Perfect 1-error-correcting Lipschitz weight codes

OLOF HEDEN^{1,*}AND MURAT GÜZELTEPE²

¹ Department of Mathematics, KTH, SE-100 44 Stockholm, Sweden

² Department of Mathematics, Sakarya Universit, TR-54 187 Sakarya, Turkey

Received May 10, 2015; accepted October 27, 2015

Abstract. Let π be a Lipschitz prime and $p = \pi \pi^*$. Perfect 1-error-correcting codes in $H(\mathbb{Z})^n_{\pi}$ are constructed for every prime number $p \equiv 1 \pmod{4}$. This completes a result of the authors in an earlier work, *Perfect Mannheim, Lipschitz and Hurwitz weight codes*, (Math. Commun. **19**(2014), 253–276), where a construction is given in the case $p \equiv 3 \pmod{4}$.

AMS subject classifications: 94B60

Key words: perfect codes

1. Introduction

Lipschitz weight codes were introduced by Martinez et al. in [3, 4]. Shortly, consider the ring of quaternions over the integers

$$H(\mathbb{Z}) = \{a_0 + a_1e_1 + a_2e_2 + a_3e_3 \mid a_0, a_1, a_2, a_3 \in \mathbb{Z}\},\$$

where

$$e_1^2 = e_2^2 = e_3^2 = -1, (1)$$

and

$$e_1e_2 = -e_2e_1 = e_3, \quad e_2e_3 = -e_3e_2 = e_1, \quad e_3e_1 = -e_1e_3 = e_2.$$
 (2)

A Lipschitz prime is an element $\pi = a_0 + a_1e_1 + a_2e_2 + a_3e_3$ in $H(\mathbb{Z})$ such that

 $p = \pi\pi^{\star} = (a_0 + a_1e_1 + a_2e_2 + a_3e_3)(a_0 - a_1e_1 - a_2e_2 - a_3e_3) = a_0^2 + a_1^2 + a_2^2 + a_3^2$

is an odd prime number. The integer $N(\pi) = \pi \pi^*$ is called the *norm* of π . The elements in the left ideal

$$\langle \pi \rangle = \{ \lambda \pi \mid \lambda \in H(\mathbb{Z}) \}$$

constitute a normal subgroup of the additive group of the ring $H(\mathbb{Z})$. The set of cosets to $\langle \pi \rangle$ in $H(\mathbb{Z})$ constitute an Abelian group denoted as below:

$$H = H(\mathbb{Z})_{\pi} = H(\mathbb{Z})/\langle \pi \rangle.$$

*Corresponding author. *Email addresses:* olohed@math.kth.se (O. Heden), mguzeltepe@sakarya.edu.tr (M. Güzeltepe)

http://www.mathos.hr/mc

©2016 Department of Mathematics, University of Osijek

In [3], it is proved that the size of $H(\mathbb{Z})_{\pi}$ is equal to p^2 . Let

$$\mathcal{E} = \{\pm 1, \pm e_1, \pm e_2, \pm e_3\},\$$

and let \mathcal{E}_{π} denote the family of cosets to $\langle \pi \rangle$ containing the elements of \mathcal{E} . We define the *distance* between the words $(\alpha_1, \ldots, \alpha_n)$ and $(\beta_1, \ldots, \beta_n)$ in the direct product $H(\mathbb{Z})^n_{\pi}$ of *n* copies of $H(\mathbb{Z})_{\pi}$,

$$d((\alpha_1,\ldots,\alpha_n),(\beta_1,\ldots,\beta_n))=1,$$

if there is a $j \in [n]$ and an $\epsilon \in \mathcal{E}_{\pi}$ such that $\beta_j = \alpha_j + \epsilon$ and $\beta_i = \alpha_i$, for $i \neq j$.

A perfect 1-error-correcting Lipschitz weight code of length n is a subset C of the direct product H^n of n copies of the group H, such that every element in $C \setminus H^n$ is at distance one from exactly one word of C.

In [1], perfect 1-error-correcting Lipschitz weight codes in $H(\mathbb{Z})^n_{\pi}$ are constructed for every Lipschitz prime π such that $p = \pi \pi^* \equiv 3 \pmod{4}$, for p > 3. The purpose of this paper is to extend this result to the case $p \equiv 1 \pmod{4}$.

