1) be a representation of B_q associated to φ_1 and let $(\varphi_{2q'}, H_2)$ be a representation of $B_{q'}$ associated to φ_2 . Consider $r \in S(B)$ such that $q, q' \leq r$. By Theorem 3, there exists $p \in S(A)$ such that A_p acts non-degenerately on E_r and the representation ${}_{E}^{V}\Phi_i$ is unitarily equivalent to ${}_{E_r}^{V_p}\Phi_{ir} \circ \sigma_p^V$ for i = 1, 2. Since Φ_{1r} and Φ_{2r} are unitarily equivalent representations of W_r , Lemma 3 implies that the representations ${}_{E_r}^{V_p}\Phi_{1r}$ and ${}_{E_r}^{V_p}\Phi_{2r}$ are unitarily equivalent.

Corollary 2. If $\Phi : W \to B(H, K)$ and $\bigoplus_{i \in I} \Phi_i : W \to B(\bigoplus_{i \in I} H_i, \bigoplus_{i \in I} K_i)$ are unitarily equivalent, then ${}_E^V \Phi$ and $\bigoplus_{i \in I} {}_E^V \Phi_i$ are unitarily equivalent.

Proof. Let $q \in S(B)$ and $\Phi_q : W_q \to B(H, K)$ be a representation of W_q associated to Φ . For every $i \in I$, define $\Phi_{iq} : W_q \to B(H_i, K_i)$ by $\Phi_{iq}(\sigma_q^W(w)) = \Phi_i(w)$. If $\sigma_q^W(w) = 0$, then $\Phi_q(\sigma_q^W(w)) = 0$ and so $\Phi(w) = 0$. Since Φ and $\bigoplus_{i \in I} \Phi_i$ are unitarily equivalent, we conclude that $\bigoplus_{i \in I} \Phi_i(w) = 0$ and therefore, $\Phi_i(w) = 0$ for each $i \in I$. It proves that Φ_{iq} is well-defined for any $i \in I$. It is easy to see that Φ_q is unitarily equivalent to $\bigoplus_{i \in I} \Phi_{iq}$. By Theorem 3, there exists $p \in S(A)$ such that A_p acts non-degenerately on E_q and the representations ${}_E^V \Phi$ and ${}_{E_q}^{V_p} \Phi_q \circ \sigma_p^V$ of V are unitarily equivalent. The representations ${}_E^V \Phi_i$ and ${}_{E_q}^{V_p} \Phi_{iq} \circ \sigma_p^V$, $i \in I$ are unitarily equivalent, too. On the other hand, Corollary 1 implies that the representations ${}_{E_q}^{V_p} \Phi_q \circ \sigma_p^V$ and $\oplus_{i \in I} ({}_{E_q}^{V_p} \Phi_{iq} \circ \sigma_p^V)$ of V are unitarily equivalent. \Box

4. The imprimitivity theorem for Hilbert modules

In this section, we introduce the concept of Morita equivalence between Hilbert modules over locally C*-algebras and give a module version of the imprimitivity theorem.

Let A and B be locally C*-algebras. We say that A and B are strongly Morita equivalent, written $A \sim_M B$, if there is a full Hilbert A module E such that locally C*-algebras B and $K_A(E)$ are isomorphic. Joita [10, Proposition 4.4] showed that strong Morita equivalence is an equivalence relation in the set of all locally C*algebras. The vector space $\tilde{E} := K_A(E, A)$ is a full Hilbert $K_A(E)$ -module with the following action and inner product

$$(T,S) \to TS, S \in K_A(E), T \in K_A(E,A),$$

 $\langle T,S \rangle = T^*S, T, S \in K_A(E,A).$

Since locally C*-algebras B and $K_A(E)$ are isomorphic, \tilde{E} may be regarded as a Hilbert B-module. Moreover, the linear map α from A to $K_B(\tilde{E})$ defined by $\alpha(a)(\theta_{b,x}) = \theta_{ab,x}$ is an isomorphism of locally C*-algebras by [10, Lemma 4.2 and Remark 4.3]. It is easy to see that for each $p \in S(A)$, the linear map $U_p : (\tilde{E})_p \to \tilde{E}_p$ defined by $U_p(T + N_p^{\tilde{E}}) = (\pi_p)_*(T)$ is unitary and so the Hilbert $K_{A_p}(E_p)$ -modules $(\tilde{E})_p$ and \tilde{E}_p are the same.

