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Summary

For centuries olive tree is an important crop in many Mediterranean countries 
because it provides appreciated oil with healthy properties. Th e lack of genomic tools, 
such as molecular markers or sequence information, has hindered the development 
of new cultivars adapted to the challenges that this species faces due to the change 
in modern cultivation practices, such as the increase in the number of trees per 
hectare. Th is tree has an excessive vigour that can be a serious economic limitation 
for intensive or super-intensive orchards. Th ese and other issues have been recently 
addressed by a number of scientifi c eff orts. Th is review will give a broad view over the 
recent genomic developments in olive tree, and the plant architecture as a complex 
trait.
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Introduction
Early in the history of the Western Civilization Pliny the Elder 

meticulously described the cultivation of olive tree (Olea euro-
paea L.) in its Natural History (Pliny, 1963), gathering previous 
works on the cultivation of this species. Th at volume described 
in detail important aspects of this orchard, as the geographical 
location, the cultivation practices, oil extraction, and the culti-
vars at the time. It is worth mentioning that it already described 
the fi rst mechanically extracted oil as that of the highest qual-
ity (Pliny, 1963; González-Plaza, 2013). According to archaeo-
logical data, olive tree cultivation dates from 4000 B.C. in the 
Eastern Mediterranean region, and was probably introduced in 
other countries during Greek colonisations (Rallo, 2005). Th is 
crop gives olive oil and table olives, and besides it has an impor-
tant contribution to stop desertifi cation in many areas, due to its 
moderate tolerance to drought in water limited environments  
(Lo Gullo and Salleo, 1988; Gucci et al., 1997; Chartzoulakis, 
2005; Connor and Fereres, 2005). Th is perennial species is es-
pecially relevant for the countries of the Mediterranean basin. 
Despite its importance, it has lagged behind when joining the 
genomic era, with scarce sequence data until 2008 (González-
Plaza, 2013; Muñoz-Mérida et al., 2013). 

Crops in the genomic era
New high-throughput sequencing technologies have un-

leashed the potential to improve crops in several complex ag-
ronomical features, instead of the classical approaches, such as 
genetic engineering, that could tackle only a handful of genes 
(Zamir, 2008). Quantitative trait loci (QTLs) can be defi ned as 
traits with a quantifi able phenotypic variation under complex 
genetic and/or environmental infl uence (Abiola et al., 2003). Th ey 
are defi ned as genomic regions containing the genes associated 
to a specifi c quantitative trait, and they are identifi ed through 
the use of molecular markers to associate the phenotype and the 
genotype (Collard et al., 2005). It is relevant because many im-
portant agronomic traits such as yield, fruit quality, or pathogen 
resistance can be under the control of several genes and display 
a quantitative expression (Kumar, 1999), and that has been de-
scribed also for olive tree with many agronomic traits being 
quantitative and showing a continuous distribution (Martín et 
al., 2005). Very broadly, the knowledge on QTLs can be applied 
to select for the phenotype of interest through marker-assisted 
selection (Collard et al., 2005). 

Th ese new high-throughput technologies, such as transcrip-
tomics and metabolomics, are much more powerful when used 
in combination in a multidisciplinary approach (Fernie and 
Schauer, 2009). However, in order to carry out an integrative 
approach there is a basic need of genomic knowledge. As it has 
been already mentioned, sequence information for olive tree 
was scarce until recent, with few published sequences in NCBI-
GenBank until 2008, which were mainly Expressed Sequence 
Tag (ESTs) (González-Plaza, 2013). One of the fi rst large scale ap-
proaches was the OLEAGEN project, in which NGS technologies 
were used to decipher the fi rst olive tree transcriptome (Muñoz-
Mérida et al., 2013). Furthermore, this project has produced a 
notable amount of scientifi c achievements, such as the fi rst olive 
tree microarray (García-López et al., 2014), which has been used 
to study several features such as juvenility (García-López et al., 