2. Notation

The coset $a + \langle \pi \rangle$ to the left ideal $\langle \pi \rangle$ in the ring $H(\mathbb{Z})$ is denoted by \overline{a} .[‡]

It is important for our results that the Abelian group $H(\mathbb{Z})_{\pi}$, consisting of the cosets to the left ideal $\langle \pi \rangle$, is a left module over the ring $H(\mathbb{Z})$, see [1]. We remind that, as a left module over $H(\mathbb{Z})$, the left distributive rule holds in $H(\mathbb{Z})_{\pi}$, that is,

$$\lambda(\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b},$$

is true for every $\lambda \in H(\mathbb{Z})$ and $\overline{a}, \overline{b} \in H(\mathbb{Z})_{\pi}$.

For example, with $\pi = 2 - 3e_2$, we get that $13e_i = e_i(2 + 3e_2)(2 - 3e_2) \in \langle \pi \rangle$, for i = 1, 2, 3, and that $\overline{e_3} = \overline{5e_1}$, as

$$4e_1(2-3e_2) \in \langle \pi \rangle \Longrightarrow 8e_1 - 12e_3 \in \langle \pi \rangle \Longrightarrow -12e_3 \in -8e_1 + \langle \pi \rangle.$$

Also used in an example below is the fact that

$$(2+2e_3)\overline{-e_3} = \overline{-2e_3+2} = \overline{2} - \overline{2e_3} = \overline{2} - \overline{10e_1} = \overline{2} + \overline{3e_1} = \overline{2} + \overline{3e_1}, \qquad (3)$$

and that

$$\overline{0} = e_1\overline{0} = e_1(\overline{8e_1} - \overline{12e_3}) = \overline{-8} + \overline{12e_2} = \overline{5} - \overline{e_2},$$

that is, $\overline{e_2} = \overline{5}$.

Finally, we let \mathcal{E}_0 and \mathcal{E}_1 denote the following sets

$$\mathcal{E}_0 = \{\pm \overline{1}, \pm \overline{e_1}\}, \quad \mathcal{E}_1 = \{\pm \overline{e_2}, \pm \overline{e_3}\}.$$

 $^{^{\}ddagger}$ To simplify reading of the text, one of the reviewers suggested a change of the notation used in "Part One" [1] of this study.

3. Preliminaries

Throughout this paper we are only concerned with the case when $p = \pi^* \pi \equiv 1 \pmod{4}$ is a prime number. It then follows from the Christmas theorem of Fermat that p is the sum of two squares. Henceforth, we consider the case when $\pi = a_0 + a_2 e_2$, whereby $a_0^2 + a_2^2$ is equal to a prime number p.

We note that $p \in \langle \pi \rangle$, as $p = \pi^* \pi$. Thus $\overline{p} = \overline{0}$ in $H(\mathbb{Z})_{\pi}$, and elements in $H(\mathbb{Z})_{\pi}$ can be described as 4-tuples $x_0 + x_1\overline{e_1} + x_2\overline{e_2} + x_3\overline{e_3}$, where we may assume that $x_i \in \mathbb{Z}_p$ for i = 0, 1, 2, 3. The element $\overline{a_0 + a_2e_2}$ is equal to $\overline{0}$ in $H(\mathbb{Z})_{\pi}$. Hence, if we let **i** denote the element $-a_0/a_2$ in the finite field \mathbb{Z}_p , then $-\mathbf{i}\overline{1} + \overline{e_2} = \overline{0}$ in $H(\mathbb{Z})_{\pi}$, and furthermore, as $\overline{0} = e_1(\overline{a_0} + \overline{a_2e_2}) = \overline{a_0e_1} + \overline{a_2e_3}$, we get that

$$\mathbf{i}\overline{e_1} - \overline{e_3} = \overline{\mathbf{0}}.\tag{4}$$

Hence, with this notation,

$$\overline{x + ye_3} = \overline{x + \mathbf{i}ye_1}, \quad \overline{xe_1 + ye_2} = \overline{\mathbf{i}y + xe_1}, \tag{5}$$

and

$$\overline{x_0 + x_1e_1 + x_2e_2 + x_3e_3} = \overline{x_0 + \mathbf{i}x_2 + (x_1 + \mathbf{i}x_3)e_1},$$

