Fine spectra of triangular triple-band matrices on sequence spaces c and $\ell_{p},(0<p<1)$

Alì Karaìsa ${ }^{1, *}$, Yasín Asar ${ }^{1}$ and Durhasan Turgut Tollu ${ }^{1}$
${ }^{1}$ Department of Mathematics-Computer Sciences, Faculty of Science, Necmettin Erbakan University, Meram Campus 42090 Konya, Turkey

Received May 5, 2015; accepted October 31, 2015

Abstract

The purpose of this study is to determine the fine spectra of the operator for which the corresponding upper and lower triangular matrices $A(r, s, t)$ and $B(r, s, t)$ are on the sequence spaces c and ℓ_{p}, where $(0<p<1)$, respectively. Further, we obtain the approximate point spectrum, defect spectrum and compression spectrum on these spaces. Furthermore, we give the graphical representations of the spectrum of the triangular tripleband matrix over the sequence spaces c and ℓ_{p}.

AMS subject classifications: 47A10, 47B37
Key words: Spectrum of an operator, triple band matrix, spectral mapping theorem, sequence spaces ℓ_{p} and c, Goldberg's classification

1. Introduction

It is well known that matrices play an important role in operator theory. The spectrum of an operator generalizes the notion of eigenvalues for matrices. The spectrum of an operator over a Banach space is partitioned into three parts, i.e., the point spectrum, the continuous spectrum and the residual spectrum. Calculation of these three parts of the spectrum of an operator is called determination of the fine spectrum of the operator.

By a sequence space we understand a linear subspace of the space $\omega=\mathbb{C}^{\mathbb{N}_{1}}$ of all complex sequences containing ϕ, which is the set of all finitely non-zero sequences, where \mathbb{N}_{1} denotes the set of positive integers. We write ℓ_{∞}, c, c_{0} and $b v$ for spaces of all bounded, convergent, null and bounded variation sequences, which are Banach spaces with the sup-norm $\|x\|_{\infty}=\sup _{k \in \mathbb{N}}\left|x_{k}\right|, x \in\left\{\ell_{\infty}, c_{0}, c\right\}$ and $\|x\|_{b v}=\sum_{k=0}^{\infty}\left|x_{k}-x_{k+1}\right|$, while ϕ is not a Banach space with respect to any norm, respectively, where $\mathbb{N}=\{0,1,2, \ldots\}$. Also, by $\ell_{p},(0<p<\infty)$ we denote the sequence space of all sequences associated with a p-absolutely convergent series which is a Banach space with the norm $\|x\|_{p}=\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}, 1 \leq p<\infty$ and $\|x\|_{p}=\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}, 0<p<1$.

Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$, and write

* Corresponding author. Email addresses: \quad akaraisa@konya.edu.tr (A. Karaisa),
yasar@konya.edu.tr (Y. Asar), dttollu@konya.edu.tr (D. T. Tollu)

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k} ; \quad\left(n \in \mathbb{N}, x \in D_{00}(A)\right) \tag{1}
\end{equation*}
$$

where $D_{00}(A)$ denotes the subspace of w consisting of $x \in w$ for which the sum exists as a finite sum. For simplicity in notation, we write the summation without limits running from 0 to ∞ and we use the convention that any term with a negative subscript is equal to naught. More generally, if μ is a normed sequence space, we can write $D_{\mu}(A)$ for $x \in w$ for which the sum in (1) converges in the norm of μ. We write

$$
(\lambda: \mu)=\left\{A: \lambda \subseteq D_{\mu}(A)\right\}
$$

for the space of those matrices sending the whole of the sequence space λ into μ in this sense.

We give a short survey concerning the spectrum and the fine spectrum of linear operators defined by some particular triangle matrices over certain sequence spaces. The fine spectrum of the Cesàro operator of order one on the sequence space ℓ_{p} was studied by Gonzàlez [17], where $1<p<\infty$. Also, weighted mean matrices of the operator on ℓ_{p} were investigated by Cartlidge [9]. The spectrum of the Cesàro operator of order one on the sequence spaces $b v_{0}$ and $b v$ was investigated by Okutoyi $[25,26]$. The spectrum and the fine spectrum of the Rhally operator on the sequence spaces c_{0} and c were examined by Yıldırım [30]. The fine spectrum of the difference operator Δ over the sequence spaces c_{0} and c were studied by Altay and Başar [4]. The fine spectra of the difference operator Δ over the sequence spaces ℓ_{p} and $b v_{p}$ was studied by Akhmedov and Başar [1, 2], where $b v_{p}$ is the space of p-bounded variation sequences introduced by Başar and Altay [7] with $1 \leq p<\infty$. Also, the fine spectrum of $B(r, s, t)$ over the sequence spaces c_{0} and c was studied by Furkan et al. [15]. In 2010, Srivastava and Kumar [27] determined the spectra and the fine spectra of the generalized difference operator Δ_{ν} on ℓ_{1}, where Δ_{ν} is defined by $\left(\Delta_{\nu}\right)_{n n}=\nu_{n}$ and $\left(\Delta_{\nu}\right)_{n+1, n}=-\nu_{n}$ for all $n \in \mathbb{N}$, under certain conditions on the sequence $\nu=\left(\nu_{n}\right)$, and they generalized these results by the generalized difference operator $\Delta_{u v}$ defined by $\Delta_{u v} x=\left(u_{n} x_{n}+v_{n-1} x_{n-1}\right)_{n \in \mathbb{N}}$ for all $n \in \mathbb{N}$, (see [28]). Karakaya and Altun determined the fine spectra of upper triangular double-band matrices over the sequence spaces c_{0} and c [23]. Akhmedov and El-Shabrawy [3], and ElShabrawy $[13,14]$ obtained the fine spectrum of the generalized difference operator $\Delta_{a, b}$, defined as a double band matrix with the convergent sequences $\widetilde{a}=\left(a_{k}\right)$ and $\widetilde{b}=\left(b_{k}\right)$ having certain properties, over the sequence spaces $c, \ell_{p},(1<p<\infty)$ and c_{0}, respectively. Dutta and Baliarsingh $[12,8]$ examined the fine spectra of the generalized $r t h$ difference operator \triangle_{v}^{r} on the sequence spaces ℓ_{1} and c.

Recently, Karaisa [19, 20] and Karaisa and Başar [6] have determined the fine spectrum of matrix operators with the corresponding upper and lower triangular matrices $A(\widetilde{r}, \widetilde{s})$ and $B(\widetilde{r}, \widetilde{s})$ with the convergent sequences $\widetilde{r}=\left(r_{k}\right)$ and $\widetilde{s}=\left(s_{k}\right)$ having certain properties, over the sequence space ℓ_{p} for $(1 \leq p<\infty)$ and $(1<p<$ $\infty)$, respectively. Later, Karaisa and Başar [18, 21, 22] have determined the fine spectrum of the upper triangular triple band matrix $A(r, s, t)$ over some sequence
spaces. Finally, Dündar and Başar have determined the fine spectrum of the matrix operator Δ^{+}defined by an upper triangle double band matrix acting on the sequence space $c_{0}[10]$.

This paper is organized as follows: In Section 2, some notations and fundamental definitions are given. In Section 3, the spectrum, the point spectrum, the residual spectrum and the continuous spectrum of the operator $A(r, s, t)$ on the sequence space c have been computed. We also give the approximate point spectrum, the defect spectrum and the compression spectrum of the operator $A(r, s, t)$ over the space c. In Section 4, we have computed the spectrum and the fine spectrum of the lower-triangular triple band matrix $B(r, s, t)$ over the sequence space $\ell_{p},(0<p<1)$ as well. Also, the boundedness and the norm of the operator $B(r, s, t)$ are given. Finally, we give the graphical representation of the spectrum of upper triangular triple-band matrices and conclude the study.

