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Abstract 
The inhibition performance of benzyl nicotinate (BN) on corrosion of cold rolled steel 
(CRS) in 0.5 M H2SO4 solution has been investigated using weight loss, Tafel polarization 
and electrochemical impedance spectroscopy (EIS). The BN acts as mixed type inhibitor. 
The thermodynamic parameters indicate the comprehensive nature adsorption of BN on 
CRS which obey Langmuir isotherm. Morphological investigation of corrosion inhibition 
is carried out using AFM and optical microscopic studies support the formation of 
inhibitor film on CRS. There is a good agreement between the values of weight loss 
measurements and electrochemical studies. 
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Introduction 

The study on the rusting of steel received great deal of attention by academicians due to its 

application in different fields. The methods of various natures have been reported in scientific 

journals to control the rust [1]. The use of inhibitor is considered as the best and most commonly 

used practical method to control the corrosion of steel. In recent years different type organic 

compounds are used as inhibitors in liquid medium for steel corrosion and their role during the 

process of corrosion has been extensively studied. These inhibitors enter in to the metal–solution 

interface and replace water molecules [2-3]. The hetero atoms like oxygen, nitrogen, sulphur, and 

phosphorus, triple bonds, and aromatic rings of compounds enhances their population at the 

metal- solution interface making a sort of barrier between metal and solution. The inhibitor 
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efficiency of heterocyclic organic compounds follows the sequence: oxygen < nitrogen < sulphur < 

phosphorus. The electronic characteristic of the inhibitor molecules, aromaticity, steric factor, 

molecular mass, presence of functional groups like –C=O,-N=N-,-OH,-COOR, the chemical 

composition of the solution, the nature of the metal surface, the temperature and the potential at 

the metal–solution interface determine efficacy of the inhibitor. The primary requirement for 

adsorption of inhibitor depends on the existence of attractive forces between the inhibitor and the 

metal. The adsorption may be physisorption, chemisorption or a combination of both [4-9].  

In the present study, the selected inhibitor was benzyl nicotinate (BN), which is pyridine 

heterocycle containing nitrogen and –COOR group, where the R-group is a benzyl group. All these 

structural features of BN are enough to produce required attractive force responsible for its 

adsorption to metal surface. In the present study, inhibitive effect of BN on the corrosion of cold 

rolled steel (CRS) in 0.5 M H2SO4 solution was verified using weight loss, EIS and Tafel polarization 

method. The morphology of the CRS surface was determined using atomic force microscopy (AFM) 

and optical microscopy. 

Experiment 

Sample 

The experiments were performed on CRS with the compositions of 0.14 % C, 0.4 % Mn, 0.025 % 

P, and0.0008 % S, 0.025 % Si, 0.003 % Al and rest of Fe. 

 Solution 

The test solution of 0.5 M H2SO4 was prepared using double distilled Millipore water. The 

different concentrations of BN 50, 250 and 500ppm were prepared in 0.5 M H2SO4 solution.  

Weight loss measurement 

The CRS specimens of dimension 4 × 2 × 0.5 cm were used for weight loss measurements and 

were abraded with a series of emery paper from 220, 330, 400, 600 and 1200 grades. The 

specimens were washed with Millipore water, rinsed in acetone and dried in air. The weight loss 

incurred by CRS specimens in corrosion experiments were determined by weighing the samples 

before and after immersing in 100 cm3 of 0.5M H2SO4. The corrosion experiments were also 

conducted at temperature 303,313, 323, and 333 K. The experiments were performed in static 

open aerated condition.  

The corrosion rate (νcorr) of CRS was determined using the following relation:  

corr

m

St


  (1) 

where νcorr is the corrosion rate of mild steel (g cm−2 h−1), Δm is the corrosion weight loss of mild 

steel (g), S is the surface area of mild steel specimen (cm2), and t is the time of exposure. The 

percentage inhibition efficiency was calculated using the following relationship 

corr corr
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where ν0
corr and νcorr are the corrosion rates of CRS in the absence and presence of BN 

respectively. 
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 Electrochemical measurements 

The electrochemical measurements were conducted in a conventional three electrode glass cell 

using CHI660D electrochemical analyser (USA made). The CRS specimen of 1 cm2 exposed area 

with 5 cm long stem isolated with araldite resin was used as working electrode and platinum wire, 

Calomel electrode were used as counter and reference electrode respectively. Prior to polarization 

and electrochemical impedance spectroscopic measurements (EIS), a stabilization period of 30 min 

was allowed to establish a steady state open circuit potential (OCP). Each experiment was carried 

out in triplicate and the average values were reported.  

