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Abstract

Irradiance is highly dynamic in many plant canopies.

Photosynthesis during sunflecks provides 10–90% of

daily carbon gain. The survivorship of tree seedlings in

the deeply shaded understorey of tropical rain forests is

limited by their ability to maintain a positive carbon bal-

ance. Dipterocarp seedlings from the SE Asian rain

forestwereusedasamodel system to test novel aspects

of the physiological and ecological significance of sun-

flecks. First, understorey seedlings experienced leaf

temperatures up to 38 8C in association with sunflecks.

Under controlled environment conditions, the inhibition

of carbon gain at 38 8C, comparedwith 28 8C, was signifi-

cantly greater during a sequence of sunflecks (259%),

than under uniform irradiance (240%), providing the

same total photosynthetic photon flux density (PPFD).

Second, the relative enhancement effects of elevated

[CO2] were greater under sunflecks (growth 160%,

carbon gain 189%), compared with uniform irradiance

(growth 125%, carbon gain 159%), supplying the same

daily PPFD. Third, seedling growth rates in the forest

understorey were 4-fold greater under a dynamic irradi-

ance treatment characterized by long flecks, compared

with a regimeof short flecks. Therefore, stresses associ-

ated with dynamic irradiance may constrain photosyn-

thetic carbongain. Additionally, seedling photosynthesis

and growth may be more responsive to interactions

with abiotic factors, including future changes in climate,

than previously estimated. The sensitivity of seedling

growth to varying patterns of dynamic irradiance, and

the increased likelihood of species-specific responses

through interactions with environmental factors, indi-

cates the potential for sunflecks to influence regen-

eration processes, and hence forest structure and

composition.
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Introduction

Sunflecks have been recognized as an important source of
energy for tree seedlings in tropical rain forests for many
decades. Following early work by Evans (1939, 1956), the
responses of a diversity of species have been examined in
response to flecked light, under both natural and controlled
environment conditions, in order to address questions at
a range of scales from the biochemical to the ecological.
The majority of these studies have focused on three key
issues: (i) the physical nature of sunflecks (activity, pattern,
light quality) in diverse canopy structures; (ii) the limita-
tions to CO2 fixation imposed by sunflecks and quantifica-
tion of the resulting carbon gain; and (iii) the differences
between species in their responses to sunflecks; all of which
have been thoroughly reviewed (see, for example, Chazdon,
1988; Pearcy, 1990; Chazdon and Pearcy, 1991; Baldocchi
and Collineau, 1994; Pearcy et al., 1994; Chazdon et al.,
1996). However, the understanding of plant responses to
sunflecks has lagged behind in three important areas. First,
most studies regard sunflecks as a resource of light energy,
but do not consider the potential for stress during sunflecks
from excess photosynthetic photon flux density (PPFD),
temperature or leaf to air vapour pressure deficit (VPD).
Second, little is known about how environmental variables,
independent of sunfleck activity (e.g. elevated [CO2]), affect
the use of sunflecks for photosynthetic carbon gain and
growth. Third, understanding the extent to which sunflecks
significantly affect seedling growth rates or survival, in-
dependent of changes in total PPFD, thereby potentially
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influencing interspecific competition and regeneration ecol-
ogy. This synthesis discusses the results of experiments that
address these issues using dipterocarp seedlings and in doing
so provide further evidence for the physiological and eco-
logical significance of sunflecks.

Increased leaf temperature and inhibition of
photosynthesis during sunflecks

It is well understood how the utilization of dynamic irra-
diance for photosynthetic carbon gain is limited by the
duration, frequency and PPFD of sunflecks interacting with
photosynthetic induction gain and loss, photosynthetic cap-
acity and post-irradiance metabolism (reviewed in Pearcy
et al., 1994). However, in addition to higher PPFD, the
result of the direct solar radiation incident on a leaf during
a sunfleck includes increased temperature and, therefore,
VPD (Young and Smith, 1979, 1983; Robichaux and Pearcy,
1980; Chazdon, 1988; Watling, 1991). Low stomatal con-
ductance and high relative humidity should predispose
tropical understorey plants to higher temperatures because
they will reduce latent heat loss by transpiration. Little is
known about how these potentially stressful conditions may
constrain carbon gain during sunflecks (Chazdon, 1988).
Assessing the ecological and physiological significance of
sunflecks for seedlings requires a holistic approach that
considers the trade-off between sunflecks as a resource
fuelling photosynthesis, versus a set of abiotic stresses.
Tropical understorey species can mitigate against photo-

damage during high PPFD sunflecks by dissipating excess
excitation energy by non-photochemical quenching (Logan
et al., 1997; Schiefthaler et al., 1999). Nonetheless, sun-
flecks have been observed to cause persistent photoinhibi-
tion in Australian understorey plants (Watling et al., 1997b)
and to reduce photosynthetic carbon gain in Elatostema
repens grown under low light (Le Gouallec et al., 1990).
Inhibition of photosynthesis by excess PPFD is exacer-
bated if the plant is experiencing additional environmental
stresses (Ludlow, 1987). Therefore, if temperatures can rise
sufficiently to limit photosynthesis during sunflecks, an
interaction with high VPD and excess PPFD is likely to re-
sult, magnifying the constraint upon carbon gain. Maximum
leaf temperatures of 30 8C in the Hawaiian understorey
were above the temperature optimum for photosynthesis in
Euphorbia forbesii and Claoxylon sandwicense and, there-
fore, could have directly constrained carbon gain during
sunflecks (Robichaux and Pearcy, 1980).
A study of leaf temperatures of Shorea leprosula seed-

