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Predictions of population growth outpacing agricul-
tural production have been made for the past 200 years
(Malthus, 1817; Ehrlich, 1968), and though world food
supply has more than kept pace with demand, there are
over 850 million malnourished people in the world, the
vast majority in developing countries (FAO, 2006). In
the next approximately 40 years, global demand for
cereal production will increase by 60% (Rosegrant and
Cline, 2003) as the global population rises from 6.6
billion today to 8.7 to 11.3 billion in 2050 (Bengtsson
et al., 2006). Feeding the growing world population will
be a significant challenge to agriculture. Simulta-
neously, global climate change will provide an addi-
tional challenge by significantly modifying the crop
production environment. What are the additional chal-
lenges and opportunities that climate change will pres-
ent for biotechnological improvement of crop yield and
food supply?

Global climate change will alter many elements of
the future crop production environment. Atmospheric
carbon dioxide concentration ([CO2]), average temper-
ature, and tropospheric ozone concentration ([O3]) will
be higher, droughts will be more frequent and severe,
more intense precipitation events will lead to in-
creased flooding, some soils will degrade, and climatic
extremes will be more likely to occur (IPCC, 2007).
Drought, extreme temperatures, flooding, and soil
quality have challenged agriculture since its inception.
Therefore, there is a long history of investment in basic
science and crop breeding to produce germplasm that
sustains high yield under stressful conditions, and the
opportunity for biotechnology to contribute to improved
crop stress tolerance has been widely recognized. Ad-
vances in the understanding of crop-environment in-
teractions at the molecular, biochemical, physiological,
and agronomic scales, as well as their relevance to

biotechnological crop improvement, have been exten-
sively reviewed. These include discussions of the re-
sponse mechanisms and potential targets for improving
crop response to drought (Wang et al., 2003; Chaves and
Oliveira, 2004; Parry et al., 2005; Barnabás et al., 2008),
flooding (Agarwal and Grover, 2006), low temperature
(Wang et al., 2003; Nakashima and Yamaguchi-Shinozaki,
2006), high temperature (Iba, 2002; Wahid et al., 2007;
Barnabás et al., 2008), and low nutrient availability
(Hirel et al., 2007). It follows that a number of companies,
including Monsanto, Syngenta, and Pioneer-DuPont,
have drought-tolerant, heat-tolerant, cold-tolerant, or
nitrogen (N)-use efficient germplasm in their research
and development pipelines (http://www.monsanto.
com/pdf/investors/2008/01-08-08.pdf; http://www.
syngenta.com/en/about_syngenta/crop_protection_
pipeline.aspx; http://www.pioneer.com/CMRoot/
Pioneer/research/pipeline/DuPont_BG_Pipeline.pdf).
However, two other major elements of global climate
change, rising atmospheric [CO2] and [O3], have been
widely recognized as important to crop production
only in the last 30 to 40 years. Even with this recog-
nition, there has so far been little effort to improve crop
responses to these factors through breeding or bio-
technology. Here we briefly outline the nature of
global climate change and then discuss potential bio-
technological targets for improving crop production in
a future high-[CO2] and high-[O3] world. We conclude
by reviewing some practical challenges to developing
and testing biotechnology crops that are targeted to a
changing production environment.

CLIMATE CHANGE: A 50-YEAR VIEW FROM THE
PLANT PERSPECTIVE

In the last 250 years, atmospheric [CO2] has risen
from 280 mmol mol21 to 381 mmol mol21. This exceeds
the [CO2] at any time in the last 650,000 years and
probably the last 23 million years (IPCC, 2007). Atmo-
spheric [CO2] is projected to continue rising to at least
550 mmol mol21 by 2050 (IPCC, 2007). Rising concen-
trations of CO2 and other greenhouse gases have
resulted in a 0.76�C increase in global surface temper-
ature since the 1800s, and the mean global surface
temperature is predicted to increase by an additional
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1.3�C to 1.8�C by 2050 (IPCC, 2007). Warming over
land is expected to be greater than this average, and it
is very likely that heat waves will be more intense,
more frequent, and longer lasting. Daily minimum
temperatures are predicted to rise more rapidly than
daily maximum temperatures. The number of frost
days will decrease, and in mid- to high latitudes, an
extension of the growing season is likely (IPCC, 2007).