and, trivially, in \mathbb{Z}_p we have

$$\mathbf{i}^2 = -1. \tag{6}$$

We say that a selection of coset representatives $\overline{H} = \overline{H(\mathbb{Z})_{\pi}}$ to $\langle \pi \rangle$ in $H(\mathbb{Z})$ is a complete selection of coset representatives if no two elements of $\overline{H(\mathbb{Z})_{\pi}}$ are congruent modulo π , and if all cosets to $\langle \pi \rangle$ are represented in $\overline{H(\mathbb{Z})_{\pi}}$, that is,

$$\overline{H(\mathbb{Z})_{\pi}}| = |H(\mathbb{Z})_{\pi}|.$$

As in [1], we say that the set \overline{H} is \mathcal{E} -homogeneous if

$$\bar{h}\epsilon = \bar{h}'\epsilon \Longrightarrow \bar{h} = \bar{h}'$$

for every $\epsilon \in \mathcal{E}_{\pi}$ and $\bar{h}, \bar{h}' \in \overline{H}$. In [1], the following proposition is proved:

Proposition 1. Let $\pi = a_0 + a_1e_1 + a_2e_2 + a_3e_3$ be a Lipschitz prime with $p = \pi\pi^*$. Then, for any two distinct elements e_i and e_j in $\{e_0 = 1, e_1, e_2, e_3\}$ such that p does not divide $a_i^2 + a_j^2$, it is true that

$$C_{i,j} = \{x_i e_i + x_j e_j : x_i, x_j \in \mathbb{Z}_p\}$$

is a complete selection of coset representatives to $\langle \pi \rangle$ in $H(\mathbb{Z})$. Furthermore, $C_{i,j}$ is \mathcal{E} -homogeneous.

A code C is a group code if it is a subgroup of H^n , or equivalently, as H^n is a finite group,

$$c, c' \in C \Longrightarrow c - c' \in C.$$

We say that a group code C in H^n is an (n, k)-code if the size of C is equal to $|H|^k$. A more general version of the next theorem is proved in [1]. **Theorem 1.** Let H and \mathcal{E}_{π} be constituted as above, and let \overline{H} be a complete selection of coset representatives to $\langle \pi \rangle$. Assume that the norm of π is an odd prime number. Let $n = (|H| - 1)/(|\mathcal{E}_{\pi}|)$. If $g_1 = 1, g_2, ..., g_n$ are elements in \overline{H} , satisfying the following three conditions:

- (*i*) $|g_i \mathcal{E}_{\pi}| = |\mathcal{E}_{\pi}|$, for i = 2, 3, ..., n;
- (*ii*) $g_i \mathcal{E}_{\pi} \cap g_j \mathcal{E}_{\pi} = \emptyset$, for $i \neq j$;
- (*iii*) $H \setminus \{0\} = \mathcal{E}_{\pi} \cup g_2 \mathcal{E}_{\pi} \cup \ldots \cup g_n \mathcal{E}_{\pi};$

then the null-space C of the matrix

$$\mathbf{H} = (1 \ g_2 \ \dots \ g_n)$$

is a perfect 1-error-correcting group (n, n-1)-code in H^n .

Indeed, the code C is defined by the elements g_i , for $i \in [n]$, and may not be altered by a change of these elements. It follows from the results in [2] that it suffices that these elements have the above properties and belong to some ring \mathcal{R} such that H is a left module over \mathcal{R} . For the sake of convenience in relation to the presentation of our result, instead of $H(\mathbb{Z})$ we consider the ring

$$H(\mathbb{Z}_p) = \{a_0 + a_1e_1 + a_2e_2 + a_3e_3 \mid a_0, a_1, a_2, a_3 \in \mathbb{Z}_p\},\$$

where e_1 , e_2 and e_3 have the properties described in Eq. (1) and Eq. (2), and where $p = \pi \pi^*$. It follows from Proposition 1 that the Abelian group $H(\mathbb{Z})_{\pi}$ is isomorphic to the Abelian group formed by the cosets to the left ideal $\langle \pi \rangle$ in the ring $H(\mathbb{Z}_p)$.

Thus, in order to prove the existence of a perfect 1-error-correcting Lipschitz weight code of length n, it suffices to prove the existence of a partition of the space as indicated in the theorem, where g_i , for $i \in [n]$, belongs to $H(\mathbb{Z}_p)$. In fact, such partitions are constructed in Section 5 for the cases considered in this paper.

4. Some lemmas

Throughout this section, when not stated otherwise, $\pi = a_0 + a_2 e_2$, where $a_0^2 + a_2^2$ is equal to a prime number $p \equiv 1 \pmod{4}$, although some of the lemmas are true for every Lipschitz prime π .