2. Notations and known results

Let X and Y be the Banach spaces, and $T: X \rightarrow Y$ a bounded linear operator. By $R(T)$ we denote range of T, i.e.,

$$
R(T)=\{y \in Y: y=T x, x \in X\} .
$$

By $B(X)$ we also denote the set of all bounded linear operators on X into itself. If $T \in B(X)$, then the adjoint T^{*} of T is a bounded linear operator on the dual X^{*} of X defined by $\left(T^{*} f\right)(x)=f(T x)$ for all $f \in X^{*}$ and $x \in X$.

Let $X \neq\{\theta\}$ be a complex normed space and $T: D(T) \rightarrow X$ a linear operator with domain $D(T) \subseteq X$. With T we associate the operator $T_{\alpha}=T-\alpha I$, where α is a complex number and I is the identity operator on $D(T)$. If T_{α} has an inverse which is linear, it is denoted by T_{α}^{-1}, that is, $T_{\alpha}^{-1}=(T-\alpha I)^{-1}$ and it is called the resolvent operator of T.

Many properties of T_{α} and T_{α}^{-1} depend on α, and spectral theory is concerned with those properties. For instance, we are interested in the set of all α 's in the complex plane such that T_{α}^{-1} exists. The boundedness of T_{α}^{-1} is another property that will be essential. We shall also ask for what α 's the domain of T_{α}^{-1} is dense in X, to name just a few aspects. For our investigation of T, T_{α} and T_{α}^{-1}, we need some basic concepts of spectral theory, which are given as follows (see [24, pp. 370-371]):

A regular value α of T is a complex number such that
(R1) T_{α}^{-1} exists,
(R2) T_{α}^{-1} is bounded,
(R3) T_{α}^{-1} is defined on a set which is dense in X.
The resolvent set $\rho(T)$ of T is a set of all regular values α of T. Its complement $\mathbb{C} \backslash \sigma(T)$ in the complex plane \mathbb{C} is called the spectrum of T. Furthermore, the spectrum $\sigma(T)$ is partitioned into three disjoint sets as follows: The point spectrum $\sigma_{p}(T)$ is a set such that T_{α}^{-1} does not exist. $\alpha \in \sigma_{p}(T)$ is called an eigenvalue of T. The continuous spectrum $\sigma_{c}(T)$ is a set such that T_{α}^{-1} exists and satisfies (R3) but
not (R2). The residual spectrum $\sigma_{r}(T)$ is a set such that T_{α}^{-1} exists but does not satisfy (R3).

In this section, before Appell et al. [5], we define the three more subdivisions of the spectrum called the approximate point spectrum, the defect spectrum and the compression spectrum, respectively.

Given a bounded linear operator T in a Banach space X, we call a sequence $\left(x_{k}\right)$ in X a Weyl sequence for T if $\left\|x_{k}\right\|=1$ and $\left\|T x_{k}\right\| \rightarrow 0$, as $k \rightarrow \infty$.

From now on, we call the set

$$
\begin{equation*}
\sigma_{a p}(T, X):=\{\alpha \in \mathbb{C}: \text { there exists a Weyl sequence for } T-\alpha I\} \tag{2}
\end{equation*}
$$

the approximate point spectrum of T. Moreover, the subspectrum

$$
\begin{equation*}
\sigma_{\delta}(T, X):=\{\alpha \in \mathbb{C}: T-\alpha I \text { is not surjective }\} \tag{3}
\end{equation*}
$$

is called the defect spectrum of T.
The two subspectra given by (2) and (3) form (not necessarily disjoint) subdivisions

$$
\sigma(T, X)=\sigma_{a p}(T, X) \cup \sigma_{\delta}(T, X)
$$

of the spectrum. There is another subspectrum,i.e.,

$$
\sigma_{c o}(T, X)=\{\lambda \in \mathbb{C}: \overline{R(T-\alpha I)} \neq X\}
$$

which is often called the compression spectrum in the literature. In Goldberg [16], if $T \in B(X)$, with X a Banach space, then there are three possibilities for $R(T)$:
(A) $\quad R(T)=X$,
(B) $\quad R(T) \neq \overline{R(T)}=X$,
(C) $\overline{R(T)} \neq X$.,
and three possibilities for T^{-1} :
(1) T^{-1} exists and is continuous,
(2) T^{-1} exists but is discontinuous,
(3) T^{-1} does not exist.

If these possibilities are combined in all possible ways, nine different states are created. These are labelled by: $A_{1}, A_{2}, A_{3}, \frac{B_{1}, B_{2}, B_{3}, C_{1}, C_{2} \text {, and } C_{3} \text {. If }}{R(T)}$ an operator is in state C_{2}, for example, then $\overline{R(T)} \neq X$ and T^{-1} exists but is discontinuous and we can write $\sigma(T, X) C_{2}$.

By the definitions given above, we can illustrate the subdivisions of the spectrum in the following table:
$\left.\left.\left.\begin{array}{|c|c|c|c|c|}\hline & & 1 & 2 & 3 \\ \hline & & & 1 \\ \text { A } & & T_{\alpha}^{-1} \text { exists } \\ \text { and is bounded }\end{array}\right] \begin{array}{c}T_{\alpha}^{-1} \text { exists } \\ \text { and is unbounded }\end{array}\right] \begin{array}{c}T_{\alpha}^{-1} \\ \text { does not exist }\end{array}\right]$

Table 1: Subdivisions of the spectrum of a linear operator
Proposition 1 (see [5], Proposition 1.3, p. 28). Spectra and subspectra of an operator $T \in B(X)$ and its adjoint $T^{*} \in B\left(X^{*}\right)$ are related by the following relations:
(a) $\sigma\left(T^{*}, X^{*}\right)=\sigma(T, X)$,
(b) $\sigma_{c}\left(T^{*}, X^{*}\right) \subseteq \sigma_{a p}(T, X)$,
(c) $\sigma_{a p}\left(T^{*}, X^{*}\right)=\sigma_{\delta}(T, X)$,
(d) $\sigma_{\delta}\left(T^{*}, X^{*}\right)=\sigma_{a p}(T, X)$,
(e) $\sigma_{p}\left(T^{*}, X^{*}\right)=\sigma_{c o}(T, X)$,
(f) $\sigma_{c o}\left(T^{*}, X^{*}\right) \supseteq \sigma_{p}(T, X)$,
$(g) \sigma(T, X)=\sigma_{a p}(T, X) \cup \sigma_{p}\left(T^{*}, X^{*}\right)=\sigma_{p}(T, X) \cup \sigma_{a p}\left(T^{*}, X^{*}\right)$.
Relations (c)-(f) show that the approximate point spectrum is in a certain sense dual to the defect spectrum, and the point spectrum is dual to the compression spectrum. Equality (g) implies, in particular, that $\sigma(T, X)=\sigma_{a p}(T, X)$ if X is a Hilbert space and T is normal. Roughly speaking, this shows that normal (in particular, self-adjoint) operators on the Hilbert spaces are most similar to matrices in finite dimensional spaces (see [5]).

3. Fine spectra of upper triangular triple-band matrices over the space of convergent sequences

In this section, our main focus is on the upper triple-band matrix $A(r, s, t)$, where

$$
A(r, s, t)=\left[\begin{array}{ccccc}
r & s & t & 0 & \cdots \\
0 & r & s & t & \cdots \\
0 & 0 & r & s & \cdots \\
0 & 0 & 0 & r & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

From now on, we assume that s and t are complex parameters which do not vanish simultaneously.

Let us introduce the operator $A(r, s, t)$ from c to itself by

$$
A(r, s, t) x=\left(r x_{k}+s x_{k+1}+t x_{k+2}\right)_{k=0}^{\infty} \text { where } x=\left(x_{k}\right) \in c .
$$

In this section, we examine the spectrum, the point spectrum, the residual spectrum and the continuous spectrum of the operator $A(r, s, t)$ on the sequence space c. Besides, we give the approximate point spectrum, the defect spectrum and the compression spectrum of the matrix operator $A(r, s, t)$ over the space c.