EIS measurements were done at OCP in the frequency range from 0.1Hz to 10 kHz with the 

amplitude of 5 mV. The inhibition efficiency of EIS measurement were calculated using the 

following equation 

 

o
ct ct

imp

ct

/ % 100
R R

IE
R


   (3) 

where Rct and R0
ct are charge transfer resistance of working electrode with and without inhibitor, 

respectively. 

Polarization plots were obtained in potential range from -200 mV to -1000 mV with the scan 

rate of 10 mV/s at OCP. The corrosion parameters like corrosion current density (Icorr), corrosion 

potential (Ecorr), catodic (c) and anodic (a) Tafel slopes were calculated. Inhibition efficiency is 

calculated using the relation as follows,  

 

o
corr corr

pol

corr

/ % 100
o

I I
IE

I


 
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where I0
corr and Icorr are the corrosion current density in the absence and in presence of inhibitor 

respectively. 

Morphological studies 

The surface morphology of CRS samples were investigated using both Atomic force microscopy 

(AFM - Bruker model) and optical microscopy using Olympus CX31 microscope. 

Results and discussions 

Polarisation studies 

Figure 1 shows the typical polarisation curve for CRS generated at room temperature without 

and with different concentration of inhibitor BN. The corresponding electrochemical parameters 

such as corrosion potential (Ecorr), corrosion current density (Icorr ), cathodic (c) and anodic (a) 

Tafel slopes and inhibition efficiency are given in Table 1. From the Table 1 it is indicated that 

there is decrease in the corrosion current density (Icorr) value with increase of concentration of 

inhibitor, which suggested the adsorption of inhibitor molecule on surface of steel and thus acting 

as a barrier for charge and mass transfer reactions [10]. Furthermore, with increase in 

concentration of inhibitor BN there is no significant shift in the values of either cathodic (c) or 

anodic (a) slope which infers the adsorption BN on CRS controls both anodic metal dissolution 

and cathodic hydrogen evolution processes. Moreover, the value of ΔEcorr is within 5-30 mV [11], 

hence BN act as mixed inhibitor for CRS in 0.5M H2SO4.  
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Table 1. Electrochemical polarization parameters of CRS at 0.5 M H2SO4 solution in absence  
and presence of BN measured at 303 K 

Concentration, ppm -Ecorr / mV c / mV dec-1 a / mV dec-1 Icorr / mA cm-2 IE / % 

0 519 188.0 154.0 3.991  

50 516 170.9 129.2 1.347 66 

250 509 158.4 107.9 0.715 82 

500 504 148.9 92.0 0.333 92 
 

 
E / V vs. SCE 

Figure 1. Tafel polarization response of various concentration of BN in 0.5 M H2SO4 solution 

Electrochemical impedance studies 

The EIS findings of CRS in 0.5 M H2SO4 both in absence and in presence of different concen-

tration of BN were (analysed using Zsim win 3.21) presented in Table 2. Corrosion behaviour at the 

studied frequency ranges is represented in Nyquist and Bode plots as in Figures 2, 3 and 4. The 

Nyquist plots exhibit single slightly depressed semicircles and one time constant in Bode plots, 

which suggests that metal dissolution is controlled by charge transfer process [12].  