Warming will generally increase evaporation, total
precipitation, and the spatial variability of precipita-
tion, leading to less rainfall in the tropics and more
rainfall at higher latitudes. However, the spatial and
temporal boundaries between areas of projected in-
creasing and decreasing precipitation are uncertain.
Globally, the intensity of precipitation events is pro-
jected to increase, even in areas with a mean reduction
in precipitation, and the time between precipitation
events is also projected to increase, thereby increasing
both the risk of flooding and drought (IPCC, 2007).

Unlike [CO2], tropospheric [O3] is spatially and tem-
porally heterogeneous because O3 is short lived and its
synthesis is tied to the abundance of its pollutant
precursors, and water vapor and sunlight. In industri-
alized countries of the northern hemisphere, daily 8-h
tropospheric [O3] is estimated to have increased from
approximately 10 nmol mol21 prior to the industrial
revolution to a current level of approximately 60 nmol
mol21 during summer months, and is predicted to
increase 20% more by 2050 (IPCC, 2007). This is partic-
ularly relevant to agriculture because sensitive crops
show a reduction in yield once the [O3] exceeds 40 nmol
mol21 for extended periods (Heagle, 1989).

The changes in temperature, precipitation, and tro-
pospheric [O3] projected for 2050 are spatially and
temporally variable, poorly constrained, and occurring
in parallel. This moving and poorly defined target pres-
ents a significant challenge to a biotechnology industry
hoping to provide cultivars tailored to regional pro-
duction environments. In contrast, the increase in [CO2]
is uniform, global, and unfortunately, committed. Even
in the unlikely event that we stabilize CO2 emissions at
present-day levels, atmospheric [CO2] would still be
.500 mmol mol21 by 2050 (IPCC, 2007). Therefore,
attempts to engineer crops to perform better under the
conditions of increasing environmental stress associ-
ated with increased O3 exposure, temperature, and
changing precipitation patterns should be considered
against the back drop of a guaranteed and ubiquitous
increase in atmospheric [CO2].

ENGINEERING CROPS FOR A HIGH-CO2 WORLD

Elevated [CO2] directly reduces stomatal conduc-
tance in C3 and C4 species, and also directly stimulates
photosynthesis in C3 species (Drake et al., 1997; Long
et al., 2004; Ainsworth and Rogers, 2007). All other
effects of elevated [CO2] on crops, including the stim-
ulation in yield, are derived from these primary re-
sponses (Ainsworth and Rogers, 2007). How can we

engineer crops to maximize the advantages of rising
[CO2]? As Rubisco is the key carboxylating enzyme and
frequently the rate-limiting factor for photosynthesis
(Rogers and Humphries, 2000), it is worth asking: Can
crop responsiveness to elevated [CO2] be improved by
altering the properties of Rubisco, and are current
efforts to improve Rubisco relevant to the production
environment of 2050? In C3 crops, increasing the affinity
of Rubisco for CO2, and thereby avoiding photorespira-
tory carbon (C) losses, is a target for increasing yield
potential (Reynolds and Borlaug, 2006; Ainsworth and
Rogers, 2007), but the conserved inverse relationship
between specificity and catalytic rate has hindered
progress (Bainbridge et al., 1995). The kinetic properties
of current C3 Rubisco suggest that the affinity/spec-
ificity is optimal for a [CO2] of 200 mmol mol21, consis-
tent with a Rubisco that evolved under such conditions.
By 2050, the optimal Rubisco would actually need to
have a lower, not higher affinity for CO2, and a higher
catalytic rate (Zhu et al., 2004). Substituting current
Rubisco for Rubisco from other species, particularly
nongreen algae, which has a markedly lower specificity
and higher catalytic rate, could dramatically increase C
gain at current and elevated [CO2]. Further gains could
be maximized by engineering plants to express differ-
ent types of Rubisco in sunlit and shade leaves (Zhu
et al., 2004). This is not without precedent because
Hydrogenovibrio marinus, an anaerobic microorganism,
switches among its three forms of Rubisco depending
on environmental cues (Yoshizawa et al., 2004). Thus,
improving the catalytic properties of Rubisco will re-
main a viable target for the biotechnology industry.
Although the focus of the research may need to shift
away from improving specificity for CO2 in crops
grown in temperate environments, those grown in
high-temperature conditions in tropical environments
would still benefit from improved specificity because
as temperature rises, the ratio of carboxylation to oxy-
genation is reduced (Long, 1991).

