Perfect 1-error-correcting Lipschitz weight codes

Olof Heden ${ }^{1, *}$ and Murat Güzeltepe ${ }^{2}$

${ }^{1}$ Department of Mathematics, KTH, SE-100 44 Stockholm, Sweden
${ }^{2}$ Department of Mathematics, Sakarya Universit, TR-54 187 Sakarya, Turkey
Received May 10, 2015; accepted October 27, 2015

Abstract

Let π be a Lipschitz prime and $p=\pi \pi^{\star}$. Perfect 1-error-correcting codes in $H(\mathbb{Z})_{\pi}^{n}$ are constructed for every prime number $p \equiv 1(\bmod 4)$. This completes a result of the authors in an earlier work, Perfect Mannheim, Lipschitz and Hurwitz weight codes, (Math. Commun. 19(2014), 253-276), where a construction is given in the case $p \equiv$ $3(\bmod 4)$.

AMS subject classifications: 94B60
Key words: perfect codes

1. Introduction

Lipschitz weight codes were introduced by Martinez et al. in [3, 4]. Shortly, consider the ring of quaternions over the integers

$$
H(\mathbb{Z})=\left\{a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \mid a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Z}\right\}
$$

where

$$
\begin{equation*}
e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{1} e_{2}=-e_{2} e_{1}=e_{3}, \quad e_{2} e_{3}=-e_{3} e_{2}=e_{1}, \quad e_{3} e_{1}=-e_{1} e_{3}=e_{2} \tag{2}
\end{equation*}
$$

A Lipschitz prime is an element $\pi=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$ in $H(\mathbb{Z})$ such that $p=\pi \pi^{\star}=\left(a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)\left(a_{0}-a_{1} e_{1}-a_{2} e_{2}-a_{3} e_{3}\right)=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$
is an odd prime number. The integer $\mathrm{N}(\pi)=\pi \pi^{\star}$ is called the norm of π.
The elements in the left ideal

$$
\langle\pi\rangle=\{\lambda \pi \mid \lambda \in H(\mathbb{Z})\}
$$

constitute a normal subgroup of the additive group of the ring $H(\mathbb{Z})$. The set of cosets to $\langle\pi\rangle$ in $H(\mathbb{Z})$ constitute an Abelian group denoted as below:

$$
H=H(\mathbb{Z})_{\pi}=H(\mathbb{Z}) /\langle\pi\rangle
$$

$*$ Corresponding	author.
mguzeltepe@sakarya.edu.tr (M. Güzeltepe)	

In [3], it is proved that the size of $H(\mathbb{Z})_{\pi}$ is equal to p^{2}.
Let

$$
\mathcal{E}=\left\{ \pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3}\right\}
$$

and let \mathcal{E}_{π} denote the family of cosets to $\langle\pi\rangle$ containing the elements of \mathcal{E}. We define the distance between the words $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)$ in the direct product $H(\mathbb{Z})_{\pi}^{n}$ of n copies of $H(\mathbb{Z})_{\pi}$,

$$
\mathrm{d}\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right),\left(\beta_{1}, \ldots, \beta_{n}\right)\right)=1
$$

if there is a $j \in[n]$ and an $\epsilon \in \mathcal{E}_{\pi}$ such that $\beta_{j}=\alpha_{j}+\epsilon$ and $\beta_{i}=\alpha_{i}$, for $i \neq j$.
A perfect 1-error-correcting Lipschitz weight code of length n is a subset C of the direct product H^{n} of n copies of the group H, such that every element in $C \backslash H^{n}$ is at distance one from exactly one word of C.

In [1], perfect 1-error-correcting Lipschitz weight codes in $H(\mathbb{Z})_{\pi}^{n}$ are constructed for every Lipschitz prime π such that $p=\pi \pi^{\star} \equiv 3(\bmod 4)$, for $p>3$. The purpose of this paper is to extend this result to the case $p \equiv 1(\bmod 4)$.