Lemma 1 (see [29], Theorem 1.3.6, p.6). The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B(c)$ from c to itself if and only if
(1) the rows of A are in ℓ_{1} and their ℓ_{1} norms are bounded,
(2) the columns of A are in c,
(3) the sequence of row sums of A is in c.

The operator norm of T is the supremum of the ℓ_{1} norms of the rows.
Corollary 1. $A(r, s, t): c \rightarrow c$ is a bounded linear operator and

$$
\begin{equation*}
\|A(r, s, t)\|_{(c: c)}=|r|+|s|+|t| \tag{4}
\end{equation*}
$$

Lemma 2 (see [16], p. 59). T has a dense range if and only if T^{*} is one to one.
If $T: c \rightarrow c$ is a bounded matrix operator with the matrix A, then $T^{*}: c^{*} \rightarrow c^{*}$ acting on $\mathbb{C} \oplus \ell_{1}$ has a matrix representation of the form $\left[\begin{array}{cc}\chi & 0 \\ b & A^{t}\end{array}\right]$, where χ denotes the characteristic of the matrix A and b is the column vector whose $k^{t h}$ entry is the limit of the column of A for each $k \in \mathbb{N}$. For $A(r, s, t): c \rightarrow c$, the matrix $A(r, s, t)^{*} \in B\left(\ell_{1}\right)$ is of the form

$$
A(r, s, t)^{*}=\left[\begin{array}{cc}
r+s+t & 0 \\
0 & A^{t}(r, s, t)
\end{array}\right] .
$$

Theorem 1. $A(r, s, t): c \rightarrow c$ has a dense range if and only if $\alpha \neq r+s+t$.
Proof. First, let us show that $\sigma_{p}\left[A(r, s, t)^{*}, \mathbb{C} \oplus \ell_{1}\right]=\{r+s+t\}$. Suppose that α is an eigenvalue of the operator $A(r, s, t)^{*}: \mathbb{C} \oplus \ell_{1} \rightarrow \mathbb{C} \oplus \ell_{1}$. Then there exists $f \in \ell_{1}$ satisfying the system of equations

$$
\left.\begin{array}{rl}
(r+s+t) f_{0} & =\alpha f_{0} \\
r f_{1} & =\alpha f_{1} \\
s f_{1}+r f_{2} & =\alpha f_{2} \tag{5}\\
t f_{1}+s f_{2}+r f_{3} & =\alpha f_{3} \\
& \vdots
\end{array}\right\}
$$

From the above system of linear equation, one can see that $\alpha=r+s+t$ is an eigenvalue corresponding to the eigenvector $(1,0,0,0, \ldots)$. Now, suppose that $\alpha \neq$ $r+s+t$. Then, $f_{0}=0$. Let f_{k} be the first nonzero entry of the sequence f. Then by the k-th equation of (5), $\alpha=r$. But, the $(k+1)$-th equation $f_{k}=0$ for $s \neq 0$, which contraditcts our assumption. Hence there is no other eigenvalue. So $\sigma_{p}\left[A(r, s, t)^{*}, \mathbb{C} \oplus \ell_{1}\right]=\{r+s+t\}$.

Lemma 3 (see [16], p. 60). The adjoint operator T^{*} of T is onto if and only if T has a bounded inverse.

Before giving the main theorem of this section, we should note the following remark. In this paper, from now on, if z is a complex number, then by \sqrt{z} we always mean the square root of z with a nonnegative real part. If $\operatorname{Re}(\sqrt{z})=0$, then \sqrt{z} represents the square root of z with $\operatorname{Im}(\sqrt{z})>0$. The same results are obtained if \sqrt{z} represents the other square roots.

Theorem 2. Let s be a complex number such that $\sqrt{s^{2}}=-s$ and define the set D_{1} by

$$
D_{1}=\left\{\alpha \in \mathbb{C}: 2|r-\alpha| \leq\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|\right\}
$$

Then, $\sigma_{c}[A(r, s, t), c] \subseteq D_{1}$.
Proof. Let $y=\left(y_{k}\right) \in \ell_{1}$. Then, by solving the equation $A_{\alpha}(r, s, t)^{*} x=y$ for $x=\left(x_{k}\right)$ in terms of y, we obtain

$$
\begin{aligned}
x_{0} & =\frac{y_{0}}{r+s+t-\alpha} \\
x_{1} & =\frac{y_{1}}{r-\alpha} \\
x_{2} & =\frac{y_{2}}{r-\alpha}+\frac{-s y_{1}}{(r-\alpha)^{2}} \\
x_{3} & =\frac{y_{3}}{r-\alpha}+\frac{-s y_{2}}{(r-\alpha)^{2}}+\frac{\left(s^{2}-t(r-\alpha)\right) y_{1}}{(r-\alpha)^{3}}
\end{aligned}
$$

and if we denote $a_{1}=1 /(r-\alpha), a_{2}=-s /(r-\alpha)^{2}, a_{3}=\left[s^{2}-t(r-\alpha)\right] /(r-\alpha)^{3}$, we have

$$
\begin{align*}
x_{0} & =\frac{y_{0}}{r+s+t-\alpha} \\
x_{1} & =a_{1} y_{1} \\
x_{2} & =a_{1} y_{2}+a_{2} y_{1} \\
x_{3} & =a_{1} y_{3}+a_{2} y_{2}+a_{3} y_{1} \\
& \vdots \tag{6}\\
x_{n} & =a_{1} y_{n}+a_{2} y_{n-1}+\cdots+a_{n} y_{1}=\sum_{k=1}^{n} a_{n+1-k} y_{k} \quad \text { for } n \geq 1
\end{align*}
$$

Now, we must find a_{n}. We have $y_{n}=t x_{n-2}+s x_{n-1}+(r-\alpha) x_{n}$, for $n \geq 3$ and if we use relation (6), we have

$$
\begin{aligned}
y_{n}= & t \sum_{k=1}^{n-2} a_{n-1-k} y_{k}+s \sum_{k=1}^{n-1} a_{n-k} y_{k}+(r-\alpha) \sum_{k=1}^{n} a_{n+1-k} y_{k} \\
= & y_{1}\left[t a_{n-2}+s a_{n-1}+(r-\alpha) a_{n}\right]+y_{2}\left[t a_{n-3}+s a_{n-2}+(r-\alpha) a_{n-1}\right] \\
& +\cdots+y_{n-1}\left[s a_{1}+(r-\alpha) a_{2}\right]+y_{n} a_{1}(r-\alpha) \text { for all } n \geq 3
\end{aligned}
$$

This implies that $t a_{n-2}+s a_{n-1}+(r-\alpha) a_{n}=0, t a_{n-3}+s a_{n-2}+(r-\alpha) a_{n-1}=$ $0, \ldots, s a_{1}+(r-\alpha) a_{2}=0,(r-\alpha) a_{1}=1$. In fact, this sequence is obtained recursively by letting
$a_{1}=\frac{1}{r-\alpha}, \quad a_{2}=\frac{-s}{(r-\alpha)^{2}}$ and $t a_{n-2}+s a_{n-1}+(r-\alpha) a_{n}=0$ for all $n \geq 3$.
The characteristic equation of the recurrence relation is $(r-\alpha) \lambda^{2}+s \lambda+t=0$. If $\Delta=s^{2}-4 t(r-\alpha) \neq 0$, then the straightforward calculation gives that

$$
\begin{equation*}
a_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\sqrt{s^{2}-4 t(r-\alpha)}} \text { for all } n \geq 1, \quad \lambda_{1}=\frac{-s+\sqrt{\Delta}}{2(r-\alpha)}, \quad \lambda_{2}=\frac{-s-\sqrt{\Delta}}{2(r-\alpha)} \tag{7}
\end{equation*}
$$