As [CO2] rises, photosynthesis in C3 crops shifts from
being limited by Rubisco to being limited by the ca-
pacity for regeneration of the CO2 acceptor, ribulose-
1,5-bisphosphate (RuBP; Ainsworth and Rogers, 2007).
An alternative to reducing excess Rubisco content at
elevated [CO2] is to increase the capacity for regener-
ation of RuBP and thereby match the increased car-
boxylation rates. Recent modeling analysis suggests
that manipulating the partitioning of N resources
among enzymes of C metabolism could greatly in-
crease photosynthesis without any increase in the total
N requirement (Zhu et al., 2007). Greater capacity for
the regenerative phase of the Calvin cycle was identi-
fied as a key target to improve C acquisition. There is
already some evidence that crops increase RuBP
regeneration capacity at elevated [CO2]. The level of
Fru-1,6-bisphosphatase was increased in a forage crop
(Lolium perenne) grown at elevated [CO2] with a high N
supply (Rogers et al., 1998) and in tobacco (Nicotiana
tabacum), Rubisco activity decreased and other Calvin
cycle enzymes increased at elevated [CO2] (Geiger et al.,
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1999). In addition, antisense technology coupled with
flux analysis has shown that sedoheptulose-1,7-bisphos-
phatase exerts considerable control over photosynthesis,
and plants overexpressing sedoheptulose-1,7-bisphos-
phatase had a marked increase in photosynthesis and
growth (Raines, 2003; Lefebvre et al., 2005).

Accumulation of foliar carbohydrates is one of the
most pronounced and universally observed responses
of C3 plants to elevated [CO2], even in field-grown
plants where rooting volume is unrestricted (Long
et al., 2004). Knowledge of the relationship between C
status and growth is advancing (Raines and Paul, 2006;
Smith and Stitt, 2007), but a clear picture of how
carbohydrates are sensed by the plant and how they
regulate the flux of C through different pathways,
impacting growth and partitioning, remains a major
challenge to developing crops that will respond max-
imally to rising [CO2]. Large and sustained increases in
Suc, starch, or fructan content that persist over a
number of days are usually indicative of replete sinks
(Rogers and Ainsworth, 2006). This has two important
implications. First, crops could be manipulated to use
the additionally available C to increase growth, seed
yield, or stress tolerance (see below). Second, because
foliar carbohydrates are known to have negative feed-
back on photosynthetic capacity (for review, see Long
et al., 2004), ensuring adequate sink strength in crops
will be an essential part of maximally exploiting rising
[CO2]. Evidence from a Free Air Concentration En-
richment (FACE) experiment supports this view. There
was no reduction in maximum Rubisco activity at
elevated [CO2] in an indeterminate soybean (Glycine
max) cultivar, but in an otherwise identical isoline that
had a single gene mutation resulting in a determinate
growth habit and lower sink strength, carbohydrates
accumulated and photosynthetic capacity was signif-
icantly reduced (Ainsworth et al., 2004). This illus-
trates that the capacity for utilization of photosynthate
is critical to a crop’s ability to sustain increased C
acquisition at elevated [CO2]. Further, a recent review
concluded that at current [CO2], yields of maize (Zea
mays), wheat (Triticum aestivum), and soybean were
limited more by sink capacity than photosynthetic
capacity (Borras et al., 2004). In contrast, results from
elevated [CO2] research clearly show that increased
photosynthesis does stimulate yield at elevated [CO2]
(Kimball et al., 2002; Ainsworth and Long, 2005; Long
et al., 2006), suggesting that increases in yield can also
be source driven. However, it is likely that increases in
photosynthesis will need to be balanced by commen-
surate increases in sink capacity if maximum yield
potential is to be realized.