2. Notation

The coset $a+\langle\pi\rangle$ to the left ideal $\langle\pi\rangle$ in the ring $H(\mathbb{Z})$ is denoted by $\bar{a} . \ddagger$
It is important for our results that the Abelian group $H(\mathbb{Z})_{\pi}$, consisting of the cosets to the left ideal $\langle\pi\rangle$, is a left module over the ring $H(\mathbb{Z})$, see $[1]$. We remind that, as a left module over $H(\mathbb{Z})$, the left distributive rule holds in $H(\mathbb{Z})_{\pi}$, that is,

$$
\lambda(\bar{a}+\bar{b})=\lambda \bar{a}+\lambda \bar{b}
$$

is true for every $\lambda \in H(\mathbb{Z})$ and $\bar{a}, \bar{b} \in H(\mathbb{Z})_{\pi}$.
For example, with $\pi=2-3 e_{2}$, we get that $13 e_{i}=e_{i}\left(2+3 e_{2}\right)\left(2-3 e_{2}\right) \in\langle\pi\rangle$, for $i=1,2,3$, and that $\overline{e_{3}}=\overline{5 e_{1}}$, as

$$
4 e_{1}\left(2-3 e_{2}\right) \in\langle\pi\rangle \Longrightarrow 8 e_{1}-12 e_{3} \in\langle\pi\rangle \Longrightarrow-12 e_{3} \in-8 e_{1}+\langle\pi\rangle
$$

Also used in an example below is the fact that

$$
\begin{equation*}
\left(2+2 e_{3}\right) \overline{-e_{3}}=\overline{-2 e_{3}+2}=\overline{2}-\overline{2 e_{3}}=\overline{2}-\overline{10 e_{1}}=\overline{2}+\overline{3 e_{1}}=\overline{2+3 e_{1}} \tag{3}
\end{equation*}
$$

and that

$$
\overline{0}=e_{1} \overline{0}=e_{1}\left(\overline{8 e_{1}}-\overline{12 e_{3}}\right)=\overline{-8}+\overline{12 e_{2}}=\overline{5}-\overline{e_{2}},
$$

that is, $\overline{e_{2}}=\overline{5}$.
Finally, we let \mathcal{E}_{0} and \mathcal{E}_{1} denote the following sets

$$
\mathcal{E}_{0}=\left\{ \pm \overline{1}, \pm \overline{e_{1}}\right\}, \quad \mathcal{E}_{1}=\left\{ \pm \overline{e_{2}}, \pm \overline{e_{3}}\right\}
$$

[^0]
3. Preliminaries

Throughout this paper we are only concerned with the case when $p=\pi^{\star} \pi \equiv 1(\bmod$ 4) is a prime number. It then follows from the Christmas theorem of Fermat that p is the sum of two squares. Henceforth, we consider the case when $\pi=a_{0}+a_{2} e_{2}$, whereby $a_{0}^{2}+a_{2}^{2}$ is equal to a prime number p.

We note that $p \in\langle\pi\rangle$, as $p=\pi^{\star} \pi$. Thus $\bar{p}=\overline{0}$ in $H(\mathbb{Z})_{\pi}$, and elements in $H(\mathbb{Z})_{\pi}$ can be described as 4 -tuples $x_{0}+x_{1} \overline{e_{1}}+x_{2} \overline{e_{2}}+x_{3} \overline{e_{3}}$, where we may assume that $x_{i} \in \mathbb{Z}_{p}$ for $i=0,1,2,3$. The element $\overline{a_{0}+a_{2} e_{2}}$ is equal to $\overline{0}$ in $H(\mathbb{Z})_{\pi}$. Hence, if we let \mathbf{i} denote the element $-a_{0} / a_{2}$ in the finite field \mathbb{Z}_{p}, then $-\mathbf{i} \overline{1}+\overline{e_{2}}=\overline{0}$ in $H(\mathbb{Z})_{\pi}$, and furthermore, as $\overline{0}=e_{1}\left(\overline{a_{0}}+\overline{a_{2} e_{2}}\right)=\overline{a_{0} e_{1}}+\overline{a_{2} e_{3}}$, we get that

$$
\begin{equation*}
\mathbf{i} \overline{e_{1}}-\overline{e_{3}}=\overline{0} . \tag{4}
\end{equation*}
$$