By (6), one can see that

$$
\left|x_{n}\right| \leq \sum_{k=1}^{n}\left|a_{n+1-k}\right|\left|y_{k}\right|, \text { for all } n \in \mathbb{N}_{1}
$$

and we have

$$
\begin{aligned}
\left|x_{0}\right|+\left|x_{1}\right|+\cdots+\left|x_{n}\right| \leq & \frac{\left|y_{0}\right|}{|r+s+t-\alpha|}+\sum_{k=1}^{1}\left|a_{2-k}\right|\left|y_{k}\right|+\sum_{k=1}^{2}\left|a_{3-k}\right|\left|y_{k}\right| \\
& +\cdots+\sum_{k=1}^{n}\left|a_{n+1-k}\right|\left|y_{k}\right| \\
= & \frac{\left|y_{0}\right|}{|r+s+t-\alpha|}+\sum_{j=1}^{n}\left|a_{j}\right|\left|y_{1}\right|+\sum_{j=1}^{n-1}\left|a_{j}\right|\left|y_{2}\right|+\cdots+\sum_{j=1}^{1}\left|a_{j}\right|\left|y_{n}\right| \\
\leq & \frac{\left|y_{0}\right|}{|r+s+t-\alpha|}+\sum_{j=1}^{n}\left|a_{j}\right|\left(\left|y_{1}\right|+\left|y_{2}\right|+\cdots+\left|y_{n}\right|\right)
\end{aligned}
$$

for all $n \in \mathbb{N}$. By letting $n \rightarrow \infty$, we get

$$
\|x\|_{1} \leq\left|\|y\|_{1} \sum_{j=1}^{\infty}\right| a_{j} \left\lvert\,+\frac{\left|y_{0}\right|}{|r+s+t-\alpha|}\right.
$$

We must show that $\sum_{j=1}^{\infty}\left|a_{j}\right|<\infty$. There are two cases here:

Case 1. If $\Delta=s^{2}-4 t(r-\alpha) \neq 0$, relation (7) holds for all $k \in \mathbb{N}_{1}$. Now, we show that if $\left|\lambda_{1}\right|<1,\left|\lambda_{2}\right|<1$. Assume that $\left|\lambda_{1}\right|<1$. So we have

$$
\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|<|2(r-\alpha)| .
$$

Since $\sqrt{s^{2}}=-s$, one can see that

$$
\left|1+\sqrt{1-\frac{4 t(r-\alpha)}{s^{2}}}\right|<\left|\frac{2(r-\alpha)}{-s}\right| .
$$

Since $|1-\sqrt{z}| \leq|1+\sqrt{z}|$ for any $z \in \mathbb{C}$, we get

$$
\left|1-\sqrt{1-\frac{4 t(r-\alpha)}{s^{2}}}\right|<\left|\frac{2(r-\alpha)}{-s}\right|
$$

It follows that $\left|\lambda_{2}\right|<1$. Now, for $\left|\lambda_{1}\right|<1$ we can see that

$$
\sum_{j=1}^{\infty}\left|a_{j}\right| \leq \frac{1}{|\sqrt{\Delta}|}\left(\sum_{j=1}^{\infty}\left|\lambda_{1}\right|^{j}+\sum_{j=1}^{\infty}\left|\lambda_{2}\right|^{j}\right) .
$$

$x=\left(x_{k}\right) \in \ell_{1}$ since $\left|\lambda_{1}\right|<1$. Hence, $A_{\alpha}(r, s, t)^{*}$ is onto. By Lemma 3, $A_{\alpha}(r, s, t)$ has a bounded inverse. This means that

$$
\sigma_{c}[A(r, s, t), c] \subseteq\left\{\alpha \in \mathbb{C}: 2|r-\alpha| \leq\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|\right\}=D_{1}
$$

Case 2. If $\Delta=s^{2}-4 t(r-\alpha)=0$, calculation on the recurrence sequence gives

$$
\begin{equation*}
a_{n}=\left(\frac{2 n}{-s}\right)\left[\frac{-s}{2(r-\alpha)}\right]^{n} \quad \text { for all } n \geq 1 \tag{8}
\end{equation*}
$$

Now, for $|-s|<2|r-\alpha|$ we can see that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n-1}}\right|=\left|\frac{-s}{2(r-\alpha)}\right|<1
$$

Since $\sum_{k=1}^{\infty}\left|a_{k}\right|$ is convergent, $x=\left(x_{k}\right) \in \ell_{1}$. Hence, $A_{\alpha}(r, s, t)^{*}$ is onto. By Lemma $3, A_{\alpha}(r, s, t)$ has a bounded inverse. This means that

$$
\sigma_{c}[A(r, s, t), c] \subseteq\{\alpha \in \mathbb{C}: 2|r-\alpha| \leq|-s|\} \subseteq D_{1}
$$

Theorem 3. Define D_{2} by

$$
D_{2}=\left\{\alpha \in \mathbb{C}: 2|r-\alpha|<\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|\right\} .
$$

Then $\sigma_{p}[A(r, s, t), c]=D_{2} \cup\{r+s+t\}$.

Proof. Let $A(r, s, t) x=\alpha x$ for $\theta \neq x \in c$. Then, by solving the system of linear equations

$$
\begin{aligned}
r x_{0}+s x_{1}+t x_{2} & =\alpha x_{0} \\
r x_{1}+s x_{2}+t x_{3} & =\alpha x_{1} \\
r x_{2}+s x_{3}+t x_{4} & =\alpha x_{2} \\
& \vdots \\
r x_{k-2}+s x_{k-1}+t x_{k} & =\alpha x_{k-2}
\end{aligned}
$$

we have

$$
\left.\begin{array}{rl}
x_{2} & =\frac{-s}{t} x_{1}-\frac{r-\alpha}{t} x_{0} \tag{9}\\
x_{3} & =\frac{s^{2}-t(r-\alpha)}{t^{2}} x_{1}+\frac{s(r-\alpha)}{t^{2}} x_{0} \\
& \vdots \\
x_{n} & =\frac{a_{n}(r-\alpha)^{n}}{t^{n-1}} x_{1}-\frac{a_{n-1}(r-\alpha)^{n}}{t^{n-1}} x_{0}
\end{array}\right\}
$$

for all $n \geq 2$. Assume that $\alpha \in D_{2}$. Then we choose $x_{0}=1$ and $x_{1}=2(r-$ $\alpha) /\left[-s+\sqrt{s^{2}-4 t(r-\alpha)}\right]$. We will show that $x_{n}=x_{1}^{n}$ for all $n \geq 2$. Since λ_{1} and λ_{2} are roots of the characteristic equation $(r-\alpha) \lambda^{2}+s \lambda+t=0$, we must have

$$
\lambda_{1} \lambda_{2}=\frac{t}{r-\alpha} \quad \text { and } \quad \lambda_{1}-\lambda_{2}=\frac{\sqrt{\Delta}}{r-\alpha}
$$

combining $x_{1}=1 / \lambda_{1}$ with relation (9) one can see that

$$
\begin{align*}
x_{n} & =\frac{a_{n}(r-\alpha)^{n}}{t^{n-1}} x_{1}-\frac{a_{n-1}(r-\alpha)^{n}}{t^{n-1}} x_{0} \tag{10}\\
& =\left(\frac{r-\alpha}{t}\right)^{n-1}(r-\alpha)\left(-a_{n-1} x_{0}+a_{n} x_{1}\right) \tag{11}\\
& =\frac{1}{\left(\lambda_{1} \lambda_{2}\right)^{n-1}} \frac{r-\alpha}{\sqrt{\Delta}}\left(-\lambda_{1}^{n-1}+\lambda_{2}^{n-1}+\lambda_{1}^{n-1}-\lambda_{2}^{n} \lambda_{1}^{-1}\right) \\
& =\frac{1}{\lambda_{1}^{n-1} \lambda_{2}^{n-1}}\left(\frac{1}{\lambda_{1}-\lambda_{2}}\right) \lambda_{2}^{n-1}\left(\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}}\right) \\
& =\frac{1}{\lambda_{1}^{n}} \\
& =x_{1}^{n} \tag{12}
\end{align*}
$$