2014), or the plant architecture (González-Plaza, 2013; González 
Plaza et al., 2016). Th ese two traits are of especial importance 
for the cultivation of this crop, as they play a major infl uence in 
the productivity, or the yield. Th at is because a long juvenility 
period delays the entrance into production phase.  Regarding 
the plant architecture, there is a trend towards an increase in the 
number of trees per unit area (Pastor, 2006; Larbi et al., 2011). 
An excessive vigour of the growing trees can hinder the pro-
duction aft er a few years, due to a competition eff ect for light 
between the neighbouring trees. Trimming is applied to limit 
the competition between trees, although it can damage the tree 
and decrease the production (Pastor et al., 2007).

Genomics in olive tree 
Before discussing plant architecture, it is worth to over-

view the development of genomics in olive tree. Th is species 
has an elevated number of chromosomes (n=23), with low 
size and high morphologic similarity, imposing diffi  culties in 
their karyological analysis (Minelli et al., 2000); the estimat-
ed nuclear DNA content is 2.2 pg (Rugini et al., 1996), and the 
genome size is 2,200 Mb (De la Rosa et al., 2003; Doležel et al., 
2003). Despite its importance, genomic information prior to 
2008 was scarce, in comparison to other crops (24 sequences in 
“NCBI EST” database, using the search “(olea europaea) AND 
“Olea europaea”[porgn:__txid4146]”, and published between 
1992/1/1 and 2008/12/31; while there were 1,045 sequences in 
“NCBI Nucleotide” database, using the search “(olea europaea) 
AND “Olea europaea”[porgn:__txid4146]”, in the period from 
1992/01/01 to 2008/12/31; no sequences were found for that period 
in “NCBI SRA (Short Read Archive)” database, which includes 
those obtained through massive sequencing platforms). In 2009 
there was an increase in the number of published sequences, es-
pecially from cDNA libraries that represent the transcriptomic 
profi le of a given tissue, in a specifi c development period, and 
with a set of environmental factors. Since then newer sequenc-
ing platforms and lower sequencing costs have facilitated the 
generation of information (Mardis, 2011). Using these technol-
ogies, one of the fi rst published approaches was that of Alagna 
et al. (2009), with generation of reads from cultivars ‘Coratina’ 
and ‘Tendellone’ in diff erent ripening stages, providing insights 
of the fruit development in olive tree (NCBI; accession number 
SRA008270). Aft er assembly they obtained 26,563 contigs, a 
notable increase regarding the situation in 2008. Another mile-
stone in the development of genomic tools in olive tree is the 
publication of the chloroplast genome of the cultivar ‘Frantoio’ 
by Mariotti et al. (2010). Th e fi rst transcriptome of olive tree was 
published within the OLEAGEN project, and yielded more than 
two million reads (Muñoz-Mérida et al., 2013). Th at publication 
of the fi rst transcriptome led to the development of the fi rst mi-
croarray in olive tree, which was published by García-López et 
al. (2014), and fi rstly used to study juvenile to adult transition. 
Other notable sequencing eff orts have been that of Leyva-Pérez 
et al. (Leyva-Pérez et al., 2015) in a study of the cold acclimation 
of olive tree, where they reported a new transcriptome assembly.  

Molecular markers
One of the most valuable genomic resources for breeders are 

molecular markers, which are not limited in numbers or depend 
strongly on the environment in comparison to morphological 
or biochemical markers (Mohan et al., 1997; Cramer and Havey, 
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1999; White et al., 2007; Smýkal et al., 2008). Th e advantage of 
molecular markers is that they represent an individual varia-
tion in the DNA sequence. Although not directly representing 
a gene of interest, they can be indirect signals of localization of 
a QTL or gene of interest in the genome for breeding purposes 
(Collard et al., 2005). Among them, microsatellites (SSR, Short 
Sequence Repeat) and SNPs (Single Nucleotide Polymorphism) 
are the most used ones due to their abundance in genome, high 
reproducibility, automation possibilities, and relative low cost 
of analysis (Tang, 2008). In olive tree molecular markers have 
been used for diff erent purposes (Hatzopoulos et al., 2002), such 
as the identifi cation of cultivars (Bautista et al., 2003), for the 
traceability of olive oil in order to certify the origin (Agrimonti 
et al., 2011), the evaluation of germplasm variability (Ganino et 
al., 2006; Sarri et al., 2006; Belaj et al., 2007; Belaj et al., 2012), 
in studies aiming to trace the origin of olive tree (Besnard and 
Berville, 2000; Besnard et al., 2001a; Besnard et al., 2001b), or in 
breeding eff orts, which is the focus of this subchapter.