Hence, with this notation,

$$
\begin{equation*}
\overline{x+y e_{3}}=\overline{x+\mathbf{i} y e_{1}}, \quad \overline{x e_{1}+y e_{2}}=\overline{\mathbf{i} y+x e_{1}}, \tag{5}
\end{equation*}
$$

and

$$
\overline{x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}}=\overline{x_{0}+\mathbf{i} x_{2}+\left(x_{1}+\mathbf{i} x_{3}\right) e_{1}},
$$

and, trivially, in \mathbb{Z}_{p} we have

$$
\begin{equation*}
\mathbf{i}^{2}=-1 \tag{6}
\end{equation*}
$$

We say that a selection of coset representatives $\bar{H}=\overline{H(\mathbb{Z})_{\pi}}$ to $\langle\pi\rangle$ in $H(\mathbb{Z})$ is a complete selection of coset representatives if no two elements of $\overline{H(\mathbb{Z})_{\pi}}$ are congruent modulo π, and if all cosets to $\langle\pi\rangle$ are represented in $\overline{H(\mathbb{Z})_{\pi}}$, that is,

$$
\left|\overline{H(\mathbb{Z})_{\pi}}\right|=\left|H(\mathbb{Z})_{\pi}\right| .
$$

As in [1], we say that the set \bar{H} is \mathcal{E}-homogeneous if

$$
\bar{h} \epsilon=\bar{h}^{\prime} \epsilon \Longrightarrow \bar{h}=\bar{h}^{\prime}
$$

for every $\epsilon \in \mathcal{E}_{\pi}$ and $\bar{h}, \bar{h}^{\prime} \in \bar{H}$. In [1], the following proposition is proved:
Proposition 1. Let $\pi=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$ be a Lipschitz prime with $p=\pi \pi^{\star}$. Then, for any two distinct elements e_{i} and e_{j} in $\left\{e_{0}=1, e_{1}, e_{2}, e_{3}\right\}$ such that p does not divide $a_{i}^{2}+a_{j}^{2}$, it is true that

$$
C_{i, j}=\left\{x_{i} e_{i}+x_{j} e_{j}: x_{i}, x_{j} \in \mathbb{Z}_{p}\right\}
$$

is a complete selection of coset representatives to $\langle\pi\rangle$ in $H(\mathbb{Z})$. Furthermore, $C_{i, j}$ is \mathcal{E}-homogeneous.

A code C is a group code if it is a subgroup of H^{n}, or equivalently, as H^{n} is a finite group,

$$
c, c^{\prime} \in C \Longrightarrow c-c^{\prime} \in C
$$

We say that a group code C in H^{n} is an (n, k)-code if the size of C is equal to $|H|^{k}$. A more general version of the next theorem is proved in [1].

Theorem 1. Let H and \mathcal{E}_{π} be constituted as above, and let \bar{H} be a complete selection of coset representatives to $\langle\pi\rangle$. Assume that the norm of π is an odd prime number. Let $n=(|H|-1) /\left(\left|\mathcal{E}_{\pi}\right|\right)$. If $g_{1}=1, g_{2}, \ldots, g_{n}$ are elements in \bar{H}, satisfying the following three conditions:
(i) $\left|g_{i} \mathcal{E}_{\pi}\right|=\left|\mathcal{E}_{\pi}\right|$, for $i=2,3, \ldots, n$;
(ii) $g_{i} \mathcal{E}_{\pi} \cap g_{j} \mathcal{E}_{\pi}=\emptyset$, for $i \neq j$;
(iii) $H \backslash\{0\}=\mathcal{E}_{\pi} \cup g_{2} \mathcal{E}_{\pi} \cup \ldots \cup g_{n} \mathcal{E}_{\pi}$;
then the null-space C of the matrix