The same result is obtained in the case $\Delta=0$ as follows; $\Delta=0$ implies that $s^{2}-4 t(r-\alpha)=0$. Thus, $r-\alpha=\frac{s^{2}}{4 t}$ and $\lambda_{1}=\lambda_{2}=-\frac{2 t}{s}$. By (8), we get

$$
\begin{equation*}
a_{n}=\left(\frac{2 n}{-s}\right)\left(\frac{-2 t}{s}\right)^{n} \tag{13}
\end{equation*}
$$

Then, substituting (11) and choosing $x_{0}=1$ and $x_{1}=-\frac{s}{2 t}$, we can write

$$
\begin{aligned}
x_{n} & =\left(\frac{s}{-2 t}\right)^{2 n-2} \frac{s^{2}}{4 t}\left[\frac{2 n-2}{s}\left(\frac{-2 t}{s}\right)^{n-1}-\frac{2 n}{s}\left(\frac{-2 t}{s}\right)^{n}\left(\frac{s}{-2 t}\right)\right] \\
& =\left(\frac{s}{-2 t}\right)^{2 n-2}\left(\frac{-2 t}{s}\right)^{n-1} \frac{s^{2}}{4 t}\left(\frac{2 n-2}{s}-\frac{2 n}{s}\right) \\
& =\left(\frac{s}{-2 t}\right)^{n}\left(\frac{-2 t}{s}\right) \frac{s^{2}}{4 t}\left(\frac{-2}{s}\right) \\
& =\left(\frac{s}{-2 t}\right)^{n} \\
& =x_{1}^{n} .
\end{aligned}
$$

Since $\left|x_{1}\right|<1$ and $x_{1}=1$, i.e., $\alpha=r+s+t, x=\left(x_{n}\right) \in c$. This shows that $D_{2} \cup\{r+s+t\} \subseteq \sigma_{p}[A(r, s, t), c]$.

Now, we assume that $\alpha \notin D_{2}$, i.e, $\left|\lambda_{1}\right| \leq 1$. We must show that $\alpha \notin \sigma_{p}[A(r, s, t), c]$. In this situation, we examine the following three cases.

Case 1. $\left|\lambda_{2}\right|<\left|\lambda_{1}\right|<1$. In this case, we have $s^{2} \neq 4 t(r-\alpha)$ and from relation (9) we obtain that

$$
\begin{aligned}
x_{n} & =\frac{a_{n}(r-\alpha)^{n}}{t^{n-1}} x_{1}-\frac{a_{n-1}(r-\alpha)^{n}}{t^{n-1}} x_{0} \\
& =\left(\frac{r-\alpha}{t}\right)^{n-1}(r-\alpha)\left(-a_{n-1} x_{0}+a_{n} x_{1}\right) \\
& =\frac{r-\alpha}{\sqrt{\Delta}\left(\lambda_{1} \lambda_{2}\right)^{n-1}}\left(-\lambda_{1}^{n-1} x_{0}+\lambda_{2}^{n-1} x_{0}+\lambda_{1}^{n-1} x_{1}-\lambda_{2}^{n} x_{1}\right) \\
& =\frac{r-\alpha}{\sqrt{\Delta}}\left[\left(\frac{1}{\lambda_{1}^{n-1}}-\frac{1}{\lambda_{2}^{n-1}}\right) x_{0}+\left(\frac{\lambda_{1}}{\lambda_{2}^{n-1}}-\frac{\lambda_{2}}{\lambda_{1}^{n-1}}\right) x_{1}\right] \\
& =\frac{r-\alpha}{\sqrt{\Delta}}\left[\frac{1}{\lambda_{1}^{n-1}}\left(x_{0}-\lambda_{2} x_{1}\right)+\frac{1}{\lambda_{2}^{n-1}}\left(-x_{0}+\lambda_{1} x_{1}\right)\right] .
\end{aligned}
$$

Now, if $-x_{0}+\lambda_{1} x_{1}=0$ and $x_{0}-\lambda_{2} x_{1}=0$, then we have $\lambda_{1}=\lambda_{2}$, which is a contradiction. Otherwise, $x=\left(x_{k}\right) \notin c$.

Case 2. $\left|\lambda_{2}\right|=\left|\lambda_{1}\right|<1$. In this case, we have $s^{2}=4 t(r-\alpha)$ and using the formula

$$
\begin{equation*}
a_{n}=\left(\frac{2 n}{-s}\right)\left[\frac{-s}{2(r-\alpha)}\right]^{n} \quad \text { for all } n \geq 1 \tag{14}
\end{equation*}
$$

Substituting (14) into (11), we get the following

$$
x_{n}=\frac{2(r-\alpha)}{s \lambda_{1}^{n-1}}\left[x_{0}(n-1)-n x_{1} \lambda_{1}\right] .
$$

If $x_{0}=x_{1}=0$, then $x=\theta$, which is a contradiction. Otherwise, $x=\left(x_{k}\right) \notin c$ since $1 /\left|\lambda_{1}\right|>1$.

Case 3. $\left|\lambda_{2}\right|=\left|\lambda_{1}\right|=1$. In this case, we have $s^{2}=4 t(r-\alpha)$ and so we have $|-s / 2 t|=1$. Substituting (13) into (11), we obtain the following

$$
x_{n}=\left(\frac{-s}{2 t}\right)^{n-1}\left[-(n-1) \frac{-s}{2 t} x_{0}+n x_{1}\right]
$$

If $x_{0}=x_{1}=0$, then $x=\theta$, which is a contradiction. Otherwise, $x=\left(x_{k}\right) \notin c$, which means $\alpha \notin \sigma_{p}[A(r, s, t), c]$. Thus $\sigma_{p}[A(r, s, t), c] \subseteq D_{2} \cup\{r+s+t\}$. This completes the proof.

Theorem 4. $\sigma_{r}[A(r, s, t), c]=\sigma_{p}\left[A^{*}(r, s, t), c^{*}\right] \backslash \sigma_{p}[A(r, s, t), c]=\emptyset$.
Proof. For $\alpha \in \sigma_{p}\left[A^{*}(r, s, t), c^{*}\right] \backslash \sigma_{p}[A(r, s, t), c]$, the operator $A(r, s, t)-\alpha I$ is one to one. Thus, $[A(r, s, t)-\alpha I]^{-1}$ exists. On the other hand, $A(r, s, t)^{*}-\alpha I$ is not one to one. Hence, $A(r, s, t)-\alpha I$ does not have a dense range in c by Lemma 2. From Theorem 3 and Theorem 1, we have $\sigma_{r}[A(r, s, t), c]=\emptyset$. This completes the proof.