 

 Figure 2. Nyquist plots for different concentration of BN in 0.5 M H2SO4 solution. 
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The depression in Nyquist semicircle is ascribed to some physical nature of surface i.e., 

inhomogeneity, roughness and active site of surface. The EIS values were examined using a 

suitable equivalent circuit model shown in the Figure 2, where Rs is the solution resistance and Rct 

is the charge transfer resistance, Q is the constant phase element, which is used in place of pure 

capacitor, in order to explain the deviation of electrodes from ideal dielectric behaviour, which is 

related to surface inhomogeneity [13]. The impedance of constant phase element (ZCPE ) is given 

by the following equation:  

ZCPE = Y0
-1 (iω)-n (5) 

where Y0 is CPE constant, i2= -1, an imaginary number,  is angular frequency and n is CPE 

exponent which used to assess the surface inhomogeneity, resulting from surface roughness, 

inhibitor adsorption, porous layer formation, etc. [14]. The capacitance (Cdl) of constant phase 

element is calculated using the following relation  

Cdl= (QRct
1-n)1/n (6)  

From the Nyquist plot, it is observed that with an increase in inhibitor concentration, there is an 

increase in semicircle diameter which corresponds to Rct values. It accounts from the table that, 

there is decrease in the Rct values and increase in Cdl values with increase in concentration of 

inhibitor. This resulted from replacement of water molecule from the steel surface by the inhibitor 

molecule thereby reducing the active sites of corrosion. The same result is depicted in Bode 

diagram, i.e., increment in phase angle with increase of inhibitor concentration is corresponding to 

decrease in surface inhomogeneity with inhibitor adsorption onto steel surface [15]. The above 

discussion it is concluded that BN works as efficient inhibitor for CRS in 0.5 M H2SO4.  
 

 
Figure 3. Bode phase angle plots for different concentration of BN in 0.5 M H2SO4 solution 

Table 2. Electrochemical impedance parameters of CRS at 0.5 M H2SO4 solution in absence and  
presence of BN measured at 303 K.  

Concentration, ppm Rct / Ω cm-2 Q / Sn Ω-1 cm-2 n Cdl / µF cm-2 IE / % 

0 11.26 1.588x10-4 0.86 57.2  

50 46.2 2.296 x10-4 0.76 52.6 76 

250 76.16 1.655 x10-4 0.76 41.8 85 

500 136.8 0.853 x10-4 0.85 38.9 92 
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Figure 4. Bode phase plots for different concentration of BN in 0.5M H2SO4 solution. 

Weight loss experiment 

The effect of inhibitor concentration on corrosion rate at different temperature ranging 

between 303-333 K is as shown in the Figure 5 and the corresponding values are tabulated in Table 

3. The corrosion rate decreases with increasing concentration of inhibitor due to the increase of 

surface coverage of inhibitor [16]. It is clear from the Figure 5 that the corrosion rate decreases 

with the increase in the concentration of BN. The corrosion rate increases more rapidly in the 

absence and in the presence of 50 ppm of BN concentration, however, a small decrease in the 

corrosion rate values at 250 ppm and to very lesser extent in 500 ppm with the rise of 

temperature. The increase in corrosion rate and hence decreasing value of inhibition efficiency 

with rise of temperature is indicative of physisorption of BN molecule on CRS. 
 

 
Figure 5. Variation of corrosion rate with concentration at different temperature 
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Adsorption isotherm and thermodynamic parameters studies 

Corrosion inhibitor, BN, adsorbs on steel surface preventing its surface contact with the 
corrosive media and thus preventing steel dissolution. In order to gain deeper understanding 
about the mode of adsorption, the experimentally calculated data were verified with the different 
adsorption isotherm equations. The best fit was obtained with Langmuir isotherm equation 
represented below:  

ads

1C
C

K
   (7) 

where C is concentration of inhibitor,  is surface coverage and Kads adsorption equilibrium con-

stant. Using the values of Kads , we were able to calculate the thermodynamic parameters like 

ΔGads, ΔH and ΔS and which are depicted in the Table 4. The Langmuir isotherm equation is based 

on the assumption that the adsorption of organic molecules on metallic surface is monolayer with-

out any chemical interaction between them. Furthermore, the adsorption of the molecule on to 

metal surface depends upon the chemical structure and charge distribution of molecule and also 

depends on surface charge of metal [17]. We can classify the adsorption as physisorption if ΔGads < 

20 kJ, chemisorptions if ΔGads > 40 kJ or comprehensive adsorption if ΔGads in between 20 – 40 kJ. 