$$
\mathbf{H}=\left(1 g_{2} \ldots g_{n}\right)
$$

is a perfect 1-error-correcting group ($n, n-1$)-code in H^{n}.
Indeed, the code C is defined by the elements g_{i}, for $i \in[n]$, and may not be altered by a change of these elements. It follows from the results in [2] that it suffices that these elements have the above properties and belong to some ring \mathcal{R} such that H is a left module over \mathcal{R}. For the sake of convenience in relation to the presentation of our result,instead of $H(\mathbb{Z})$ we consider the ring

$$
H\left(\mathbb{Z}_{p}\right)=\left\{a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \mid a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Z}_{p}\right\}
$$

where e_{1}, e_{2} and e_{3} have the properties described in Eq. (1) and Eq. (2), and where $p=\pi \pi^{\star}$. It follows from Proposition 1 that the Abelian group $H(\mathbb{Z})_{\pi}$ is isomorphic to the Abelian group formed by the cosets to the left ideal $\langle\pi\rangle$ in the ring $H\left(\mathbb{Z}_{p}\right)$.

Thus, in order to prove the existence of a perfect 1-error-correcting Lipschitz weight code of length n, it suffices to prove the existence of a partition of the space as indicated in the theorem, where g_{i}, for $i \in[n]$, belongs to $H\left(\mathbb{Z}_{p}\right)$. In fact, such partitions are constructed in Section 5 for the cases considered in this paper.

4. Some lemmas

Throughout this section, when not stated otherwise, $\pi=a_{0}+a_{2} e_{2}$, where $a_{0}^{2}+a_{2}^{2}$ is equal to a prime number $p \equiv 1(\bmod 4)$, although some of the lemmas are true for every Lipschitz prime π.

Let $\mathcal{D}\left(\overline{a+b e_{1}}\right)$ denote the set

$$
\begin{equation*}
\mathcal{D}\left(\overline{a+b e_{1}}\right)=\left\{\overline{ \pm\left(a \pm b e_{1}\right)}\right\} \cup\left\{\overline{ \pm\left(b \pm a e_{1}\right)}\right\} \cup\left\{\overline{ \pm\left(\mathbf{i} a \pm \mathbf{i} b e_{1}\right)}\right\} \cup\left\{\overline{ \pm\left(\mathbf{i} b \pm \mathbf{i} a e_{1}\right)}\right\} \tag{7}
\end{equation*}
$$

Let \mathcal{Q} denote the following subgroup of the multiplicative group \mathbb{Z}_{p}^{\star} of the finite field \mathbb{Z}_{p} :

$$
\mathcal{Q}=\{1,-1, \mathbf{i},-\mathbf{i}\} .
$$

The first lemma is an immediate consequence of the fact that \mathcal{Q} is a subgroup of \mathbb{Z}_{p}^{\star}.
Lemma 1. If $\overline{x+y e_{1}} \in \mathcal{D}\left(\overline{a+b e_{1}}\right)$, then $\mathcal{D}\left(\overline{x+y e_{1}}\right)=\mathcal{D}\left(\overline{a+b e_{1}}\right)$.

Corollary 1. There is a sequence $\overline{a_{i}+b_{i} e_{1}}, i=1,2, \ldots, s$, of elements in $H(\mathbb{Z})_{\pi}$ such that the sets $\mathcal{D}\left(\overline{a_{i}+b_{i} e_{1}}\right)$ partitions $H(\mathbb{Z})_{\pi}$, that is,

$$
H(\mathbb{Z})_{\pi} \backslash\{0\}=\bigcup_{i=1}^{s} \mathcal{D}\left(\overline{a_{i}+b_{i} e_{1}}\right)
$$

and

$$
i \neq j \Longrightarrow \mathcal{D}\left(\overline{a_{i}+b_{i} e_{1}}\right) \cap \mathcal{D}\left(\overline{a_{j}+b_{j} e_{1}}\right)=\emptyset .
$$

Proof. The corollary follows from the fact that from Lemma 1 we may deduce that every non-zero element $\overline{x+y e_{1}}$ of $H(\mathbb{Z})_{\pi}$ belongs to exactly one of the sets $\mathcal{D}\left(\overline{a+b e_{1}}\right)$.