Definition 2. Suppose V and W are Hilbert modules over locally C*-algebras A and B, respectively. The Hilbert modules V and W are called Morita equivalent if $K_A(V)$ and $K_B(W)$ are strong Morita equivalent as locally C*-algebras. In this case, we write $V \sim_M W$.

Lemma 5. Let V be a full Hilbert module over locally C*-algebra A. Then $K_A(V)$ is strong Morita equivalent to $\overline{\langle V, V \rangle}$.

Proof. The module $\tilde{V} = K_A(V, A)$ is a full Hilbert $K_A(V)$ -module by [10, Corollary 3.3]. Then locally C*-algebras $K_{K_A(V)}(\tilde{V})$ and $K_A(A)$ are isomorphic by Lemma 4.2 in [10]. Since $\overline{\langle V, V \rangle} = A \simeq K_A(A)$, locally C*-algebras $K_A(V)$ and $\overline{\langle V, V \rangle}$ are strong Morita equivalent.

Corollary 3. Two full Hilbert modules over locally C^* -algebras are Morita equivalent if and only if their underlying locally C^* -algebras are strong Morita equivalent.

Theorem 5. Let V and W be two full Hilbert modules over locally C*-algebras A and B, respectively, such that $V \sim_M W$. If E is a Hilbert A-module which gives the strong Morita equivalence between A and B, and Φ is a non-degenerate representation of V, then Φ is unitarily equivalent to $\frac{V}{E} (\stackrel{W}{E} \Phi)$.

Proof. Let $p \in S(A)$ and Φ_p be a non-degenerate representation of V_p associated to Φ . Using [11, Lemma 4.1], there is $q \in S(B)$ such that $A_p \sim_M B_q$ and E_p gives the strong Morita equivalent between A_p and B_q . The representations φ_p and $\frac{A_p}{\tilde{E}_p} {B_q \choose E_p} \varphi_p$) of A_p are unitarily equivalent by [15, Theorem 3.29]. Then the representations Φ_p and $\frac{V_p}{\tilde{E}_p} {W_q \choose E_p} \Phi_p$) of V_p are unitarily equivalent by Lemma 2 and consequently, the representations $\frac{V_p}{\tilde{E}_p} {W_q \choose E_p} \Phi_p$) $\circ \sigma_p^V$ and $\Phi_p \circ \sigma_p^V = \Phi$ of V are unitarily equivalent. In view of Theorems 3 and 4, we have

• the representations ${}^W_E \Phi$ and ${}^{W_q}_{E_p} \Phi_p \circ \sigma^W_q$ of W are unitarily equivalent,

- the representations ${}^V_{\tilde{E}}({}^W_{E}\Phi)$ and ${}^V_{\tilde{E}}({}^{W_q}_{E_p}\Phi_p \circ \sigma^W_q)$ of V are unitarily equivalent, and
- the representations ${}_{\tilde{E}}^{V}({}_{E_{p}}^{W_{q}}\Phi_{p} \circ \sigma_{q}^{W})$ and ${}_{\tilde{E_{P}}}^{V_{p}}({}_{E_{p}}^{W_{q}}\Phi_{p} \circ \sigma_{q}^{W})_{q} \circ \sigma_{p}^{V}$ of V are unitarily equivalent.

The assertion now follows from the fact that $\binom{W_q}{E_p}\Phi_p \circ \sigma_q^W)_q = \frac{W_q}{E_p}\Phi_p.$

We now reformulate the imprimitivity theorem within the framework of Hilbert modules as follows.