Table 3. Corrosion rate and the inhibition efficiencies at various temperatures at different concentration of 
BN in 0.5 M H2SO4 solution as obtained from weight loss experiment. 

Concentration, ppm 

Temperature, K 

303 313 323 333 

νcorr / 
mg cm

-2 
h

-1
 

IE / % 
νcorr / 

mg cm
-2 

h
-1

 
IE / % 

νcorr / 
mg cm

-2 
h

-1
 

IE / % 
νcorr / 

mg cm
-2 

h
-1

 
IE / 
% 

0 5.5625  12.8  15.34  19.68  

50 1.525 72.58 4.425 65.29 7.31 52.32 13.63 31 

250 0.775 86.07 2.175 82.94 2.95 80.76 4.663 76 

500 0.5 91.01 1.225 90.39 1.575 89.73 2.500 88 
 

 
Figure 6. Langmuir adsorption of BN on the surface of CRS in 0.5 M H2SO4 at various temperatures. 
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Table 4. Thermodynamic parameters for CRS in 0.5 M H2SO4 solution obtained from weight loss method. 

Temperature, K R2 Kads / M
-1 -ΔG / kJ mol-1 -ΔH / kJ mol-1 ΔS / J mol-1 K- 

303 0.999 53987 37.567 

 

37.262 

 

34.141 

313 0.994 30951 37.360 

323 0.999 21011 37.513 

333 0.999 14022 37.555 

 

The ΔGads values around -37kJ implied that the adsorption of BN molecule on to CRS is 

comprehensive in nature i.e., the nature is in between to that of physisorption and chemisorptions 

[18]. Thus, ΔGads can be calculated according to the following equation:  

ads
ads

1
exp

55.5

G
K

RT

 
  

 
 (8) 

The value of ΔH and ΔS can be calculated using van’t-Hoff equation expressed as follows: 

ads ads
ads

1
ln

55.5

H S
K

RT R

 
    (9) 

The graph of ln (Kads) againt 1/T gives a straight line with a slope of (-ΔH/R) and intercept equal 

to [ΔS/R + ln(1/55.5)] and are represented in Table 4. Further, the negative values of ΔGads suggest 

spontaneous adsorption of inhibitor molecule on steel surface. The negative value of ΔH indicates 

adsorption is exothermic in nature and hence there is decrease in inhibition efficiency with 

increase in temperature.  

Generally, exothermic process is attributed to either physisorption or chemisorption while 

endothermic process is for pure chemisorption. Furthermore, if the value of ΔH < 41.86 kJ/mol 

then it is physisorption, while for chemisorption ΔH values in and around 100 kJ/mol [21-23]. For 

the present case, ΔHads = -37.26 kJ is pure physisorption of inhibitor BN. The positive value of ΔS 

infers that adsorption of inhibitor onto metal surface is accompanied by increase in entropy. This 

thermodynamic value entropy is algebraic sum of decrease in entropy of solute and increase in 

entropy of solvent and hence the positive value of entropy corresponds to increase in solvent 

entropy [24].  

 
Figure 7. Relation between ln Kads against 1/T 
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AFM surface characterization studies 

In recent developments, AFM emerged as powerful technique for characterising 

microstructures of materials. AFM provides powerful means to study the surface morphology in 

the micro or nano ranges and for evaluating the influence of inhibitor on the corrosion process 

[19]. Figure 9 shows three dimensional AFM images of polished cold rolled steel (reference 

sample) (a), of CRS specimens immersed in 0.5 M H2SO4 solution (b) and of CRS specimens 

immersed in 0.5 M H2SO4 + 500 ppm of BN (c),  respectively. It is apparent from the Figure 8 that 

the inhibited surface is more uniform when compared to the surface immersed in 0.5 M H2SO4 

solution.  
 

 
Figure 8. 3D AFM images of polished cold rolled steel (a), CRS specimens immersed in 0.5 M H2SO4 (b) 

and in 0.5 M H2SO4 + 500 ppm of BN (c). 