Lemma 2. For any element $a, b \in \mathbb{Z}_{p}$,

$$
\left|\mathcal{D}\left(\overline{a+b e_{1}}\right)\right|=\left\{\begin{array}{l}
8, \text { if } a b\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)=0 \\
16, \text { otherwise }
\end{array}\right.
$$

Proof. We consider the case $a^{2}+b^{2}=0$, that is, when $b=\mathbf{i} a$ or $b=-\mathbf{i} a$. The other cases are treated similarly. From the definition in Eq. (7), we get that

$$
\left.\left.\mathcal{D}\left(\overline{a+\mathbf{i} a e_{1}}\right)=\mathcal{D}\left(\overline{a-\mathbf{i} a e_{1}}\right)=\left\{\overline{ \pm\left(a \pm \mathbf{i} a e_{1}\right.}\right)\right\} \cup\left\{\overline{ \pm\left(\mathbf{i} a \pm a e_{1}\right.}\right)\right\}
$$

As $\mathbf{i} \neq \pm 1$ and $a \neq 0$, this is a set consisting of eight distinct elements.
Lemma 3. For any element $a, b \in \mathbb{Z}_{p}$,

$$
\mathcal{D}\left(\overline{a+b e_{1}}\right)= \begin{cases}a \mathcal{E}_{\pi}, & \text { if } b=0, \\ b \mathcal{E}_{\pi}, & \text { if } a=0, \\ \left(a+a e_{3}\right) \mathcal{E}_{\pi}, & \text { if } a^{2}+b^{2}=0, \\ \left(a+a e_{1}\right) \mathcal{E}_{\pi}, & \text { if } a^{2}-b^{2}=0, \\ \left(a+b e_{1}\right) \mathcal{E}_{\pi} \cup\left(b+a e_{1}\right) \mathcal{E}_{\pi}, & \text { if } a b\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right) \neq 0\end{cases}
$$

Proof. As in the proof of the previous lemma, we just treat the case $a^{2}+b^{2}=0$, and here just when $b=\mathbf{i} a$. We consider products to the left of the elements in \mathcal{E}_{π} with elements $a+a e_{3}$, where $a \in \mathbb{Z}_{p} \backslash\{0\}$. For instance, we get

$$
\left(a+a e_{3}\right) \overline{e_{2}}=\overline{\mathbf{i} a-a e_{1}}=\overline{b-a e_{1}} \in \mathcal{D}\left(\overline{a+b e_{1}}\right)
$$

etc.
We close this section with the following observation: Let $d_{1}, d_{2}, \ldots, d_{(p-1) / 4}$ be a family of coset representatives to \mathcal{Q} in \mathbb{Z}_{p}^{\star}. The following easily verified relations are useful when deriving partitions of the set $H(\mathbb{Z})_{\pi}$ into cosets of \mathcal{E}_{π} :

$$
\begin{equation*}
\bigcup_{a \in \mathbb{Z}_{p} \backslash\{0\}} \mathcal{D}\left(\overline{a+\mathbf{i} a e_{1}}\right)=\bigcup_{i=1}^{(p-1) / 4}\left(d_{i}+d_{i} e_{3}\right) \mathcal{E}_{\pi} . \tag{8}
\end{equation*}
$$

$$
\begin{align*}
\bigcup_{a \in \mathbb{Z}_{p} \backslash\{0\}} \mathcal{D}\left(\overline{a+a e_{1}}\right) & =\bigcup_{i=1}^{(p-1) / 4}\left(d_{i}+d_{i} e_{1}\right) \mathcal{E}_{\pi} . \tag{9}\\
\bigcup_{a \in \mathbb{Z}_{p} \backslash\{0\}} \mathcal{D}(\bar{a}) & =\bigcup_{i=1}^{(p-1) / 4} d_{i} \mathcal{E}_{\pi} \tag{10}
\end{align*}
$$