What are the components of yield that might be
limiting the response of crops to elevated [CO2]?
Yields of soybean and rice (Oryza sativa) grown under
elevated [CO2] in FACE experiments were 15% and
13% higher than yields of crops grown at ambient
[CO2], despite significant declines in harvest index
(HI; seed yield/total aboveground biological yield;
Kim et al., 2003; Morgan et al., 2005). Genetic improve-

ments over the past century in grain yield in a number
of crops, including soybean, wheat, and rice, have
been closely associated with improvements in HI
(Gifford et al., 1984); however, it has been argued
that the scope for further increasing yield through
increasing HI is limited (Austin, 1999). Still, at least
maintaining current levels of HI at elevated [CO2]
would improve productivity. Regardless of improve-
ments to HI, a second way to increase yield is to
increase total biomass at maturity. More aboveground
biomass per area has been the major factor in yield
improvements at elevated [CO2] in FACE experiments.
In rice, elevated [CO2] decreased the productive tiller
ratio (Kim et al., 2003) and reduced the percentage of
fertile spikelets (Yang et al., 2006). However, because
the tiller number (and panicle number) per area was
significantly higher at elevated [CO2], yields were
increased despite the negative effects on productive
tiller ratio and spikelet fertility (Kim et al., 2003; Yang
et al., 2006). Elevated [CO2] also has little effect on
individual grain or seed mass (Morgan et al., 2005;
Yang et al., 2006), which may not be surprising be-
cause individual grain weight has not substantially
changed with genetic improvement in wheat, maize,
or soybean over much of the last century (Morrison
et al., 2000; Fischer, 2007). Therefore, efforts to target
grain or seed mass may not be fruitful, but there
appears to be the opportunity to improve biomass
production, the number of reproductive sinks, and
therefore yield.

In their research and development pipelines, the
major biotechnology companies (Monsanto, Syngenta,
and Pioneer-DuPont) all have investments aimed at
improving N use efficiency. Although growth at ele-
vated [CO2] improves N use efficiency (Drake et al.,
1997), improved nutrition is essential to maximally
exploit rising [CO2]. The greater efficiency of carbox-
ylation at elevated [CO2] makes it theoretically possi-
ble for C3 crops in 2050 to reduce their Rubisco content
by approximately 25% and maintain the same photo-
synthetic rate as they have today (Drake et al., 1997).
Consistent with this theory, C3 crops grown at 567
mmol mol21 [CO2] in FACE studies reduced their
maximum Rubisco activity by approximately 20%
(Ainsworth and Rogers, 2007). This reduction in Ru-
bisco activity is most likely due to a reduction in
Rubisco content (Long et al., 2004). Crops with the C3
pathway invest up to 25% of their leaf N in Rubisco to
compensate for its poor catalytic rate (Long et al.,
2004). The large investment in Rubisco, coupled with a
potential 25% reduction in Rubisco content, could
release approximately 6% of leaf N at elevated [CO2].
However, there is only benefit in reducing the amount
of N in Rubisco when the resources can be usefully
deployed elsewhere, either within the leaf, or to sup-
port sink development in the plant (Parry et al., 2003).
When this 6% theoretical savings in N is compared to
the predicted 10% to 40% increase in C acquisition
(Long et al., 2004), the N acquisition gap at elevated
[CO2] is readily apparent. Despite increased yields in
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C3 crops at elevated [CO2], a recent meta-analysis of
the protein concentration in food crops shows that the
N acquisition gap at elevated [CO2] manifests itself as
a 10% to 15% reduction in grain protein content, even
in field-grown crops (Taub et al., 2008). This is notable
because the major biotechnology companies are at-
tempting to increase protein content in grain crops and
will have to work against the effects of rising [CO2] to
achieve this goal (Stafford, 2007). Legumes might be
expected to avoid the N acquisition gap at elevated
[CO2] because they can trade their excess C for N with
their bacterial symbionts. Evidence from soybean sup-
ports this hypothesis because grain protein content
showed only a 1.4% decrease at elevated [CO2] (Taub
et al., 2008) and soybean grown at elevated [CO2]
using FACE technology avoided N limitation (Rogers
et al., 2006). Introducing the capacity for N fixation
into nonleguminous plants to improve nutrition and
reduce demand for fertilizer has always been desir-
able, but closing the N acquisition gap at elevated
[CO2] and maximizing increases in yield will make
this goal even more attractive in 2050.