The AFM analysis directly measures the surface roughness with the roughness parameters, 

peak height and texture and surface area of entire surface. Average roughness (Ra) is the 

arithmetic average of the absolute values of the surface height deviations measured from the 

mean plane. The root mean square roughness (Rq) is the root mean square average of height 

deviations taken from the mean data plane and the (Rmax) specifies the maximum vertical distance 

between the highest and lowest data points in the image i.e., it gives the maximum peak to valley 

height values [20]. The values so obtained are represented in a Table 5  

Table 5. Roughness parameters for CRS as obtained from AFM studies 

Samples status 
Average roughness 

Ra / nm 

RMS roughness 

Rq / nm 

Peak to valley height  

Rmax / nm 

CRS polished 34 50.5 379 

CRS immersed in  

0.5M H2SO4 
168 208 1741 

CRS immersed in  

0.5 M H2SO4 + 500 ppm of BN 
46.9 59.7 447 

Optical microscopic studies 

The optical microscopic images are taken from Olympus CX31microscopy with Motix camera 

provided with both trinacular and binocular lenses. The images were taken at 20x magnification 

with light illuminated at plane polarised and cross Nicols (Xn) condition. It is inferred from the 

images that the optical microscopic images as in Figure 9a of corroded CRS in 0.5 M H2SO4 is 
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accompanied with cracks and small pits. Whereas, CRS immersed 0.5 M H2SO4 + 500 ppm of 

inhibitor BN is protected and is free of cracks and pits as seen in Figure 9b. 

 

 
Figure 9. Optical microscopic images of CRS specimens immersed in 0.5 M H2SO4 [a and a(Xn)] 

and CRS in 0.5 M H2SO4 + 500 ppm of BN [b and b(Xn)]  

Mechanism of adsorption 

There are many models in the literature to explain the mechanism of adsorption of inhibitors. 

Generally it is accepted that the adsorption of organic inhibitor molecules is often a displacement 

reaction involving removal of adsorbed water molecules from the metal surface i.e.,  

Org(sol) + xH2O(ads)↔ Org(ads) + xH2O(sol) [25-28]. The organic inhibitor molecule get adsorbed to the 

steel surface through its heteroatom like nitrogen, oxygen, sulphur and phosphorus influencing 

the corrosion properties of steel. The inhibitor molecule adsorbs on to the corresponding active 

sites of steel and reduces either anodic or cathodic corrosion reactions. There are four primary 

modes of adsorption associated with inhibitor molecules at surfaces: electrostatic adsorption 

(physisorption), π-back bonding, chemisorption, and organometallic complex formation [25]. Thus, 

the molecule BN can interact with CRS in three possible ways as represented in Figure 10. Firstly, 

the neutral BN molecule undergoes chemical adsorption to CRS by interaction of lone pair of 

electrons on nitrogen and oxygen atoms with the empty d-orbitals of iron (a). The second 

possibility involves the electrostatic interaction of protonated BN with the already adsorbed SO4
- 

ions through physisorption (b). The third mode is interaction of π-electrons of BN molecule with 

the steel surface through donor-acceptor interaction (c). Thus, adsorption of BN forms a barrier 

layer on CRS, thereby preventing its contact with the corrosive media and reduces the corrosion 

rate.  
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Figure 10. Mechanistic representation of adsorption of BN on CRS in 0.5 M H2SO4 solution 

Conclusion 

 Benzyl nicotinate (BN) acts as an efficient inhibitor for the corrosion of mild steel in 0.5 M 

H2SO4 solution.  

 Inhibition efficiency increases with the inhibitor concentration but decrease with temperature. 

This shows that BN follows physisorption, obeying Langmuir isotherm.  

 From the polarisation results it can be concluded that BN acts as mixed inhibitor which 

impedes both anodic and cathodic corrosion reactions. 

 The inhibition efficiency values found from weight loss method are in good agreement with 

electrochemical findings. 

 The morphology of CRS samples were observed by optical microscopy and AFM. Microscopic 

images and the roughness parameters derived from AFM are supported our experimental 

findings.  
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