5. Construction of necessary partitions

Theorem 2. For every prime number p with $p \equiv 1(\bmod 4)$ there is a Lipschitz prime π, with $\pi^{\star} \pi=p$, and a sequence of $t=\left(p^{2}-1\right) / 8$ elements g_{1}, \ldots, g_{t} of $H\left(\mathbb{Z}_{p}\right)$ such that

$$
\begin{aligned}
H(\mathbb{Z})_{\pi} \backslash\{0\} & =g_{1} \mathcal{E}_{\pi} \cup \ldots \cup g_{t} \mathcal{E}_{\pi} \\
i \neq j & \Longrightarrow g_{i} \mathcal{E}_{\pi} \cap g_{j} \mathcal{E}_{\pi},
\end{aligned}
$$

and $\left|g_{i} \mathcal{E}_{\pi}\right|=\left|\mathcal{E}_{\pi}\right|$, for $i=1, \ldots, t$ and $j \neq i$.
Proof. The theorem follows immediately from Corollary 1, Lemma 2 and Lemma 3, as for every element $g \in H\left(\mathbb{Z}_{p}\right)$,

$$
\left|g \mathcal{E}_{\pi}\right| \leq\left|\mathcal{E}_{\pi}\right|=8
$$

In order to be able to apply Theorem 1 we note that the set

$$
\left\{a+b e_{1} \in C_{0,1} \mid p \nmid a^{2}+b^{2}\right\} \cup\left\{a \pm a e_{3} \in C_{0,3} \mid p \nmid a \in \mathbb{Z}_{p}\right\}
$$

forms a complete set of coset representatives to $\langle\pi\rangle$ in $H\left(\mathbb{Z}_{p}\right)$.
We illustrate the construction described in the proof above in the next example.
Example 1. Let $\pi=2-3 e_{2}$. Then $p=13, \mathbf{i}=2 / 3=5, \overline{e_{2}}=\overline{5}$ and $\overline{e_{3}}=\overline{5 e_{1}}$, see Section 2 and Section 3.

The group $\mathcal{Q}=\{ \pm 1, \pm 5\}$ has for example the coset representatives $d_{1}=1, d_{2}=2$ and $d_{3}=4$ in the multiplicative group of the field \mathbb{Z}_{13}. To form the partition of the set $H(\mathbb{Z})_{\pi}$ into left cosets of \mathcal{E}_{π} we begin by using equations (8), (9) and (10) letting

$$
g_{i}=d_{i}+d_{i} e_{3}, \quad g_{3+i}=d_{i}+d_{i} e_{1}, \quad g_{6+i}=d_{i}
$$

for $i=1,2,3$. This provides nine of the $\left(p^{2}-1\right) /\left|\mathcal{E}_{\pi}\right|=\left(13^{2}-1\right) / 8=21$ requested left cosets $g_{i} \mathcal{E}_{\pi}$ to \mathcal{E}_{π}.

The remaining cosets to \mathcal{E}_{π} are formed recursively using Lemma 1 and the case $a b\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right) \neq 0$ of Lemma 3. We obtain"the next two cosets $g_{2(k+1)} \mathcal{E}_{\pi}$ and $g_{2(k+1)+1} \mathcal{E}_{\pi} "$ by first choosing an element $\overline{a+b e_{1}}$ such that

$$
\overline{a+b e_{1}} \notin g_{1} \mathcal{E}_{\pi} \cup g_{2} \mathcal{E}_{\pi} \cup \ldots \cup g_{2 k+1} \mathcal{E}_{\pi}
$$

(where we assume that $k \geq 4$). We then let $g_{2 k+2}=a+b e_{1}$ and $g_{2 k+3}=b+a e_{1}$. When this procedure terminates, we have obtained the requested partition of $H(\mathbb{Z})_{\pi}$.