These targets for biotechnological improvement of
crop responses to elevated [CO2] should be selected
with consideration for the projected increase in tem-
perature, drought stress, and [O3] that will accompany
rising [CO2]. Because C supply is increased at elevated
[CO2], it may be possible to partition a greater fraction
of photosynthate into C-rich metabolites associated
with stress resistance. For instance, pinitol, mannitol,
and raffinose are examples of osmolytes that support
maintenance of turgor under drought and high tem-
peratures, whereas antioxidants such as ascorbate
have been implicated in tolerance of crops to drought,
heat, salt, and oxidative stresses (Streeter et al., 2001;
Bartels and Sunkar, 2005; Busch et al., 2005). Larger
pool sizes of these metabolites could extend the ben-
efits of growth at elevated [CO2] in germplasm mar-
ketable to farmers in poor growing areas, not just
prime agricultural zones.

Greater productivity of C4 crops at elevated [CO2]
has been reported from some chamber studies (for
review, see Ghannoum et al., 2000). However, evidence
from FACE studies suggests that stimulated photo-
synthesis at elevated [CO2] is an indirect effect of re-
duced stomatal conductance and water use, leading to
amelioration of drought stress (Ottman et al., 2001;
Wall et al., 2001; Leakey et al., 2004, 2006). There have
not been FACE studies on C4 crops in nutrient poor
soils, but it appears that the benefits of elevated [CO2]
to crops such as maize, millet (Panicum miliaceum), and
sorghum (Sorghum bicolor) will not be universally
observed, but instead limited to times and places of
drought. In addition, because elevated [CO2] is only
ameliorating stress in C4 species and not directly
stimulating productivity, there is no gain in yield
potential that can be realized by pursuing the targets
listed above for C3 plants. Thus, climate change pres-
ents a challenge to C4 crop improvement, rather than
an opportunity.

ENGINEERING CROPS FOR A HIGH-O3 WORLD

The variability of [O3] over time and space, as well as
the dose-specific nature of plant responses to [O3] have
made it difficult to estimate the average agronomic
impacts of elevated [O3] or to develop a cohesive syn-
thesis of the mechanisms of response. Nevertheless a
number of studies estimate present-day crop losses to
O3 damage in the range of $1 to $3 billion in the U.S.
(Murphy et al., 1999) and $2 billion in China (Mauzerall
and Wang, 2001). There is wide qualitative agreement
that elevated [O3] in the future will further reduce crop
yields as a result of oxidative stress in foliar and repro-
ductive tissues (Black et al., 2000; Fiscus et al., 2005).

Recent reviews of the effects of elevated [O3] on
plants have identified distinct mechanisms of response
to chronic and acute O3 exposure (Long and Naidu,
2002; Fiscus et al., 2005; Kangasjärvi et al., 2005). Expo-
sures to daily peak [O3] of ,120 nmol mol21 for days,
weeks, or months are typically considered to be
chronic, whereas exposures to daily peak [O3] of .120
to 150 nmol mol21 for as little as a few hours are
considered acute (Long and Naidu, 2002; Fiscus et al.,
2005). Distinguishing between chronic and acute re-
sponses has helped fair comparison of experiments
imposing shock treatments versus those simulating
current or future field conditions. However, the thresh-
old concentrations characterizing acute versus chronic
experiments are arbitrary and the distinction between
plant responses is subjective. With monitoring stations
in locations such as China reporting hourly maximum
[O3] .200 nmol mol21 and average annual concentra-
tions of 74 nmol mol21 (Wang et al., 2007), plants in the
field will likely experience both acute and chronic O3
conditions simultaneously. This situation is more likely
to occur in the future and determining the threshold
[O3] required for induction of various molecular, bio-
chemical, and physiological responses will be increas-
ingly important.