Before the OLEAGEN project there were only 80 low com-
plexity SSRs described, and not all of them were reproducible 
between laboratories, and just eight SNPs (Sefc et al., 2000; 
Carriero et al., 2002; Cipriani et al., 2002; De la Rosa et al., 2002; 
Díaz et al., 2006a; Díaz et al., 2006b; Díaz et al., 2007). One way 
to decrease the cost of development is to use bioinformatics ap-
proaches. An example of such an approach is the recent develop-
ment of a new set of SSRs by De la Rosa et al. (2013). Th e authors 
used the sequence information generated within the mentioned 
OLEAGEN project, to fi nd SSRs through a described compu-
tational approach (Th iel et al., 2003).  Th e main outcome from 
this study is the generation of experimentally validated makers 
with increased complexity, as they consist of repetitions of six 
nucleotides, and the higher discriminating power compared 
to the previously available SSRs. Th is new tools are ready to be 
used in paternity testing, and could be a great advantage for 
breeding purposes.

Plant architecture 
In a broad sense, plant architecture can be defi ned as the 

spatial organization of a plant, being a product of the balance of 
several environmental and developmental processes. Th e great 
matrix of architectures displayed by plants is mainly product of 
a common growth pattern, and diff erent  permutations in a few 
key growth features (Coen and Carpenter, 1993). Even in the 
same plant, two apparently diff erent structures as a fl ower and 
a shoot are products of the mentioned processes. Furthermore, 
studies have shown the same through molecular genetics (Coen 
and Carpenter, 1993). Th e idea of comparable structures is not 
new, and was already mentioned in the “Metamorphosis of 
Plants” by Goethe (Coen and Carpenter, 1993; Mavrodiev, 2009; 
von Goethe and Miller, 2009). Plants are modular organisms, 
and their development comprises the repetition of elemental 
units (Barthélémy and Caraglio, 2007). Th e understanding of 
this basic organization of the architecture of a plant is impor-
tant in order to proceed in downstream analysis or applications. 
In this sense, plant morphology is relevant for many biologi-
cal fi elds, as it deals with fundamental features such as form, 
structure, or the temporal changes within the plant (Barthélémy 
and Caraglio, 2007). For a long time it has been one of the few 

possible criteria for taxonomic classifi cation, and yet nowadays, 
it is the most simple way to identify a given species (Reinhardt 
and Kuhlemeier, 2002; Wang and Li, 2006). It is relevant for ag-
riculture  because it infl uences the plant yield, the effi  ciency of 
photosynthesis, and the suitability of the crop for cultivation 
and mechanization (Reinhardt and Kuhlemeier, 2002; Hanan et 
al., 2003). Although the work by Goethe dates from 1790 (Coen 
and Carpenter, 1993), the investigations of plant architecture did 
not appear as a scientifi c fi eld until 20th century in the 70’s, in 
pioneering studies dealing with the analysis of aerial vegetative 
structures in tropical trees (Hallé et al., 1978; Barthélémy et al., 
1997; Barthélémy and Caraglio, 2007).

Endogenous determinants of plant architecture
We can understand the architecture of a plant as the expres-

sion of a balance between endogenous processes and the environ-
mental limitations (Archibald and Bond, 2003; Barthélémy and 
Caraglio, 2007), and although plant architecture is infl uenced 
by the environment to a certain degree, the genotype is still a 
very strong determining factor (Busov et al., 2008). 