Let $\mathcal{D}(\overline{a+be_1})$ denote the set

$$\mathcal{D}(\overline{a+be_1}) = \{\overline{\pm(a\pm be_1)}\} \cup \{\overline{\pm(b\pm ae_1)}\} \cup \{\overline{\pm(\mathbf{i}a\pm \mathbf{i}be_1)}\} \cup \{\overline{\pm(\mathbf{i}b\pm \mathbf{i}ae_1)}\}.$$
 (7)

Let \mathcal{Q} denote the following subgroup of the multiplicative group \mathbb{Z}_p^{\star} of the finite field \mathbb{Z}_p :

$$\mathcal{Q} = \{1, -1, \mathbf{i}, -\mathbf{i}\}.$$

The first lemma is an immediate consequence of the fact that \mathcal{Q} is a subgroup of \mathbb{Z}_p^{\star} .

Lemma 1. If $\overline{x + ye_1} \in \mathcal{D}(\overline{a + be_1})$, then $\mathcal{D}(\overline{x + ye_1}) = \mathcal{D}(\overline{a + be_1})$.

Corollary 1. There is a sequence $\overline{a_i + b_i e_1}$, i = 1, 2, ..., s, of elements in $H(\mathbb{Z})_{\pi}$ such that the sets $\mathcal{D}(\overline{a_i + b_i e_1})$ partitions $H(\mathbb{Z})_{\pi}$, that is,

$$H(\mathbb{Z})_{\pi} \setminus \{0\} = \bigcup_{i=1}^{s} \mathcal{D}(\overline{a_i + b_i e_1}),$$

and

$$i \neq j \Longrightarrow \mathcal{D}(\overline{a_i + b_i e_1}) \cap \mathcal{D}(\overline{a_j + b_j e_1}) = \emptyset.$$

Proof. The corollary follows from the fact that from Lemma 1 we may deduce that every non-zero element $\overline{x + ye_1}$ of $H(\mathbb{Z})_{\pi}$ belongs to exactly one of the sets $\mathcal{D}(\overline{a + be_1})$.

Lemma 2. For any element $a, b \in \mathbb{Z}_p$,

$$|\mathcal{D}(\overline{a+be_1})| = \begin{cases} 8, & \text{if } ab(a^2+b^2)(a^2-b^2) = 0, \\ 16, & \text{otherwise.} \end{cases}$$

Proof. We consider the case $a^2 + b^2 = 0$, that is, when b = ia or b = -ia. The other cases are treated similarly. From the definition in Eq. (7), we get that

$$\mathcal{D}(\overline{a + \mathbf{i}ae_1}) = \mathcal{D}(\overline{a - \mathbf{i}ae_1}) = \{\overline{\pm(a \pm \mathbf{i}ae_1)}\} \cup \{\overline{\pm(\mathbf{i}a \pm ae_1)}\}$$

As $\mathbf{i} \neq \pm 1$ and $a \neq 0$, this is a set consisting of eight distinct elements.

Lemma 3. For any element $a, b \in \mathbb{Z}_p$,

C

$$\mathcal{D}(\overline{a+be_1}) = \begin{cases} a\mathcal{E}_{\pi}, & \text{if } b = 0, \\ b\mathcal{E}_{\pi}, & \text{if } a = 0, \\ (a+ae_3)\mathcal{E}_{\pi}, & \text{if } a^2 + b^2 = 0, \\ (a+ae_1)\mathcal{E}_{\pi}, & \text{if } a^2 - b^2 = 0, \\ (a+be_1)\mathcal{E}_{\pi} \cup (b+ae_1)\mathcal{E}_{\pi}, & \text{if } ab(a^2+b^2)(a^2-b^2) \neq 0. \end{cases}$$

Proof. As in the proof of the previous lemma, we just treat the case $a^2 + b^2 = 0$, and here just when b = ia. We consider products to the left of the elements in \mathcal{E}_{π} with elements $a + ae_3$, where $a \in \mathbb{Z}_p \setminus \{0\}$. For instance, we get

$$(a + ae_3)\overline{e_2} = \overline{\mathbf{i}a - ae_1} = \overline{b - ae_1} \in \mathcal{D}(\overline{a + be_1}),$$

etc.