Theorem 5. Let s be a complex number such that $\sqrt{s^{2}}=-s$. Then,

$$
\sigma[A(r, s, t), c]=D_{1}
$$

Proof. The inclusion

$$
\left\{\alpha \in \mathbb{C}: 2|r-\alpha|<\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|\right\} \subseteq \sigma[A(r, s, t), c]
$$

holds by Theorem 3. Since the spectrum of any bounded operator is closed [24], we have

$$
\begin{equation*}
\left\{\alpha \in \mathbb{C}: 2|r-\alpha| \leq\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|\right\} \subseteq \sigma[A(r, s, t), c] \tag{15}
\end{equation*}
$$

Again, Theorems 2-4 give that

$$
\begin{equation*}
\sigma[A(r, s, t), c] \subseteq\left\{\alpha \in \mathbb{C}: 2|r-\alpha| \leq\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|\right\} \tag{16}
\end{equation*}
$$

By combining (15) and (16), one can observe that $\sigma[A(r, s, t), c]=D_{1}$, as desired.
Theorem 6. $\sigma_{c}[A(r, s, t), c]=D_{3} \backslash\{r+s+t\}$, where

$$
D_{3}=\left\{\alpha \in \mathbb{C}: 2|r-\alpha|=\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|\right\} .
$$

Proof. Since the sets $\sigma_{c}[A(r, s, t), c], \sigma_{r}[A(r, s, t), c]$ and $\sigma_{p}[A(r, s, t), c]$ are pairwise disjoint and their union is $\sigma[A(r, s, t), c]$. Thus the proof is immediate from Theorems 3-5.

Theorem 7. If $|t|>|-s|, r \in \sigma[A(r, s, t), c] A_{3}$.

Proof. From Theorem 3, $r \in \sigma_{p}[A(r, s, t), c]$. Thus, $[A(r, s, t)-\alpha I]^{-1}$ does not exist. It is sufficient to show that $A(r, s, t)-I r$ is onto and for given $y=\left(y_{k}\right) \in c$, we have to find $x=\left(x_{k}\right) \in c$ such that $[A(r, s, t)-I r] x=y$. Solving this equation, we get

$$
\begin{equation*}
x_{k}=\frac{1}{t} \sum_{i=0}^{k-2}\left(\frac{-s}{t}\right)^{k-2-i} y_{i}+\left(\frac{-s}{t}\right)^{k} x_{1} \tag{17}
\end{equation*}
$$

for $k \geq 2$. By (17), x_{k} satisfies

$$
x_{k}=\frac{-s}{t} x_{k-1}+\frac{y_{k-2}}{t}
$$

for $k \geq 2$. Since $\left|\frac{-s}{t}\right|<1$ and $\left(y_{k-2} / t\right) \in c$, by Lemma $2.1[3], x=\left(x_{k}\right) \in c$. The operator $A(r, s, t)-I r$ is onto. Hence, $r \in \sigma[A(r, s, t), c] A_{3}$.

Theorem 8. The following statements hold:
(i) $\sigma_{a p}[A(r, s, t), c]=D_{1}$,
(ii) $\sigma_{\delta}[A(r, s, t), c]=D_{1} \backslash\{r\}$,
(iii) $\sigma_{c o}[A(r, s, t), c]=\{r+s+t\}$.

Proof. (i) From Table 1, $\sigma_{a p}[A(r, s, t), c]=\sigma[A(r, s, t), c] \backslash \sigma[A(r, s, t), c] C_{1}$. By Theorem 4, we get $\sigma_{r}[A(r, s, t), c]=\sigma[A(r, s, t), c] C_{1} \cup \sigma[A(r, s, t), c] C_{2}=\emptyset$. Again by Table 1 , one can see that $\sigma[A(r, s, t), c] C_{1}=\sigma[A(r, s, t), c] C_{2}=\emptyset$. Hence, $\sigma_{a p}[A(r, s, t), c]=D_{1}$.
(ii) The following equality

$$
\sigma_{\delta}[A(r, s, t), c]=\sigma[A(r, s, t), c] \backslash \sigma[A(r, s, t), c] A_{3}
$$

can be deduced from Table 1. By using Theorems 5 and 7 we conclude that $\sigma_{\delta}[A(r, s, t), c]=D_{1} \backslash\{r\}$.
(iii) From Table 1, we have

$$
\sigma_{c o}[A(r, s, t), c]=\sigma[A(r, s, t), c] C_{1} \cup \sigma[A(r, s, t), c] C_{2} \cup \sigma[A(r, s, t), c] C_{3} .
$$

Thus, $\sigma_{c o}[A(r, s, t), c]=\{r+s+t\}$ by Theorems 1 and 4 .

4. Fine spectra of triangular triple-band matrices over the space of $\ell_{p},(0<p<1)$

In this section, we determine the fine spectra of a lower triangular triple-band matrix over the sequence spaces ℓ_{p}, where $(0<p<1)$.

A lower triple-band infinite matrix is of the following form:

$$
B(r, s, t)=\left[\begin{array}{ccccc}
r & 0 & 0 & 0 & \ldots \\
s & r & 0 & 0 & \ldots \\
t & s & r & 0 & \cdots \\
0 & t & s & r & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Let us begin with a theorem concerning the bounded linearity of the operator $B(r, s, t)$ acting on the sequence space $\ell_{p},(0<p<1)$.

Theorem 9. The operator $B(r, s, t): \ell_{p} \rightarrow \ell_{p}$ is a bounded linear operator and

$$
\begin{equation*}
\|B(r, s, t)\|_{\left(\ell_{p}: \ell_{p}\right)}=|r|^{p}+|s|^{p}+|t|^{p} \tag{18}
\end{equation*}
$$

Proof. The linearity of the operator $B(r, s, t)$ is clear. Now, we prove that (18) holds on the space ℓ_{p}. Let us take $e^{(0)}=(1,0,0, \cdots) \in \ell_{p}$. Then $B(r, s, t) e^{(0)}=$ $(r, s, t, 0, \ldots)$ and observe that

$$
\|B(r, s, t)\|_{\left(\ell_{p}: \ell_{p}\right)} \geq \frac{\left\|B(r, s, t) e^{(0)}\right\|_{p}}{\left\|e^{(0)}\right\|_{p}}=|r|^{p}+|s|^{p}+|t|^{p}
$$

which gives the following

$$
\begin{equation*}
\|B(r, s, t)\|_{\left(\ell_{p}: \ell_{p}\right)} \geq|r|^{p}+|s|^{p}+|t|^{p} \tag{19}
\end{equation*}
$$

Let $x=\left(x_{k}\right) \in \ell_{p}$, where $0<p<1$. Then, by using the triangle inequality and taking $x_{-1}=0$, we have

$$
\begin{aligned}
\|B(r, s, t) x\|_{p} & =\sum_{k=0}^{\infty}\left|r x_{k}+s x_{k-1}+t x_{k-2}\right|^{p} \\
& \leq \sum_{k=0}^{\infty}\left|r x_{k}\right|^{p}+\sum_{k=0}^{\infty}\left|s x_{k-1}\right|^{p}+\sum_{k=0}^{\infty}\left|t x_{k-2}\right|^{p} \\
& =|r|^{p} \sum_{k=0}^{\infty}\left|x_{k}\right|^{p}+|s|^{p} \sum_{k=0}^{\infty}\left|x_{k-1}\right|^{p}+|t|^{p} \sum_{k=0}^{\infty}\left|x_{k-2}\right|^{p} \\
& =|s|^{p}\|x\|_{p}+|r|^{p}\|x\|_{p}+|t|^{p}\|x\|_{p} \\
& =\left(|r|^{p}+|s|^{p}+|t|^{p}\right)\|x\|_{p}
\end{aligned}
$$

which gives

$$
\begin{equation*}
\|B(r, s, t)\|_{\left(\ell_{p}: \ell_{p}\right)} \leq|r|^{p}+|s|^{p}+|t|^{p} \tag{20}
\end{equation*}
$$

Therefore, by combining inequalities (19) and (20) we complete the proof.
If $T: \ell_{p} \longrightarrow \ell_{p}$ is a bounded matrix operator with the matrix A, then it is known that the adjoint operator $T^{*}: \ell_{p}^{*} \longrightarrow \ell_{p}^{*}$ is defined by the transpose of the matrix A and the dual space ℓ_{p}^{*} of ℓ_{p} is isomorphic to ℓ_{∞}, where $0<p<1$.
Theorem 10. $\sigma\left[B(r, s, t), \ell_{p}\right]=D_{1}$.
Proof. It is known from Cartlidge [9] that if a matrix operator A is bounded on c, then $\sigma(A, c)=\sigma\left(A, \ell_{\infty}\right)$. So we have $\sigma\left[A(r, s, t), \ell_{\infty}\right]=D_{1}$. By Proposition $1, \sigma\left[B(r, s, t), \ell_{p}\right]=\sigma\left[B^{*}(r, s, t), \ell_{p}^{*}\right]=\sigma\left[A(r, s, t), \ell_{\infty}\right]=D_{1}$, which completes the proof.