lings in the dipterocarp rain forest of SE Asia revealed that
seedlings experienced temperatures up to 38 8C, with leaf
temperature tracking sunfleck activity (Leakey et al., 2003b)
(Fig. 1). Consequently, up to 56% of total daily PPFD was
received at temperatures above 30 8C. To investigate the
physiological significance of these high temperatures during
sunflecks, the inhibition of photosynthesis at 38 8C relative

to 28 8C was compared under uniform PPFD, versus a
simulated sequence of sunflecks, in controlled environment
conditions (Leakey et al., 2003b). Saturating PPFD in both
uniform and dynamic irradiance treatments was 539 lmol
m�2 s�1, while leaf-to-air VPD was maintained at or below
1.3 kPa throughout gas exchange measurements. These
conditions allowed photosynthetic responses to temperature
to be assessed independently from the potentially photo-
inhibitory effects of excess PPFD and low VPD.

The light-saturated rate of photosynthesis (Amax) in S.
leprosula under uniform irradiance was optimal at 29 8C,
and progressively inhibited with increased temperature.
Consequently, Amax was 40% lower at 38 8C compared with
28 8C. Inversely, calculated rates of photorespiration (Rp)
increased significantly with rising temperatures above 30 8C.
This is consistent with previous reports of photosynthetic
and photorespiratory responses to high temperatures and is
most likely due to unfavourable changes in the differential
solubility of CO2 and O2 (Ku and Edwards, 1977; Monson
et al., 1982) and the kinetic properties of Rubisco (Monson
et al., 1982; Jordan and Ogren, 1984; Sage and Sharkey,
1987). It has also been suggested that reduction in the
activation state of Rubisco may play a role (mediated by
Rubisco activase activity; Law and Crafts-Brandner, 1999;
Crafts-Brandner and Salvucci, 2000).

To assess dynamic photosynthesis, leaves were exposed
to a PPFD of 30 lmol m�2 s�1, until steady-state gas ex-
change was achieved. They were then subjected to ten, 3
min flecks of 539 lmol m�2 s�1 separated by 1 min low
light periods of 30 lmol m�2 s�1. Inhibition of carbon gain
at 38 8C compared with 28 8C during this dynamic
irradiance was greater (�59%; Fig. 2A) than for the same
duration of uniform irradiance (�40%, Fig. 2B). The addi-
tional inhibition of carbon gain by high temperatures during
sunflecks was due to reductions in lightfleck utilization
efficiency (LUE) (Fig. 3A).

Fig. 1. Representative traces over the diurnal period of: leaf temperature
(black line) of a S. leprosula seedling in a tropical rainforest understorey,
PPFD incident on the leaf (grey line) and air temperature (dashed line).
(Redrawn from Leakey et al., 2003b.)
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Reduced post-irradiance CO2 fixation (Fig. 3B) and
greater post-irradiance CO2 burst (Fig. 3C) both contributed
to the decrease in LUE. Photosynthetic and photorespira-
tory flux drives post-irradiance CO2 fixation and post-
irradiance CO2 burst, respectively (Sharkey et al., 1986;
Rawsthorne and Hylton, 1991). Inhibition of steady-state
photosynthesis, alongside greater Rp at 38 8C, compared
with 28 8C, could have driven the response. Short-term
treatments of low CO2 concentration ([CO2]), high O2 and
high temperatures have previously produced equivalent
results (Doehlert et al., 1979; Peterson, 1983; Vines et al.,
1983; Laisk et al., 1984). The alteration of post-irradiance
metabolism at high temperatures could be greater under nat-
ural irradiance patterns of short, high frequency flecks
where post-irradiance carbon gain is a larger fraction of
photosynthetic carbon gain (Pearcy, 1990).

Meanwhile, there was no significant change in the rate of
photosynthetic induction gain, measured as Time90%A (Fig.
3D). This result is consistentwith increased photorespiration
causing the high temperature inhibition of photosynthesis,
but not with Rubisco activase deactivation playing a role in
the effect. Faster photosynthetic induction loss during shade
periods between flecks was also implicated in reducing LUE
at 38 8C. This was indicated by a large reduction, at 38 8C, in
the induction state remaining 10 min after a transition from
light to dark (Fig. 3E). This was, at least partially, caused by
accelerated stomatal closure at 38 8C. However, increased
deactivation of enzymes responsible for RuBP regeneration
or Rubisco may also have occurred in the shade at higher
temperatures (Sassenrath-Cole and Pearcy, 1992; Ernstsen
et al., 1997). In natural irradiance regimes, where many
shade periods may be of this duration (<10 min; Pearcy
et al., 1994; Leakey, 2002), this could significantly decrease
photosynthetic carbon gain during subsequent flecks.