One of the basic units of plant organization are meristems, 
whose activity during development contribute to the production 
of great variety of plant shapes (Schmitz and Th eres, 2005). Th e 
plant has a basic structure composed of two main meristems: 
the shoot apical meristem (SAM) and the root apical meristem. 
Th e main axis of the plant is established among them, occurring 
early during the plant development (Sussex, 1989; McSteen and 
Leyser, 2005; Schmitz and Th eres, 2005). Several shoot axillary 
meristems add complexity to the branching pattern and the light 
distribution, because they can continue their growth or enter 
in dormancy (McSteen and Leyser, 2005; Schmitz and Th eres, 
2005). Additionally, axillary meristems are under the control of 
the SAM, which can suppress their growth through a mecha-
nism known as apical dominance (Davies, 1995; Reinhardt and 
Kuhlemeier, 2002; Schmitz and Th eres, 2005). A deeper control 
of shoot branching pattern can be determined by the main mo-
lecular regulatory mechanism, the WUS-CLV feedback loop 
(Turnbull, 2005; Wang and Li, 2008), where the product of WUS 
promotes meristem growth (Kwon et al., 2005). 

Endogenous signals as hormones, e.g. auxins, cytokinins, 
or strigolactones (Gomez-Roldan et al., 2008; Umehara et al., 
2008; Vogel et al., 2010) aff ect the branching pattern, and have 
many other important roles, e.g. they determine plant height 
(Strasburger et al., 1994). Gibberelins and brassinosteroids pro-
mote growth, while auxin controls the activation and growth of 
axillary meristems (Strasburger et al., 1994). Cytokinins belong 
to this group, and they stimulate cell division in axillary meris-
tems (Strasburger et al., 1994). Abscisic acid, on the other hand, 
inhibits growth and metabolism (Strasburger et al., 1994). Th e 
coordinated and fi ne balance between hormones, which work in 
very low concentrations, and their activity during key moments 
of plant development, leads to the fi nal plant architecture. It is 
then, as already mentioned, necessary to know better all these 
basic processes in order to be able to improve plant architecture.

Architecture in diff erent crops
Besides the characterization in plant models such as 

Arabidopsis thaliana (Hiraoka et al., 2013) or Antirrhinum majus 
(Bradley et al., 1996), plant architecture has been addressed in 
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species of agronomic relevance, such as petunia (Petunia hybri-
da) (Dal Santo et al., 2011), pea (Pisum sativum) (Beveridge et 
al., 1994; Fujino and Itoh, 1998), tomato (Solanum lycopersicum) 
(Bettini et al., 2010; Kohlen et al., 2012), and several monocoty-
ledons as maize (Zea mays) (Doebley et al., 1997) or rice (Oryza 
sativa) (Jiao et al., 2010). In woody plants architecture has also 
been studied in fruit trees, as indicated in several works of 
Hammami and collaborators (Hammami, 2009; Hammami et 
al., 2011; Hammami et al., 2012), such as apple tree (Malus do-
mestica) (Petersen and Krost, 2013; Fanwoua et al., 2014), peach 
tree (Prunus armeniaca) (Socquet-Juglard et al., 2012), eastern 
black walnut (Juglans nigra) (Mourelle et al., 2001), or peach 
tree (Prunus persica) (Mediene et al., 2002; Médiène et al., 2002). 