The process of conventional breeding, integrating the
results of thousands of plots across years and environ-
ments, would be expected to enable exploitation of
some of the potential benefits of elevated [CO2], be it
with a significant time lag. In contrast, the variability in
[O3] will not lead to the consistent selection pressure
that is needed to make breeding advances. To date,
discussions of improving tolerance to elevated [O3]
have focused on three general strategies: (1) controlling
O3 entry into the leaf, (2) improving detoxification
within cells, and (3) altering the signal transduction
pathway. Stomata regulate the flux of O3 into leaves,
and the protective value of stomatal closure in response
to O3 has long been recognized (Hill and Littlefield,
1969). Therefore, reducing stomatal conductance is an
obvious biotechnological strategy to increase O3 toler-
ance (Lin et al., 2001). However, the fundamental trade-
off of lower stomatal conductance leading to lower
photosynthesis must be recognized, and the balance
between reducing stress versus reducing productivity
evaluated. Elevated [CO2] will reduce stomatal con-
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ductance and O3 uptake in the future, while increasing
rather than decreasing photosynthesis. This will reduce
the negative impacts of elevated [O3] (Booker and
Fiscus, 2005). In many growing regions experiencing
moderate increases in [O3], the gain from targeting
reduced stomatal conductance to ameliorate stress would
likely be small, as the decrease in productivity would
outweigh any reduction of O3-induced stress. The
wheat genotypes released in China between 1945 and
today provide an example of net gain in yield, despite
increased sensitivity to elevated [O3]. Breeding for
higher C uptake, shorter stalks, and improved HI has
improved the yield potential from approximately 1,000
kg ha21 to approximately 8,000 kg ha21, despite greater
O3 uptake from greater stomatal conductance (Biswas
et al., 2008). Although there is not always a simple
relationship between stomatal conductance and O3 tol-
erance, targeting stomatal conductance as a means to
improve crop production under elevated [O3] seems
unlikely to be an effective strategy for maintaining pro-
ductivity, other than in regions with the highest [O3].
Nonetheless, it should be noted that the relative con-
centrations of CO2 necessary to protect crops from O3
damage are very poorly defined, and variable for
species and genotypes. Furthermore, any direct effect
of elevated [O3] on reproductive structures will prob-
ably not be mitigated by elevated [CO2], and loss of
reproductive sinks may constrain the response to ele-
vated [CO2] (McKee et al., 1997; Ashmore, 2005). In
addition, elevated [CO2] did not prevent acceleration of
senescence that is characteristic of O3 fumigation at
ambient [CO2] (Fiscus et al., 2005). Without further
experimentation, it is not possible to precisely predict
where and when the stress of elevated [O3] will be
matched or exceeded by the benefits of elevated [CO2].

A second strategy for improving crop tolerance to O3
has focused on improving detoxification of O3-induced
reactive oxygen species (ROS; Fiscus et al., 2005). Ozone
passes through the stomata, and is rapidly degraded in
the apoplast forming various ROS. The ROS burst
following O3 exposure is similar to the oxidative burst
associated with the hypersensitive response, which
leads to programmed cell death (Overmyer et al., 2003).
Ascorbate is one of the major antioxidants thought to
govern O3 tolerance in plants, and total ascorbate con-
tent has been correlated with O3 tolerance in a wide
range of species (for review, see Conklin and Barth,
2004). Localization of ascorbate or other antioxidants to
the apoplastic space, where interception and detoxifi-
cation occurs, appears to be important in protection
from O3 damage, as is recycling of ascorbate back to
the reduced ‘‘anti-oxidant’’ state (Burkey et al., 2003;
Conklin and Barth, 2004). However, not all studies have
demonstrated that O3 tolerance correlates with ascor-
bate content (e.g. D’Haese et al., 2005), and apoplastic
ascorborate concentrations in some plants may be too
low to play a significant role in detoxification. Still,
increasing the apoplastic antioxidant capacity of crops
may be a fruitful target for limiting O3-induced ROS
damage.