For example, we may let

$$
\begin{aligned}
& g_{10}=1+2 e_{1}, g_{11}=2+e_{1}, g_{12}=1+3 e_{1}, g_{13}=3+e_{1}, g_{14}=1+4 e_{1}, g_{15}=4+e_{1} \\
& g_{16}=1+6 e_{1}, g_{17}=6+e_{1}, g_{18}=2+4 e_{1}, g_{19}=4+2 e_{1}, g_{20}=2+6 e_{1}, g_{21}=6+2 e_{1}
\end{aligned}
$$

The element $\overline{1}$ of $H(\mathbb{Z})_{\pi}$ belongs to the coset $d_{1} \mathcal{E}_{\pi}$. For the error-correcting procedure we may thus form the matrix

$$
\mathbf{H}=\left[11+e_{3} 2+2 e_{3} 4+4 e_{3} 1+2 e_{1} 2+e_{1} 1+e_{1} 1+3 e_{1} 3+e_{1} \cdots\right] .
$$

The perfect 1-error-correcting code C is the null space in $H\left(\mathbb{Z}_{p}\right)^{21}$ of \mathbf{H}, the number of words of C is $|C|=169^{20}$. If, after a transmission, the word $\overline{x_{1}} \overline{x_{2}} \ldots \overline{x_{21}}$ is received by giving the syndrome

$$
\mathbf{H}\left[\begin{array}{c}
\overline{x_{1}} \\
\vdots \\
\overline{x_{21}}
\end{array}\right]=\left[\overline{2+3 e_{1}}\right],
$$

then the error $\epsilon=\overline{-e_{3}}$ has appeared in the third coordinate position as from Section 2

$$
\overline{2+3 e_{1}}=\left(2+2 e_{3}\right) \overline{\left(-e_{3}\right)} .
$$

From the theorem above and Theorem 1, we immediately get the following corollary:
Corollary 2. To every prime number p such that $p \equiv 1(\bmod 4)$ there is a Lipschitz prime π of norm $\mathrm{N}(\pi)=p$ such that there exists a perfect 1-error-correcting Lipschitz weight code in $H(\mathbb{Z})_{\pi}^{n}$, where $n=\left(p^{2}-1\right) / 8$.

Thus, combining with the results of [1], we get
Theorem 3. To every prime number $p>3^{\S}$ there is a Lipschitz prime π of norm $\mathrm{N}(\pi)=p$ such that there exists a perfect 1-error-correcting Lipschitz weight code in $H(\mathbb{Z})_{\pi}^{n}$, where $n=\left(p^{2}-1\right) / 8$.

A final remark is that the crucial part in our construction of perfect 1-errorcorrecting Lipschitz weight codes is the derivation of a partition of $H(\mathbb{Z})_{\pi}$ into left cosets of \mathcal{E}_{π}. As soon as this problem is solved, we can easily extend the construction with parity-check matrices, like in Theorem 4 in "Part One" of this study [1], in order to obtain codes of other lengths and sizes. Thus we now know, cf. Section 5.2 of [1], that for every prime number $p>3$ there is a perfect 1-error-correcting Lipschitz weight code C of length $n=\left(p^{2 l}-1\right) / 8$ and size $|C|=p^{2 k}$, where $k=\left(p^{2 l}-1\right) / 8-l$, and l is any non-negative integer.

Acknowledgement

We are grateful to one of the reviewers who encouraged us to write a more clear presentation.

[^1]
References

[1] M. Güzeltepe, O. Heden, Perfect Mannheim, Lipschitz and Hurwitz weight codes, Math. Commun. 19(2014), 253-276.
[2] O. Heden, M. Güzeltepe, On perfect 1 - \mathcal{E}-error-correcting codes, Math. Commun. 20(2015), 23-35.
[3] C. Martinez, E. Stafford, R. Beivide, E. Gabidulin, Perfect codes over Lipschitz integers, in:Proc. IEEE Int. Symp. Information Theory, Nice, Junuary 2007, 13661370, doi:10.1109/ISIT.2007.4557413.
[4] C. Martinez, R. Beivide, E. Gabidulin, Perfect codes from Cayley graphs over Lipschitz integers, IEEE Trans. Inf. Theory 55(2009), 3552-3562.

[^0]: ${ }^{\ddagger}$ To simplify reading of the text, one of the reviewers suggested a change of the notation used in "Part One" [1] of this study.

[^1]: ${ }^{\S}$ The case $p=3$ is out of any general interest.