We close this section with the following observation: Let $d_1, d_2, ..., d_{(p-1)/4}$ be a family of coset representatives to Q in \mathbb{Z}_p^{\star} . The following easily verified relations are useful when deriving partitions of the set $H(\mathbb{Z})_{\pi}$ into cosets of \mathcal{E}_{π} :

$$\bigcup_{a \in \mathbb{Z}_p \setminus \{0\}} \mathcal{D}(\overline{a + \mathbf{i}ae_1}) = \bigcup_{i=1}^{(p-1)/4} (d_i + d_i e_3) \mathcal{E}_{\pi}.$$
(8)

O. Heden and M. Güzeltepe

$$\bigcup_{a \in \mathbb{Z}_p \setminus \{0\}} \mathcal{D}(\overline{a + ae_1}) = \bigcup_{i=1}^{(p-1)/4} (d_i + d_i e_1) \mathcal{E}_{\pi}.$$
 (9)

$$\bigcup_{a \in \mathbb{Z}_p \setminus \{0\}} \mathcal{D}(\overline{a}) = \bigcup_{i=1}^{(p-1)/4} d_i \mathcal{E}_{\pi}.$$
 (10)

5. Construction of necessary partitions

Theorem 2. For every prime number p with $p \equiv 1 \pmod{4}$ there is a Lipschitz prime π , with $\pi^*\pi = p$, and a sequence of $t = (p^2 - 1)/8$ elements g_1, \ldots, g_t of $H(\mathbb{Z}_p)$ such that

$$H(\mathbb{Z})_{\pi} \setminus \{0\} = g_1 \mathcal{E}_{\pi} \cup \ldots \cup g_t \mathcal{E}_{\pi} ,$$

$$i \neq j \Longrightarrow g_i \mathcal{E}_{\pi} \cap g_j \mathcal{E}_{\pi} ,$$

and $|g_i \mathcal{E}_{\pi}| = |\mathcal{E}_{\pi}|$, for $i = 1, \ldots, t$ and $j \neq i$.

Proof. The theorem follows immediately from Corollary 1, Lemma 2 and Lemma 3, as for every element $g \in H(\mathbb{Z}_p)$,

$$|g\mathcal{E}_{\pi}| \leq |\mathcal{E}_{\pi}| = 8 .$$

In order to be able to apply Theorem 1 we note that the set

$$\{a + be_1 \in C_{0,1} \mid p \not| a^2 + b^2\} \cup \{a \pm ae_3 \in C_{0,3} \mid p \not| a \in \mathbb{Z}_p\},\$$

forms a complete set of cos representatives to $\langle \pi \rangle$ in $H(\mathbb{Z}_p)$.

We illustrate the construction described in the proof above in the next example.

Example 1. Let $\pi = 2 - 3e_2$. Then p = 13, $\mathbf{i} = 2/3 = 5$, $\overline{e_2} = \overline{5}$ and $\overline{e_3} = \overline{5e_1}$, see Section 2 and Section 3.

The group $\mathcal{Q} = \{\pm 1, \pm 5\}$ has for example the coset representatives $d_1 = 1, d_2 = 2$ and $d_3 = 4$ in the multiplicative group of the field \mathbb{Z}_{13} . To form the partition of the set $H(\mathbb{Z})_{\pi}$ into left cosets of \mathcal{E}_{π} we begin by using equations (8), (9) and (10) letting

$$g_i = d_i + d_i e_3, \quad g_{3+i} = d_i + d_i e_1, \quad g_{6+i} = d_i,$$

for i = 1, 2, 3. This provides nine of the $(p^2 - 1)/|\mathcal{E}_{\pi}| = (13^2 - 1)/8 = 21$ requested left cosets $g_i \mathcal{E}_{\pi}$ to \mathcal{E}_{π} .

The remaining cosets to \mathcal{E}_{π} are formed recursively using Lemma 1 and the case $ab(a^2+b^2)(a^2-b^2) \neq 0$ of Lemma 3. We obtain "the next two cosets $g_{2(k+1)}\mathcal{E}_{\pi}$ and $g_{2(k+1)+1}\mathcal{E}_{\pi}$ " by first choosing an element $\overline{a+be_1}$ such that

$$\overline{a+be_1} \not\in g_1 \mathcal{E}_\pi \cup g_2 \mathcal{E}_\pi \cup \ldots \cup g_{2k+1} \mathcal{E}_\pi,$$

(where we assume that $k \ge 4$). We then let $g_{2k+2} = a + be_1$ and $g_{2k+3} = b + ae_1$. When this procedure terminates, we have obtained the requested partition of $H(\mathbb{Z})_{\pi}$.