Clearly, leaves of S. leprosula experience high tempera-
tures, notably in conjunction with periods of high PPFD
thought to drive photosynthetic carbon gain. In addition,
dynamic photosynthesis is more sensitive to inhibition by
super-optimal temperatures than steady-state photosynthe-
sis. Thus, perhaps the current dogma that sunfleck activity is
directly associated with greater carbon gain is misleading.
Further experiments are needed to determine whether the
transient increases in leaf temperature observed in the field
have the same inhibitory effects. Nonetheless, high tempera-
tures may play an important role in constraining the po-
tential benefits of long sunflecks, or even short sunflecks at
high frequency. This experiment was designed to avoid
severe photoinhibition due to interactions between high tem-
perature, low VPD, and excess PPFD during sunflecks. Yet,
in the field, these three conditions are unavoidably simul-
taneous. They interact to cause photoinhibition and photo-
damage under uniform irradiance treatments (Kitao et al.,
2000). Therefore, dynamic photosynthesis might also be
inhibited to such an extent that excess excitation energy
from light harvesting could exceed the capacity for energy
dissipation and photoprotection, causing photodamage. It
appears that high temperature inhibition of photosynthesis
during sunflecks could have significant effects upon seed-
ling carbon balance and, therefore, probably also on growth
and survival (Chazdon, 1988; Fetcher et al., 1994; Press
et al., 1996). High temperatures can also inhibit photosyn-
thesis under dynamic irradiance regimes in the canopy
(Roden and Pearcy, 1993; Singsaas and Sharkey, 1998).
A number of species rapidly release isoprene from their
leaves in response to short-term increases in leaf tempera-
ture (Sharkey and Yeh, 2001). Emission of isoprene confers
resistance to heat stress under these conditions (Sharkey
and Yeh, 2001). The evolution of this stress tolerance
mechanism, which causes significant loss of carbon from
the leaf, suggests that dynamic heat stress may be of con-
siderable adaptive significance.

Field measurements are required to determine the fre-
quency and extent to which the potential of sunflecks to fa-
cilitate carbon gain is met. This will be difficult because the
standard procedure of using gas exchange to measure car-
bon gain is constrained by the use of leaf chambers, which
buffer any external changes in temperature and VPD. This
may explain why the effects of temperature during sun-
flecks have not been addressed further, and also suggests
that some previous measurements of daily carbon gain may
have been overestimates. Further studies are also needed to
consider the effects of (i) potential acclimation to dynamic
temperatures during sunflecks, and (ii) the variation in
temperature responses between different patterns of sun-
flecks, before realistic predictions of field responses can be
made from experimental data. This will be particularly
important as global climate change increases maximum
temperatures and the number of hot days (Houghton et al.,
2001).

Fig. 2. Carbon gain of youngest fully expanded leaf of S. leprosula
seedlings during 40 min irradiance treatment of (A) sequence of
simulated sunflecks and (B) saturating uniform irradiance, at 28 8C and
38 8C. Carbon gain under uniform irradiance was calculated by
integrating instantaneous photosynthetic rates, at 28 8C and 38 8C on
temperature response curves, over the treatment period. Values are means
(6SE), n=5. Bars not sharing a common letter differ significantly (t-test,
P <0.05). (Modified from Leakey et al., 2003b.)
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Interaction of dynamic photosynthesis with
independent environmental factors

The interaction between photosynthesis and the environ-
ment is one of the central themes of plant ecophysiological
research. Many studies have investigated the relationships
between photosynthesis and atmospheric, edaphic or biotic
variables, along with their implications for ecological
processes, crop productivity, feedbacks to climate, and pro-
cesses of natural selection (Larcher, 1995; Baker and Bowyer,
1994; Press et al., 1999). However, the great majority of
this large body of work has considered photosynthesis as
a process operating under steady-state conditions of uni-
form irradiance. In stark contrast, photosynthesis is driven
by highly dynamic irradiance regimes in many vegetation
types, from forests to herbaceous crop canopies (Chazdon,
1988; Tang et al., 1988; Pearcy et al., 1990, 1994). If the
impacts of environmental variables on photosynthesis un-
der sunflecks differ significantly from those under uniform
irradiance, then it indicates a potentially important source
of error in the present interpretation of plant–environment
interactions under field conditions for either dipterocarp
seedlings, or other species growing under dynamic irradi-
ance regimes.