Th e immediate outcome of crops with modifi ed architectures 
suitable for intensive exploitations, is that they have higher yield, 
as previously demonstrated during the “Green Revolution”, by 
the introduction of semi-dwarf wheat cultivars with higher re-
sistance to damaging eff ects of wind or rain that led to an in-
crease in the global production (Gale et al., 1985; Evans, 1996; 
Peng et al., 1999; Wang and Li, 2008). Th e height of a plant is a 
trait of agronomic interest, because when trees grow in higher 
densities, they respond by growing strongly in height due to com-
petition events for available light (Wang and Li, 2006). Plants 
invest excessively in biomass instead in seeds or fruits, having 
negative consequences for the yield. Dwarf architectures make 
plants to use fertilizers more effi  ciently, as the organic mass is 
distributed equally, favouring seeds or fruits (Wang and Li, 2008). 
Especially for fruit tree species, dwarf architectures are desired 
because they allow higher plantation densities, they require 
lower maintenance in terms of trimming practices, and permit 
to apply diff erent mechanical collection approaches (Webster, 
2002). Notwithstanding, any process of improvement must attend 
the limitation of the rule of Leonardo (Richter, 1970). According 
to that rule, the diameter of all the branches at certain height, 
equals that of the trunk, being that a consequence of the neces-
sary design to resist mechanical tensions exerted by the wind 
or other environmental factors (Eloy, 2011). Th erefore that me-
chanical imposition will limit the possible plant architectures 
that can be obtained through breeding.

Th e main issue for improvement eff orts is that dominant al-
leles for dwarfi sm are diffi  cult to fi nd in nature, because dwarf 
trees are under a strong negative selection exerted in the compe-
tition for light with trees of higher vigour (Jennings and Aquino, 
1968; Nagano et al., 2005). It could be thought then that the best 
approach would be to follow the development of modern vari-
eties that have been developed to acquire resistance genes to 
pests or herbicides. Genetic modifi cation technologies cannot 
achieve high success rates in plant architecture because this is 
a complex trait and not a product of a few genes (Schauer et al., 
2006; Zamir, 2008). Th erefore, the exploration of genetic diver-
sity through recently available high-throughput technologies is 
an alternative in developing dwarf cultivars, even when those 
alleles are not common in nature.

Olive tree architecture
Plant architecture is relevant for olive tree due to the new 

type of plantations. Traditionally, exploitations had a low den-
sity of plantation with low yield (Duarte et al., 2008), leading to 
high costs in fruit harvesting (Yousfi  et al., 2012), being one of 

the reasons for manual labour requirements (Rufat et al., 2014). 
On average the number of planted trees per hectare in traditional 
orchards is lower than 250 (Rugini et al., 2016), while medium 
density ones range from 250 to 400 trees/ha (Strippoli et al., 
2013; Rugini et al., 2016). 

Th e current trend is to increase the number of planted trees 
(Villalobos et al., 2006; Baptista and Biswas, 2010), allowing a 
higher mechanization degree, which also decreases costs for the 
olive oil producers. Th ese type of exploitations are character-
ized by a high planting density, ranging from 900 to more than 
1,200 trees per hectare (Vivaldi et al., 2015; Rugini et al., 2016), 
and it was indicated that the period from planting the trees to 
their entrance in the production should be very short (Rufat et 
al., 2014). Th e increased density leads to very short distances be-
tween trees in the fi eld, and that represents a big issue with olive 
tree because of the high vigour that characterizes this species.  
For that reason suitable architectures of the trees are  currently 
achieved through trimming practices (García-Ortiz et al., 2004), 
which aim is to obtain a balance in the tree between leaf/root, 
the highest leaf/wood ratio (García-Ortiz et al., 2004), and to 
lower the shading eff ect. Th e last one is especially relevant be-
cause prolonged shading could become permanent (Proietti et 
al., 1988), and have negative eff ects on the yield, as productiv-
ity is a direct outcome of the photosynthetic capacity of leaves 
(Boardman, 1977; Gregoriou et al., 2007). Shading is translated 
into a lower or impaired light distribution, potentially leading 
to a decrease in the number of fl owers, and fi nally the size and 
quality of the fruit (Jackson and Palmer, 1977; Hampson et al., 
1996; Gregoriou et al., 2007). 