Theorem 6. Let V and W be two Hilbert modules over locally C*-algebras A and B, respectively. If $V \sim_M W$, then there is a bijective correspondence between equivalence classes of non-degenerate representations of V and W.

Proof. By replacing the underlying C*-algebras A and B, we may assume that V and W are full Hilbert modules over A and B, respectively. Let E be a Hilbert A-module which gives strong Morita equivalence between A and B. Then, by Theorems 4 and 5, the map $\Phi \mapsto {}^{W}_{E}\Phi$ from the set of all non-degenerate representations of V to the set of all non-degenerate representations of W induces a bijective correspondence between equivalence classes of non-degenerate representations of V and W.

Acknowledgement: This research was done while the second author stayed at the Mathematisches Institut of the Westfälische Wilhelms-Universität in Münster, Germany, in 2015. He would like to express his thanks to Wend Werner and his colleagues in Functional Analysis and Operator Algebras Group for warm hospitality and a great scientific atmosphere. The second author gratefully acknowledges financial support from the Alexander von Humboldt-Foundation. He also would like to thank the referee for his/her careful reading and useful comments.

References

- GH. ABBASPOUR TABADKAN, S. FARHANGI, Induced representations of Hilbert C*modules, arXiv:1403.2256 [math.OA], 2014.
- [2] P. ARA, Morita equivalence and Pedersen ideals, Proc. Amer. Math. Soc. 129(2001), 1041–1049.
- [3] LJ. ARAMBAŠIĆ, Irreducible representations of Hilbert C*-modules, Math. Proc. R. Ir. Acad. 105A(2005), 11?-24.
- W. BEER, On Morita equivalence of nuclear C*-algebras, J. Pure Appl. Algebra, 26(1982), 249–267.
- [5] M. FRAGOULOPOULOU, Topological algebras with involution, North Holland, Amsterdam, 2005.
- [6] A. INOUE, Locally C*-algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A 25(1971), 197–235.
- [7] M. JOITA, On Hilbert modules over locally C*-algebras, An. Univ. Bucuresti, Mat. 49(2000), 41–51.
- [8] M. JOITA, Hilbert modules over locally C*-algebras, University of Bucharest Press, Bucharest, 2006.
- M. JOITA, Tensor products of Hilbert modules over locally C*-algebras, Czech. Math. J. 54(2004), 727–737.

KH. KARIMI AND K. SHARIFI

- [10] M. JOITA, Morita equivalence for locally C*-algebras, Bull. London Math. Soc. 36(2004), 802–810.
- [11] M. JOITA, Induced representations of locally C*-algebras, Rocky Mountain J. Math. 35(2005), 1923–1934.
- [12] M. JOITA, M. S. MOSLEHIAN, A Morita equivalence for Hilbert C*-modules, Stud. Math. 209(2012), 11–19.
- [13] G. J. MURPHY, Positive definite kernels and Hilbert C*-modules, Proc. Edinburgh Math. Soc. 40(1997), 367-?374.
- [14] N. C. PHILLIPS, Inverse limit of C*-algebras, J. Operator Theory 19(1988), 159–195.
- [15] I. RAEBURN, D. P. WILLIAMS, Morita equivalence and continuous-trace C*-algebras, Mathematical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998.
- [16] M. A. RIEFFEL, Induced representations of C*-algebras, Adv. Math. 13(1974), 176– 257.
- [17] M. A. RIEFFEL, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Alg. 5(1974), 51–96.
- [18] M. SKEIDE, Unit vectors, Morita equivalence and endomorphisms, Publ. Res. Inst. Math. Sci. 45(2009), 475-518.
- [19] M. SKEIDE, Generalised matrix C*-algebras and representations of Hilbert modules, Math. Proc. R. Ir. Acad. 100A(2000), 11–38.
- [20] K. SHARIFI, Generic properties of module maps and characterizing inverse limits of C*-algebras of compact operators, Bull. Malays. Math. Sci. Soc. 36(2013), 481?-489.
- [21] H. ZETTL, Strong Morita equivalence of C*-algebras preserves nuclearity, Arch. Math. 38(1982), 448–452.