Global climate change is likely to lead to elevated
atmospheric [CO2] and ozone concentrations, higher max-
imum temperatures, and more hot days over land areas, as
well as an increased frequency of drought events (Houghton
et al., 2001; US National Research Council, 2002). The
responses of forests will be strongly influenced by the effect
of elevated [CO2] upon dynamic photosynthesis because
the light environment is highly heterogeneous (Pearcy,
1987; Chazdon, 1988). Thus, the photosynthesis and growth
of S. leprosula seedlings were assessed over 216 d under
controlled environment conditions of ambient (376 lmol
mol�1) or elevated [CO2] (710 lmol mol�1). Seedlings
were supplied with either uniform or flecked irradiance.
Total daily PPFD in each treatment was equal (7.7 mol m�2

d�1), and typical of an understorey site with a patchy
canopy (ADB Leakey, unpublished data). In the continuous
light treatment the PPFD at plant height was ;170 lmol
m�2 s�1. The dynamic irradiance treatment of repeated
clusters of flecks separated by continuous low background
PPFD was a simplified simulation of field conditions
(Pearcy, 1987; Chazdon, 1988; ADB Leakey, unpublished
data). During each photoperiod, plants received six clusters
of flecks. Each cluster consisted of 12, 3 min flecks of

Fig. 3. (A) Light utilization efficiency (LUE) (B) post-irradiance (P-I)
CO2 fixation, (C) post-irradiance (P-I) CO2 burst, and (D) time for 90%
completion of photosynthetic induction (Time90%A), of S. leprosula
during a simulated sequence of sunflecks, at 28 8C or 38 8C. (E) Induction
state after 10 min shade (IS%) as a percentage of values at saturating
irradiance of S. leprosula, at 28 8C or 38 8C. Values are means (6SE),
n=5. Bars not sharing a common letter differ significantly (t-test,
P <0.05). (Modified from Leakey, 2002; Leakey et al., 2003b)
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;525 lmol m�2 s�1, separated by 1 min shade periods of
;30 lmol m�2 s�1. Between successive clusters there was
a 78 min shade period of ;30 lmol m�2 s�1, which
allowed photosynthetic induction to relax fully before the
next fleck cluster.

The relative stimulation of biomass accumulation (Fig.
4A) and photosynthetic carbon gain (Fig. 4B) in S. leprosula
by elevated [CO2] concentrations was significantly greater
under sunflecks, compared with uniform irradiance. Greater
photosynthetic carbon gain from flecked irradiance resulted
from the same improvement in photosynthetic capacity
under saturating and shade PPFD as in the uniform irradi-
ance treatment, but the effect was amplified by enhanced
LUE. Greater LUE at elevated [CO2] was the combined
result of faster photosynthetic induction gain, slower pho-
tosynthetic induction loss (after 5 min shade), greater post-
irradianceCO2 fixation, and lower post-irradianceCO2 burst
(Figs 5, 6).

The accelerated photosynthetic induction at elevated
[CO2] was probably facilitated by a reduced requirement for
stomatal opening in order for intercellular [CO2] to reach

the operating point for saturating irradiance. Lower stoma-
tal conductance and faster photosynthetic induction at ele-
vated [CO2] have also been observed in a C4 grass (Knapp
et al., 1994). By contrast, stomatal effects did not appear to
be involved in the slower loss of photosynthetic induction
state at elevated [CO2] after a light-to-shade transition.
Instead, it might result from slower deactivation in the
shade of the enzymes responsible for RuBP regeneration or
Rubisco (Sassenrath-Cole and Pearcy, 1992; Ernstsen
et al., 1997; Naumburg and Ellsworth, 2000).

Photosynthesis was greater at elevated [CO2], the cause
of which has been established as greater CO2 saturation of
Rubisco and reduced photorespiration (Stitt, 1991). Post-
irradiance metabolism is associated with metabolism of
intermediates in the photosynthetic and photorespiratory
pathways, respectively (Sharkey et al., 1986; Rawsthorne
and Hylton, 1991). The increased post-irradiance CO2

fixation (+14%) and reduced post-irradiance CO2 burst
(�88%) in seedlings growing at elevated [CO2], therefore,
followed predictions on the response of photosynthetic and
photorespiratory flux to elevated [CO2], as it did in the
earlier experiment at high temperature. Short-term treat-
ments of high [CO2] or low O2 have also generated such
effects previously (Doehlert et al., 1979; Peterson, 1983;
Vines et al., 1983; Laisk et al., 1984).

The stimulation of LUE at elevated [CO2] appears to be
primarily attributable to reduced stomatal conductance and
photorespiration. These are direct responses to elevated
[CO2] which are not subject to acclimation over time (Long
et al., 2004). Consequently, the enhancement of LUE, and
increased sensitivity of carbon gain to elevated [CO2] under
sunflecks, may be found across a range of natural dynamic
irradiance regimes, species, and environmental conditions.
Patterns of short, high frequency flecks, where post-irradi-
ance metabolism contributes a greater proportion of net
carbon gain, are common in understorey environments
(Pearcy, 1990). An increase in post-irradiance carbon gain
at elevated [CO2] would therefore be expected. In addition,
shade periods of 5 min duration are also frequent in natural
irradiance regimes (Pearcy, 1994; Leakey et al., 2003a).
The rate of photosynthetic induction loss across this period
was lower at elevated [CO2]. This would further stimulate
photosynthetic carbon gain during subsequent flecks at
elevated [CO2].