It has been mentioned previously in this text that the suit-
able architecture in this type of orchards is achieved through 
trimming, and that can lead to the reader to wonder why not to 
choose better suited cultivars. Th e reason is that currently very 
few olive tree cultivars display adequate features and behav-
iour for high density plantations (Rufat et al., 2014; Rugini et 
al., 2016). Th e main cultivar used in super-intensive orchards is 
‘Arbequina’ (Larbi et al., 2011), which originates from northern 
Spain (Tous and Romero, 1993; Barranco et al., 2005), with a 
low-medium vigour and a good agronomic performance (Rallo 
et al., 2008). However, cultivars like this display an early com-
petition for light (Rallo et al., 2008) that can drive the trees to 
shade adjacent ones, posing an inconvenience for the super-in-
tensive orchards, and trimming programs have to be applied in 
order to correct this trend (Larbi et al., 2011). Th e disadvantage 
of those practices is the subsequent decreases in productivity 
(García-Ortiz et al., 2004; Pastor, 2005; Guerrero et al., 2006). 
Until recently, available cultivars such as ‘Arbequina’ were evalu-
ated for their suitability for super-intensive cultivation (Bernardi 
et al., 2008; Larbi et al., 2011). 

All of these reasons indicated the need for the development 
of dwarf cultivars in olive tree, with the fi rst successful breed-
ing program initiated at the University of Córdoba. Th e result 
was an especially adapted cultivar, registered under the name of 
‘Sikitita’ (Rallo et al., 2008). Th is new cultivar has a high olive oil 
content, and low vigour, making it an excellent choice for super-
intensive orchards (Rallo et al., 2008). Th e current technologies 
and development in olive tree genomics make possible to carry 
out new selection programmes in order to obtain diff erent dwarf 
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cultivars that are not only suitable for super-intensive cultivation, 
but also off er increased oil quality for the consumer. It is in this 
context where genomic and transcriptomic approaches are rel-
evant for breeders, as they can accelerate the selection of suitable 
cultivars with ideal plant architectures (IPA) (for the concept 
of IPA view Jiao et al. (2010)). Recently a set of more than 2,000 
candidate genes to determine plant architecture was reported 
in olive tree, and those results could be potentially used for the 
improvement of cultivars suited for super-intensive cultivation 
(González Plaza et al., 2016).

Conclusion and future prospects
Olive tree is an important crop for several countries of the 

Mediterranean basin. Although economically relevant, this spe-
cies has lagged behind when joining the genomic era, but several 
recent eff orts have been carried out towards the development of 
new tools aimed to more powerful breeding practices (Alagna et 
al., 2009; Galla et al., 2009; Donaire et al., 2011; Muñoz-Mérida 
et al., 2013; Carmona et al., 2015; Leyva-Pérez et al., 2015). Th e 
development of tools as new molecular markers becomes an 
easier task with the aid of bioinformatic analysis, once that a good 
coverage of the olive tree genome and transcriptome is achieved 
as demonstrated recently  (De la Rosa et al., 2013). Molecular 
markers have many applications in olive tree (e.g. traceability of 
olive oil origin, paternity testing, studies on the origin of olive 
tree, among others), and one of the most important is to aid 
in the development of new cultivars through Marker-Assisted 
Selection (MAS) breeding programmes. Plant architecture is a 
very complex trait that cannot be selected through genetic en-
gineering approaches, and is in the selection of an IPA in olive 
tree (or other fruit trees) where the new high-throughput tech-
nologies can off er and advantage. 

Architecture is relevant in agriculture because it aff ects the 
production, and the suitability of the cultivar for new type of 
orchards. Adapted cultivars such as ‘Chiquitita’ perform better 
than traditional ones in super-intensive exploitations, but its 
development was a long eff ort because there was a lack of avail-
able genomic tools. Th is improvement process can be shortened 
with the already available knowledge, facilitating the develop-
ment of new varieties that fulfi l the requirements of producers 
and consumers. It is thrilling to think how these recent advances 
can be a great resource for breeders in the development of new 
cultivars with adapted architecture, shorter juvenility, or im-
proved oil features.
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