Theorem 11. $\sigma_{p}\left[B(r, s, t), \ell_{p}\right]=\emptyset$.

Proof. Consider $B(r, s, t) x=\alpha x$ with $x \neq \theta=(0,0,0, \ldots)$ in ℓ_{p}. Then, by solving the system of linear equations

$$
\begin{aligned}
r x_{0} & =\alpha x_{0} \\
s x_{0}+r x_{1} & =\alpha x_{1} \\
t x_{0}+s x_{1}+r x_{2} & =\alpha x_{2} \\
t x_{1}+s x_{2}+r x_{3} & =\alpha x_{3}
\end{aligned}
$$

Let x_{k} be the first nonzero entry of x. Then the system of equations reduces to

$$
\begin{aligned}
r x_{k} & =\alpha x_{k} \\
s x_{k}+r x_{k+1} & =\alpha x_{k+1} \\
t x_{k}+s x_{k+1}+r x_{k+2} & =\alpha x_{k+2} \\
t x_{k+1}+s x_{k+2}+r x_{k+3} & =\alpha x_{k+3}
\end{aligned}
$$

From the first equation we get $\alpha=r$ and using the other equations in the given order we get $s, t=0$, which contradicts the fact that $s, t \neq 0$.

Theorem 12. $\sigma_{p}\left[B^{*}(r, s, t), \ell_{p}^{*}\right]=\sigma_{p}\left[A(r, s, t), \ell_{\infty}\right]=D_{1}$.
Proof. Assume that $\alpha \in D_{1}$. By using the methodology used in the proof of Theorem 3, and it is easy to see that $\alpha \in D_{1}$ implies $\left|x_{1}\right| \leq 1$, we can see that $\left(x_{n}\right)=\left(x_{1}\right)^{n}$, as in equation (12). Thus $x_{n} \in \ell_{\infty}$. Moreover, assume that $\alpha \notin D_{2}$, which implies $|\lambda|<1$. Using the same reasoning given in Case 1 and Case 2 in the proof of Theorem $3, x_{n} \notin \ell_{\infty}$. Therefore $\sigma_{p}\left[A(r, s, t), \ell_{\infty}\right]=D_{1}$.

Theorem 13. $\sigma_{r}\left[B(r, s, t), \ell_{p}\right]=D_{1}$.
Proof. We show that the operator $B(r, s, t)-\alpha I$ has an inverse and $\overline{R[B(r, s, t)-\alpha I]}$ $\neq \ell_{p}$ for α satisfying $2|r-\alpha| \leq\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|$. For $\alpha \neq r, B(r, s, t)-\alpha I$ is a triangle so it has an inverse. For $\alpha=r$, the operator $B(r, s, t)-\alpha I$ is one to one by Theorem 11. So it has an inverse. By Theorem 12, the operator $[B(r, s, t)-\alpha I)]^{*}=B(r, s, t)^{*}-\alpha I$ is not one to one for $\alpha \in \mathbb{C}$ such that $2|r-\alpha| \leq\left|-s+\sqrt{s^{2}-4 t(r-\alpha)}\right|$. Hence the range of the operator $B(r, s, t)-\alpha I$ is not dense in ℓ_{p} by Lemma 2. So, $\sigma_{r}\left[B(r, s, t), \ell_{p}\right]=D_{1}$.

Theorem 14. $\sigma_{c}\left[B(r, s, t), \ell_{p}\right]=\emptyset$.
Proof. Since the parts $\sigma_{c}\left[B(r, s, t), \ell_{p}\right], \sigma_{r}\left[B(r, s, t), \ell_{p}\right]$ and $\sigma_{p}\left[B(r, s, t), \ell_{p}\right]$ are pairwise disjoint and their union is $\sigma\left[B(r, s, t), \ell_{p}\right]$, the proof is immediate, from Theorems 10, 11 and 13.

Theorem 15. If $|t|>|-s|, r \in \sigma\left[B(r, s, t), \ell_{p}\right] C_{1}$.

Proof. From Theorem 13, $r \in \sigma_{r}\left[B(r, s, t), \ell_{p}\right]$. It is sufficient to show that the operator $[B(r, s, t)-I r]^{-1}$ is continuous. By Lemma 3, it is enough to show that $[B(r, s, t)-I r]^{*}$ is onto and for given $y=\left(y_{k}\right) \in \ell_{p}^{*}=\ell_{\infty}$, we have to find $x=\left(x_{k}\right) \in$ ℓ_{∞} such that $[B(r, s, t)-I r]^{*} x=y$. Solving the system of linear equations

$$
\begin{aligned}
s x_{1}+t x_{2} & =y_{0} \\
s x_{2}+t x_{3} & =y_{1} \\
s x_{3}+t x_{4} & =y_{2} \\
& \vdots \\
s x_{k}+t x_{k+1} & =y_{k-1}
\end{aligned}
$$

one can easily observe that

$$
x_{k}=\frac{1}{t} \sum_{i=0}^{k-2}\left(\frac{-s}{t}\right)^{k-2-i} y_{i}+\left(\frac{-s}{t}\right)^{k} x_{1}
$$

We can easily see that $x=\left(x_{k}\right) \in \ell_{\infty}$ since $|t|>|-s|$. This shows that $[B(r, s, t)-$ $I r]^{*}$ is onto. Hence, $r \in \sigma\left[B(r, s, t), \ell_{p}\right] C_{1}$.

Theorem 16. The following statements hold:
(i) $\sigma_{a p}\left[B(r, s, t), \ell_{p}\right]=D_{1} \backslash\{r\}$ for $|t|>|-s|$,
(ii) $\sigma_{\delta}\left[B(r, s, t), \ell_{p}\right]=D_{1}$,
(iii) $\sigma_{c o}\left[B(r, s, t), \ell_{p}\right]=D_{1}$.

Proof. (i) From Table 1, we get $\sigma_{a p}\left[B(r, s, t), \ell_{p}\right]=\sigma\left[B(r, s, t), \ell_{p}\right] \backslash \sigma\left[B(r, s, t), \ell_{p}\right] C_{1}$. By Theorem 15, one can obtain $\sigma\left[B(r, s, t), \ell_{p}\right] C_{1}=\{r\}$. Hence, $\sigma_{a p}\left[B(r, s, t), \ell_{p}\right]=$ $D_{1} \backslash\{r\}$.
(ii) The following equality

$$
\sigma_{\delta}\left[B(r, s, t), \ell_{p}\right]=\sigma\left[B(r, s, t), \ell_{p}\right] \backslash \sigma\left[B(r, s, t), \ell_{p}\right] A_{3}
$$

is obtained from Table 1. By Theorems 10 and $11 \sigma_{\delta}\left[B(r, s, t), \ell_{p}\right]=D_{1}$.
(iii) From Table 1, we have
$\sigma_{c o}\left[B(r, s, t), \ell_{p}\right]=\sigma\left[B(r, s, t), \ell_{p}\right] C_{1} \cup \sigma\left[B(r, s, t), \ell_{p}\right] C_{2} \cup \sigma\left[B(r, s, t), \ell_{p}\right] C_{3}=\sigma_{p}\left[B^{*}(r, s, t), \ell_{p}^{*}\right]$.
By Theorem 12, it is immediate that $\sigma_{c o}\left[B(r, s, t), \ell_{p}\right]=D_{1}$.