There is also evidence for enhancement of photosyn-
thetic carbon gain during sunflecks by elevated [CO2] (550
lmol mol�1) in temperate forest tree seedlings, due to
greater light-saturated rates of photosynthesis and maxi-
mum electron transport capacity (DeLucia and Thomas,
2000) and slower photosynthetic induction loss (Naumburg
and Ellsworth, 2000). A modelling exercise parameterized
using the measurements of Naumburg and Ellsworth (2000)
indicated that the greater relative enhancement of carbon
gain at elevated [CO2] (550 lmol mol�1) under dynamic
irradiance, compared with uniform irradiance, was greatest

Fig. 4. (A) Calculated rates of daily photosynthetic carbon gain, and (B)
total plant biomass after 216 d growth at either ambient or elevated CO2

with uniform or flecked irradiance, of S. leprosula. Values are means
(6SE), n=6. Bars not sharing a common letter differ significantly (Tukey
multiple comparison test P <0.05). (Modified from Leakey et al., 2002.)
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Fig. 5. Representative time-courses of net photosynthetic rates (A, B), stomatal conductance (gS) (C), and photosynthetic induction state (D) of S.
leprosula grown and measured in ambient (closed circles) and elevated (open triangles) [CO2], during a simulated sequence of sunflecks. Flecks are of 3
min duration (white bands) separated by 1 min shade periods (dark bands). Arrows indicate time for induction to 50% or 90% of parameter maximum.
(Redrawn from Leakey et al., 2002.)

Fig. 6. (A) Time for 90% completion of photosynthetic induction (Time90%A), (B) time for 90% completion of stomatal opening (Time90%gs), (C) post-
irradiance CO2 fixation, (D) post-irradiance CO2 burst, and (E) light utilization efficiency (LUE) of S. leprosula, measured and grown at either ambient or
elevated [CO2], in response to a sequence of sunflecks simulating the growth irradiance regime. (F) Induction state after 5 min shade (IS%) as
a percentage of values at saturating irradiance of S. leprosula measured and grown at either ambient or elevated [CO2]. Values are means (6SE), n=6.
Bars not sharing a common letter differ significantly (t-test, P <0.05). (Modified from Leakey et al., 2002.)
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at sites receiving low total irradiance (<3% of above-canopy
PPFD; Naumburg et al., 2001). The interaction effect was
not significant at sites receiving higher total irradiance (10–
20% of above-canopy PPFD), where the limitations to
photosynthesis imposed by stomatal conductance and
photosynthetic induction were lower.

Greater stimulation of carbon gain by elevated CO2

under flecked irradiance obviously has important implica-
tions for predicting global climate change effects on forests.
Elevated [CO2] may allow greater seedling growth and sur-
vivorship in the understorey in the future. It may have an
impact already, since [CO2] at seedling height above the
forest floor can be significantly elevated in the morning hours
by residual CO2 from night-time respiration, particularly in
closed forest sites with little air movement (Buchmann
et al., 1997; Holtum and Winter, 2001; Leakey, 2002).

The direct effects of elevated [CO2] and high temperature
on steady-state photosynthesis are mediated by alteration of
the CO2 saturation and reaction kinetics of the Rubisco
enzyme (Fig. 7),with consequences for carbongain andplant
growth across all plant growth forms and biomes (Berry and
Björkman, 1980; Long et al., 2004). In rare experiments, the
true ecological significance of these abiotic factors has also
been quantified as impacts upon plant survival and fitness
(for example, fecundity; LaDeau and Clark, 2001). The

experiments synthesized here have indicated greater sensi-
tivity of photosynthesis to elevated [CO2] and high tempera-
ture under dynamic irradiance compared with uniform
irradiance. This results from the greater complexity of the
mechanisms limiting carbon gain (Fig. 7). Compounding
modification of steady-state photosynthetic capacity (Asteady),
are changes in LUE. This adjusts via alterations in: (i)
photosynthetic induction gain; (ii) net post-irradiance car-
bon gain; and (iii) retention of induction state in the shade.
These initial experiments suggest that elevated [CO2] im-
pacts all of these components, while high temperatures
reduce only net post-irradiance carbon gain and retention of
induction state in the shade. The interaction between
elevated [CO2] and increasing temperature is very important
in the context of climate change. As temperature rises the
relative stimulation of photosynthesis by elevated [CO2]
increases (Long, 1991). Given the overlap in the mechan-
isms by which elevated [CO2] and high temperature affect
dynamic photosynthesis (Fig. 7), this interaction may be
even more important under dynamic irradiance regimes.

While elevated [CO2] and high temperature effects on
photosynthesis have been demonstrated to alter plant sur-
vival and fitness, correlations between the commonly
measured and modelled parameters of light-saturated pho-
tosynthesis, productivity and yield are weak (Gifford and