Components of the O3 sensing and signaling path-
ways seem to be good potential targets for biotechno-
logical manipulation to improve crop productivity. For
instance, ethylene-insensitive mutants of Arabidopsis
(Arabidopsis thaliana) and birch (Betula spp.) are more
tolerant to O3 than wild-type control genotypes (Vahala
et al., 2003, Kangasjärvi et al., 2005). However, it is
important to note that the signaling pathway associated
with acute O3 damage has considerable overlap with
the signaling pathway that limits pathogen spread
(Overmyer et al., 2003). In addition, interactions among
ROS, jasmonic acid, salicylic acid, and ethylene are
involved in the cell death cycle (Kangasjärvi et al.,
2005), as well as regulation of normal leaf senescence
(Lim et al., 2007). Therefore, successful improvement of
crop tolerance to O3 by altering sensing, signaling, or
regulatory pathways will depend on identifying targets
for modification that do not disrupt other vital pro-
cesses (Conklin and Barth, 2004).

CHALLENGES TO IMPROVING PRODUCTION
UNDER GLOBAL CLIMATE CHANGE

Although some aspects of global change like rising
[CO2] will be uniform around the globe, others such as
rising tropospheric [O3] and altered precipitation will
vary regionally. To meet the demands of a growing
population, the next era of biotechnology and future
crop breeding strategies will be challenged with iden-
tifying genotypes that can maximally exploit rising
[CO2] for yield enhancement and have improved stress
tolerance traits (Reynolds and Borlaug, 2006). Global
climate change will add at least three new dimensions
to this challenge: (1) the production environment will
be more variable and more stressful, (2) climatic vari-
ation will be greater between years and locations of
field trials, and (3) the environment for which crops are
being designed will be a rapidly moving target. Suc-
cessfully understanding the genotype x environment
interactions and closing the phenotype gap, i.e. under-
standing the function of crop genes in their production
environment (Miflin, 2000), will be a major hurdle in
the race to release lines capable of improved yield in
the rapidly changing climate. This emphasizes the ne-
cessity of field screening for CO2-responsive and O3-
tolerant germplasm in the production environment,
and recognizing that crops entering research and de-
velopment pipelines today will emerge in 10 to 20 years
into a different climate. Over the last decade, transgenic
crop technology has been adopted faster than any other
technology in the history of agriculture (Chassy, 2007).
The approximately 250 million acres of biotechnology-
engineered maize (Zea mays), canola (Brassica napus),
cotton (Gossypium hirsutum), soybeans, papaya (Carica
papaya), sugar beets (Beta vulgaris), sweet corn (Zea mays
var. rugosa), and squash (Cucurbita pepo) have increased
global farmer profits by approximately $27 billion, re-
duced pesticide application by approximately 224 mil-
lion kg, reduced the environmental impact of pesticide
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use by approximately 14%, and reduced greenhouse
gas emissions by approximately 960 million kg of CO2
(Brookes and Barfoot, 2006). These improvements have
come from engineering single genes into crops; how-
ever, crop responses to elevated [CO2] and [O3] are
complex traits and will be much more difficult to con-
trol and engineer. Nonetheless, germplasm with greater
abiotic stress resistance is making progress through
research and development pipelines. Knowledge of
crop responses to elevated [CO2] and elevated [O3]
could match that of drought, flooding, temperature,
and nutrient stress with greater investment in research,
and here we have identified a number of potential
targets for biotechnological improvement in a high-
[CO2] and high-[O3] world.
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