For example, we may let

$$g_{10} = 1 + 2e_1, g_{11} = 2 + e_1, g_{12} = 1 + 3e_1, g_{13} = 3 + e_1, g_{14} = 1 + 4e_1, g_{15} = 4 + e_1, g_{16} = 1 + 6e_1, g_{17} = 6 + e_1, g_{18} = 2 + 4e_1, g_{19} = 4 + 2e_1, g_{20} = 2 + 6e_1, g_{21} = 6 + 2e_1$$

The element $\overline{1}$ of $H(\mathbb{Z})_{\pi}$ belongs to the coset $d_1 \mathcal{E}_{\pi}$. For the error-correcting procedure we may thus form the matrix

$$\mathbf{H} = \begin{bmatrix} 1 \ 1 + e_3 \ 2 + 2e_3 \ 4 + 4e_3 \ 1 + 2e_1 \ 2 + e_1 \ 1 + e_1 \ 1 + 3e_1 \ 3 + e_1 \ \cdots \end{bmatrix}.$$

The perfect 1-error-correcting code C is the null space in $H(\mathbb{Z}_p)^{21}$ of **H**, the number of words of C is $|C| = 169^{20}$. If, after a transmission, the word $\overline{x_1} \, \overline{x_2} \dots \overline{x_{21}}$ is received by giving the syndrome

$$\mathbf{H}\begin{bmatrix}\overline{x_1}\\\vdots\\\overline{x_{21}}\end{bmatrix} = \begin{bmatrix}\overline{2+3e_1}\end{bmatrix},$$

then the error $\epsilon = \overline{-e_3}$ has appeared in the third coordinate position as from Section 2

$$\overline{2+3e_1} = (2+2e_3)\overline{(-e_3)}$$

From the theorem above and Theorem 1, we immediately get the following corollary:

Corollary 2. To every prime number p such that $p \equiv 1 \pmod{4}$ there is a Lipschitz prime π of norm $N(\pi) = p$ such that there exists a perfect 1-error-correcting Lipschitz weight code in $H(\mathbb{Z})^n_{\pi}$, where $n = (p^2 - 1)/8$.

Thus, combining with the results of [1], we get

Theorem 3. To every prime number $p > 3^{\S}$ there is a Lipschitz prime π of norm $N(\pi) = p$ such that there exists a perfect 1-error-correcting Lipschitz weight code in $H(\mathbb{Z})^{\pi}_{\pi}$, where $n = (p^2 - 1)/8$.

A final remark is that the crucial part in our construction of perfect 1-errorcorrecting Lipschitz weight codes is the derivation of a partition of $H(\mathbb{Z})_{\pi}$ into **left cosets** of \mathcal{E}_{π} . As soon as this problem is solved, we can easily extend the construction with parity-check matrices, like in Theorem 4 in "Part One" of this study [1], in order to obtain codes of other lengths and sizes. Thus we now know, cf. Section 5.2 of [1], that for every prime number p > 3 there is a perfect 1-error-correcting Lipschitz weight code C of length $n = (p^{2l} - 1)/8$ and size $|C| = p^{2k}$, where $k = (p^{2l} - 1)/8 - l$, and l is any non-negative integer.

Acknowledgement

We are grateful to one of the reviewers who encouraged us to write a more clear presentation.

[§]The case p = 3 is out of any general interest.

O. Heden and M. Güzeltepe

References

- M. GÜZELTEPE, O. HEDEN, Perfect Mannheim, Lipschitz and Hurwitz weight codes, Math. Commun. 19(2014), 253–276.
- [2] O. HEDEN, M. GÜZELTEPE, On perfect 1-*E*-error-correcting codes, Math. Commun. 20(2015), 23–35.
- [3] C. MARTINEZ, E. STAFFORD, R. BEIVIDE, E. GABIDULIN, Perfect codes over Lipschitz integers, in:Proc. IEEE Int. Symp. Information Theory, Nice, Junuary 2007, 1366– 1370, doi:10.1109/ISIT.2007.4557413.
- [4] C. MARTINEZ, R. BEIVIDE, E. GABIDULIN, Perfect codes from Cayley graphs over Lipschitz integers, IEEE Trans. Inf. Theory 55(2009), 3552–3562.