Fig. 7. A simplified diagram comparing the mechanisms by which elevated [CO2] (black) and high temperature (grey) impact photosynthesis under
steady-state or dynamic irradiance regimes. Arrows indicate positive effects, barred lines indicate negative effects. Dashed lines indicate mechanism is
hypothesized. Asteady=Steady-state photosynthetic capacity.
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Evans, 1981). Predictions of the responses of net [CO2]
exchange and productivity to environmental conditions will
probably be improved by considering photosynthesis as
a dynamic process and accounting for the greater sensitivity
to elevated [CO2] and temperature that this entails. To do so
will require significant advances in themodelling of dynamic
photosynthesis.Semi-mechanisticmodelsofdynamicphoto-
synthesis (Gross et al., 1991; Pearcy et al., 1997; Kirsch-
baum et al., 1998) have been applied to evaluating the
carbon gain of middle- and understorey leaves under well-
quantified sunfleck regimes (Tang et al., 1988; Pearcy et al.,
1990; Baldocchi and Collineau, 1994; Vierling and Wess-
man, 2000). However, these models do not make any rep-
resentation of post-irradiancemetabolism. In addition, a lack
of knowledge has prevented any mechanistic simulation of
stomatal conductance or induction state. However, the
recent publication of new stomatal (Buckley et al., 2003)
and photosynthetic models (Zhu, 2004), with an increasing
emphasis on mechanism and the capability to reproduce
dynamic responses, is cause for optimism. Models provide
the only realistic method by which the impact of abiotic
factors on dynamic photosynthesis may be tested across the
huge range of total PPFD and sunfleck patterns which are
found in plant canopies. The use of reverse-ray tracing al-
gorithms to simulate the light environment of leaves at
different positions and orientations in a canopy will be
particularly useful in this respect (Zhu et al., 2004).
The significantly greater impact of elevated [CO2] and

high temperatures on carbon gain during sunflecks, com-
paredwithuniformirradiance,makessunflecksmorephysio-
logically and ecologically significant than previously
recognized. It is also possible that dynamic photosynthesis,
and therefore carbon gain under field conditions, may be
more sensitive to other stresses such as elevated ozone and
drought, than previously accounted for. In addition, as
dynamic gas exchange is considered more broadly, efforts
are needed to evolve from the current carbon-centric per-
spective and expand upon the studies which report the
physiological and ecological significance of sunflecks to
plant water relations (Woodward, 1981; Knapp and Smith,
1987; Barradas et al., 1994).

Sunflecks are a heterogeneous resource
affecting seedling photosynthesis and growth

The growth and survival of tree seedlings in tropical rain
forests are primarily limited by their ability to maintain a
positive carbonbalance.This is determinedby ratesof photo-
synthesis under the light-limited conditions and carbon loss
resulting from respiration, herbivory, pathogens, and phys-
ical damage (Chazdon, 1988; Fetcher et al., 1994; Kitajima,
1996; Press et al., 1996). Sunflecks contribute 10–90% of
the total daily PPFD received by understorey plants, with
this fraction being highly spatially variable, even on a small
scale (Pearcy, 1983; Chazdon, 1986). The activity of sun-

flecks is also highly variable within the diurnal period
(Evans, 1956; Ashton, 1958; Chazdon, 1988) and over days
or weeks, depending on canopy structure and weather
conditions (Chazdon, 1988).

Evidence for sunflecks having an ecologically significant
role in determining seedling growth is based on: (i) field
data of correlations between sunfleck activity (the fraction
of total daily PPFD incident as sunflecks or the total min of
sunflecks per day) and daily carbon gain or relative growth
rates (Pearcy, 1983; Oberbauer et al., 1988; Pfitsch and
Pearcy, 1989; Washitani and Tang, 1991); (ii) controlled
environment studies in which tropical species, growing
under equal total daily PPFD, displayed significantly dif-
ferent growth rates under different sunfleck patterns or sun-
flecks versus uniform irradiance (Sims and Pearcy, 1993;
Watling et al., 1997a); and (iii) photosynthetic responses to
controlled sequences of lightflecks differing in duration,
intensity, and frequency suggest that carbon gain would be
affected significantly by variation in sunfleck patterns of the
magnitude observed (Pearcy et al., 1994). However, the
evidence from correlations between sunfleck activity and
seedling carbon gain or growth rates could be misleading
because sunfleck activity was also correlated with total
daily PPFD, which could account for the variation in growth
rates observed (Chazdon, 1988). Meanwhile, the data from
controlled environment studies demonstrate the mechan-
isms by which sunflecks may influence seedling growth,
but are highly simplified simulations of field conditions.
Validation of the findings is required from experiments
conducted on seedlings in the forest understorey.

Within the understorey of the primary, lowland diptero-
carp forest at Danum Valley (Sabah, East Malaysia) there
was significant heterogeneity in sunfleck activity and pat-
terns of sunflecks across a range of temporal and spatial
scales (Leakey, 2002) For instance, analysis of irradiance
regimes at 16 understorey sites, not differing significantly
in the mean total daily PPFD received, indicated significant
variation in: (i) the fraction of total daily PPFD incident as
sunflecks; (ii) the duration of sunflecks, and, (iii) the mean
PPFD of sunflecks. Therefore, dipterocarp seedlings ex-
isted under conditions with the potential for patterns of
sunflecks to affect seedling growth rates.