5. Graphical representation

In this section, we give the graphical representations of the spectrum of the triangular triple-band matrix over the sequence space c.

If we choose $r=t=1, s=-2$, we get

$$
\sigma[A(1,-2,1), c]=\{\alpha \in \mathbb{C}:|1-\sqrt{\alpha}| \leq 1\} .
$$

Then, in polar coordinates, the boundary of $\sigma[A(1,-2,1), c]$ is as follows:
Let $\alpha=\rho e^{i \theta}$. Then,

$$
\begin{aligned}
1 & =\left|1-\sqrt{\rho} e^{\frac{i \theta}{2}}\right| \\
& =\left[1-\sqrt{\rho} \cos \left(\frac{\theta}{2}\right)\right]^{2}+\left[-\sqrt{\rho} \sin \left(\frac{\theta}{2}\right)\right]^{2} \\
& =-2 \sqrt{\rho} \cos \left(\frac{\theta}{2}\right)+\rho+1 \\
\rho & =4 \cos ^{2}\left(\frac{\theta}{2}\right),-\pi<\theta<\pi .
\end{aligned}
$$

Figure 1: The continuous spectrum of the operator $A(r, s, t)$ over the space c

Figure 2: The point spectrum of the operator $A(r, s, t)$ over the space c

Figure 3: The spectrum of the operator $B(r, s, t)$ and $A(r, s, t)$ over the spaces ℓ_{p} and c

Conclusion

In this paper, we determine the spectrum, the continuous spectrum, thepoint spectrum and the residual spectrum of the operator triple-band matrix over the sequence spaces ℓ_{p} and c and give their graphical representations. We also obtain a new type of subspectral classes.

Finally, we should note that in the case $t=0$, the operator $A(r, s, t)$ defined by an upper triangular triple-band matrix reduces to the operator $U(r, s)$ defined by an upper triangular double band matrix, and in the case $r=1, s=-1$ and $t=0$, the operator $A(r, s, t)$ is reduced to Δ^{+}defined by an upper triangular difference matrix. Our results are more general and more comprehensive than the corresponding results obtained by Karakaya and Altun [23], and Dündar and Başar [10], respectively.

Acknowledgement

The authors would like to express their gratitude to the referee for making some useful comments on the first draft of the manuscript which improved the presentation of the paper.

References

[1] A. M. Akhmedov, F. BaşAR, On the spectra of the difference operator Δ over the sequence space ℓ_{p}, Demonstratio Math. 39(2006), 585-595.
[2] A. M. Akhmedov, F. Başar, On the fine spectra of the difference operator Δ over the sequence space bv $v_{p},(1 \leq p<\infty)$, Acta Math. Sin. Eng. Ser. 23(2007), 1757-1768.
[3] A. M. Akhmedov, S. R. El-Shabrawy, On the fine spectrum of the operator $\Delta_{a, b}$ over the sequence space c, Comput. Math. Appl. 61(2011), 2994-3002.
[4] B. Altay, F. BAşar, On the fine spectrum of the difference operator Δ on c_{0} and c, Inform. Sci. 168(2004), 217-224.
[5] J. Appell, E. Pascale, A. Vignoli, Nonlinear Spectral Theory, de Gruyter Series in Nonlinear Analysis and Applications 10, Walter de Gruyter, Berlin-New York, 2004.
[6] F. Başar, A. Karaisa, On the fine spectrum of the generalized difference operator defined by a double sequential band matrix over the sequence space $\ell_{p},(1<p<\infty)$, Hacet. J. Math. Stat., in press, doi: 10.15672/HJMS. 2015449669.
[7] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(2003), 136-147.
[8] P. Baliarsingh, S. Dutta, A note on spectral subdivisions of the operator \triangle^{r} over the sequence space c, JOMS 32(2013), 31-46 .
[9] P. J. Cartlidge, Weighted mean matrices as operators on ℓ^{p}, Ph.D. Dissertation, Indiana University, 1978.
[10] E. Dündar, F. Başar, On the fine spectrum of the upper triangle double band matrix Δ^{+}on the sequence space c_{0}, Math. Commun. 18(2013), 337-348.
[11] H. Bilgiç, H. Furkan, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{p} and $b v_{p}(1<p<\infty)$, Nonlinear Anal. 68(2008), 499-506.
[12] S. Dutta, P. Baliarsingh, On the fine spectra of the generalized rth difference operator \triangle_{v}^{r} on the sequence space ℓ_{1}, Appl. Math. Comput. 219(2012), 1776-1784.
[13] S. R. El-Shabrawy, On the fine spectrum of the generalized difference operator $\Delta_{a, b}$ over the sequence space $\ell_{p},(1<p<\infty)$, Appl. Math. Inf. Sci. 6(2012), 111-118.
[14] S. R. El-Shabrawy, Spectra and fine spectra of certain lower triangular double-band matrices as operators on c_{0}, J. Inequal. Appl. 2014(2014), 1-9.
[15] H. Furkan, H. Bilgiç, B. Altay, On the fine spectrum of the operator $B(r, s, t)$ over c_{0} and c, Comput. Math. Appl. 53(2007), 989-998.
[16] S. Goldberg, Unbounded Linear Operators, Dover Publications, New York, 1985.
[17] M. Gonzàlez, The fine spectrum of the Cesàro operator in $\ell_{p}(1<p<\infty)$, Arch. Math. 44(1985), 355-358.
[18] A. Karaisa, F. Başar, Fine spectra of upper triangular triple-band matrices over the sequence space $\ell_{p},(0<p<\infty)$, Abstr. Appl. Anal. 2013(2013), Article ID 342682.
[19] A. Karaisa, Fine spectra of upper triangular double-band matrices over the sequence space $\ell_{p},(1<p<\infty)$, Discrete Dyn. Nat. Soc. 2012(2012), Article ID 381069.
[20] A. Karaisa, Spectrum and Fine Spectrum Generalized Difference Operator Over The Sequence Space ℓ_{1}, Math. Sci. Lett. 3(2014), 215-221.
[21] A. Karaisa, F. Başar, Fine spectra of upper triangular triple-band matrix over the sequence space $\ell_{p},(0<p<1)$, in: AIP Conference Proceedings 1470(2012), 134-137.
[22] A. Karaisa, F. Ba̧̧ar, Spectrum and fine spectrum of the upper triangular triple-band matrix over some sequence spaces, AIP Conf. Proc. 1676(2015), Article ID 020085.
[23] V. Karakaya, M. Altun, Fine spectra of upper triangular double-band matrices, J. Comput. Appl. Math. 234(2010), 1387-1394.
[24] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley \& Sons Inc., New York-Chichester-Brisbane-Toronto, 1978.
[25] J. I. Okutoyi, On the spectrum of C_{1} as an operator on bvo, J. Austral. Math. Soc. Ser. A. 48(1990), 79-86.
[26] J. I. Okutoyi, On the spectrum of C_{1} as an operator on bv, Commun. Fac. Sci. Univ. Ank. Ser. A_{1} 41(1992), 197-207.
[27] P. D. Srivastava, S. Kumar, Fine spectrum of the generalized difference operator Δ_{ν} on sequence space ℓ_{1}, Thai J. Math. 8(2010), 7-19.
[28] P. D. Srivastava, S. Kumar, Fine spectrum of the generalized difference operator $\Delta_{u v}$ on sequence space ℓ_{1}, Appl. Math. Comput. 218(2012), 6407-6414.
[29] A. Wilansky, Summability through Functional Analysis, Vol. 85 of North-Holland Mathematics Studies, North-Holland Publishing, Amsterdam, 1984.
[30] M. Yildirim, On the spectrum of the Rhaly operators on c_{0} and c, Indian J. Pure Appl. Math. 29(1998), 1301-1309.