To test this issue, the photosynthetic and growth perform-
ance of two species of dipterocarp seedlings were assessed
under two dynamic irradiance regimes, characterized by
either long sunflecks (LF) or short sunflecks (SF) (Leakey
et al., 2003a). There was no significant difference in the
mean total daily PPFD received by the seedlings in the two
treatments (;3.3 mol m�2 d�1). Sunflecks were defined as
periods of direct PPFD separated by diffuse PPFD. Under
LF, sunflecks contributed 45% of total daily PPFD and
were received over 11.7% of the photoperiod. By contrast,
under SF, sunflecks contributed a significantly greater frac-
tion of total daily PPFD (61%), but over a smaller fraction
of the day (6.1%). The pattern of sunflecks under LF and SF
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differed in duration and intensity. In the SF treatment, more
than 50% of sunflecks were 10 min or less in duration and
all were less than 60 min long (Fig. 8A). In the LF treat-
ment, only 25% had durations shorter than 10 min, while
37% were longer than 60 min. Also, the range of mean
PPFD of sunflecks in the LF treatment (maximum
PPFD=750 lmol m�2 s�1) was considerably smaller com-
pared with the SF treatment (maximum PPFD=1700 lmol
m�2 s�1) (Fig. 8B).

Both species are climax-canopy species, but Shorea
leprosula is relatively fast-growing and light-demanding
while Hopea nervosa is slower growing and very shade-
tolerant (Burgess, 1966; Zipperlen and Press, 1996). Rela-
tive growth rates of S. leprosula and H. nervosa were both
4-fold greater in response to long sunflecks compared with
short sunflecks (Fig. 9). The magnitude of the treatment
effect on growth was significantly greater than that ob-
served for different patterns of sunflecks, or sunflecks versus
uniform irradiance, under controlled environment condi-
tions (Sims and Pearcy, 1993; Watling et al., 1997a) and
comparable to the differences in growth at sites varying in
total daily PPFD between 2.2–7.7 mol m�2 d�1 (Zipperlen
and Press, 1996). Seedling RGR was strongly, positively
associated with growth rate per unit leaf area and Amax,
suggesting that greater seedling growth under LF was
primarily associated with changes in photosynthetic physi-

ology rather than allometry (see data in Leakey et al., 2003a).
This has also been observed in other shade-tolerant, tropical
forest species in response to variation in total PPFD (Popma
and Bongers, 1988; Osunkoya and Ash, 1991) or patterns of
sunflecks (Sims and Pearcy, 1993; Watling et al., 1997a).

Greater carbon gain under the long fleck regime was
associated with a significantly, greater Amax compared with
under short flecks. Phenotypic plasticity can enhance acqui-
sition of resources under heterogeneous conditions (Rob-
inson, 1994; de Kroon and Hutchings, 1995), but other
studies have observed plasticity at the leaf scale only in
response to variation in total PPFD and not the pattern in
which it is incident upon plants (Nobel, 1976; Chabot et al.,
1979; Nobel and Hartsock, 1981; Sims and Pearcy, 1993;
Watling et al., 1997a; Leakey et al., 2002). The impact of
patterns of dynamic irradiance observed under field con-
ditions may have been due to the longer period of experi-
mental treatments than in the controlled environment studies
cited, or the combination of environmental signals arising
from differences in patterns of sunflecks in the forest. Yin
and Johnson (2000) demonstrated the ability of higher plants
to sense and respond specifically to different patterns of
dynamic irradiance during the process of acclimation to total
PPFD. Heterogeneity in patterns of sunflecks has greater
physiological significance and potential to affect carbon gain
if it can elicit changes in photosynthetic capacity in addition
to the well-recognized effects on lightfleck utilization
efficiency (Pearcy et al., 1994).

Across the full range of light availability found within
tropical rain forests, seedling RGR and Amax are both pri-
marily determined by total daily PPFD (Chazdon, 1988;
Fetcher et al., 1994). However, across the narrow range of
total daily PPFD at sites in this study, there was only a very
weak relationship between seedling RGR and total daily

Fig. 9. Relative growth rate (RGR; total stem and branch length basis) of
H. nervosa and S. leprosula seedlings under long fleck (filled bars) or
short fleck (open bars) irradiance treatments. Values are means (6SE),
n=3. Bars not sharing a common letter differ significantly (Tukey
multiple comparison test P <0.05). (Redrawn from Leakey et al., 2003a.)

Fig. 8. Frequency histograms of (A) the fraction of total sunfleck PPFD
contributed by sunflecks of different durations, and (B) the fraction of
total sunfleck PPFD contributed by sunflecks of different mean PPFD,
incident upon seedlings under short fleck (filled bars) or long fleck (open
bars) irradiance treatments. Values are means (6SE), n=3. (Modified
from Leakey et al., 2003a.)
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PPFD (Fig. 10A) and variation in Amax was not significantly
correlated with total daily PPFD in either S. leprosula or H.
nervosa (Fig. 10B). By contrast, mean fleck duration was
significantly, positively correlated with both RGR and Amax

in H. nervosa and S. leprosula (Fig. 10C, D). This provides
a mechanism to explain some of the large variation in seed-
ling growth rates between sites in the forest understorey
receiving equal total daily PPFD (Zipperlen and Press,
1996; Nicotra et al., 1999; Montgomery and Chazdon,
2002). Variation in seedling growth in the understorey deter-
mines seedling size upon canopy gap creation, which is
ecologically important because it is the primary determinant
of seedling growth and survival in gaps in dipterocarp
forest (Brown and Whitmore, 1992; Whitmore and Brown,
1996). Variation in carbon gain and growth of seedlings
implies that survival is also likely to be affected by different
patterns of dynamic irradiance. Seedlings can also achieve
competitive success if they persist longer than competitors
before canopy gap creation occurs. In both these cases, the
pattern of sunflecks received by seedlings growing in the
understorey could, therefore, play an important part in deter-
mining which individuals successfully out-compete neigh-
bours and develop to maturity in the canopy.

Potential for, and implication of, species-specific
effects

Specialization of species to specific environmental condi-
tions in the regeneration phase is the basis of the niche

differentiation theory for the maintenance of high species
diversity in tropical rain forests (Watt, 1947; Grubb, 1977;
Denslow, 1987; Brokaw and Busing, 2000). Along with
recruitment limitation, density-dependent processes, spatial
variation in the impacts of natural enemies (Janzen–Connell
factors) and stochastic factors, niche differentiation governs
community ecological processes (Hubbell, 2001; Wright,
2002). Variation in rates of photosynthesis between species
specialized to different total daily PPFD, may contribute to
niche differentiation between shade-tolerant and light-de-
manding guilds (Barker et al. 1997). However, variation in
total daily PPFD alone (or gap size) is not considered to be
sufficient to allow for niche differentiation between sym-
patric, shade-tolerant species, thus preventing competitive
exclusion (Brown and Whitmore, 1992; Kennedy and
Swaine, 1992; Whitmore and Brown, 1996, Barker et al.,
1997). However, dipterocarp species vary in their responses
to total daily PPFD, excess irradiance, nutrient availability
and herbivore predation (Zipperlen and Press, 1996, 1997;
Scholes et al., 1997; Bungard et al., 2000, 2002; Liston,
2000). Given that differences between species in their re-
sponses to single variables are not sufficient to prevent com-
petitive exclusion of sympatric species, partitioning along
a combination of interacting gradients of abiotic and biotic
variables is a possibility. For instance, variation between
Shorea johorensis and Dryobalanops lanceolata in the
ability to respond to nutrient availability differs between
light environments (Bungard et al., 2002). This may alter
photosynthesis to favour S. johorensis under high sunfleck
activity and nitrogen availability, but favour D. lanceolata

Fig. 10. Scatterplots of (A) relative growth rate (RGR; total stem and branch length basis) in relation to total daily PPFD, (B) light-saturated
photosynthesis (Amax) in relation to total daily PPFD, and (C) relative growth rate (RGR; total stem and branch length basis) in relation to mean fleck
duration, (D) light-saturated photosynthesis (Amax) in relation to mean fleck duration, in H. nervosa (closed symbols) and S. leprosula (open symbols)
under long fleck (triangles) and short fleck (squares) irradiance treatments. Regression relationships are indicated for H. nervosa (solid line) and
S. leprosula (dashed line). (Redrawn from Leakey et al., 2003a.)
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under low sunfleck activity and nitrogen availability. These
notions are consistent with Hutchinsons’s consideration of
a niche as a hypervolume, in which axes of environmental
conditions are utilized differentially by co-existing species
(for discussion see Leibold, 1995; Bazzaz, 1996). Seedling
growth has been demonstrated to respond in a species-
specific manner to fine-scale variation in irradiance in the
forest understorey, with species changing the rank order of
their growth rates as light availability increased (Mont-
gomery and Chazdon, 2002). It has been hypothesized that
the sensitivity of seedling growth to heterogeneity in
patterns of dynamic irradiance and low-light availability
aremechanisms bywhich late-successional species perform-
ance under shaded conditions might be differentiated
(Grace, 1991; Skillman et al., 1999; Bungard et al., 2002).
Due to the intense interspecific competition that occurs at
the seedling life stage and the importance of attaining
height in the understorey, in order to maximize competitive
advantage upon gap opening, changes in seedling growth
rates may potentially play a role in determining forest
composition (Lieberman et al., 1995; Whitmore and Brown,
1996; Hubbell et al., 1999; Schnitzer and Carson, 2001).

It is possible that species-specific photosynthetic re-
sponses to environmental conditions (including temperature
and elevated [CO2]) could modify growth rates and change
the outcome of interspecific interactions at the seedling
lifestage (Whitmore, 1998). This likelihood increases given
the greater sensitivity of carbon gain to changes in temper-
ature and [CO2] concentrations under sunflecks than under
uniform irradiance, such as are imposed in the majority of
experimental studies. Given the importance of photosyn-
thetic carbon gain to the growth of dipterocarp seedlings and
the potential consequences for forest regeneration, ecosys-
tem structure and function, the effect of changes in the
environment on photosynthesis during sunflecks could have
significant consequences. These include some of the areas of
greatest uncertainty about global climate change, particu-
larly secondary and tertiary effects upon forest ecosystem
productivity, water use, feedbacks and feedforwards to
biogeochemical cycling and biodiversity (Eamus and Jarvis,
1989; Ceulemans and Mousseau, 1994; Field et al., 1995;
Johnson andBall, 1996;Drake et al., 1997; Saxe et al., 1998;
Whitmore, 1998; Norby et al., 1999).
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