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Abstract. We investigate magnetic reconnection due to the evolution of magnetic flux
tubes in the solar chromosphere. We developed a new numerical two-fluid magnetohy-
drodynamic (MHD) code which will perform a 2.5D simulation of the dynamics from the
upper convection zone up to the transition region. Our code is based on the Total Varia-
tion Diminishing Lax-Friedrichs scheme and makes use of an alternating-direction implicit
method, in order to accommodate the two spatial dimensions. Since we apply a two-fluid
model for our simulations, the effects of ion-neutral collisions, ionization/recombination,
thermal/resistive diffusivity and collisional/resistive heating are included in the code.
As initial conditions for the code we use analytically constructed vertically open mag-
netic flux tubes within a realistic stratified atmosphere. Initial MHD tests have already
shown good agreement with known results of numerical MHD test problems like e.g. the
Orszag-Tang vortex test.
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1. Introduction

One possible source for magnetic reconnection is the dynamics of small
scale magnetic fields in the photosphere. In order to describe and explain
the motion of these magnetic fields and their effects in the chromosphere, we
implemented a two-fluid 2.5D MHD code, in which the two fluids are coupled
predominantly through ion-neutral collisions but also through ionization
and recombination effects. There already exist several MHD codes which are
able to simulate different phenomena within the chromosphere (Gudiksen et

al. 2011; Freytag et al. 2010) but are usually based on single-fluid models.
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What is innovative about our newly developed 2.5D simulation code is the
inclusion of the two-fluid model of Smith & Sakai (2008) in combination
with the use of analytically constructed vertically open magnetic flux tubes
(Gent et al. 2013) in order to observe magnetic reconnection within our
simulation of the chromospheric dynamics. The motivation for the use of
the two-fluid approach lies on the one hand in the results of Smith & Sakai
(2008), who already pointed out that comparisons of MHD and two-fluid
simulations show significant differences in the measured rates of magnetic
reconnection. On the other hand Zaqarashvili et al. (2011) could show that
for time-scales less than ion-neutral collision time the single-fluid approach
fails and the two-fluid description is the better approximation.

2. Simulation Model

The following set of equations describes the two-fluid model we use, the
subscripts p and n refer to the ion (proton) and neutral fluid. The mass
density, velocity, pressure and magnetic field are given by ρ, v, p and B.
First, we consider the set of equations for the neutral fluid:

∂ρn
∂t

+∇ · (ρnvn) = −S1 (1)

∂(ρnvn)

∂t
+∇ · (ρnvnvn) +∇ · pn = −S2 (2)

∂en
∂t

+∇ · [(en + pn) vn]− qn = −S3 (3)

where the neutral heat flux is given by qn = ∇2(λpn/ρn) , the neutral
energy density can be described as en = pn

γ−1 + ρn|vn|2

2 and the adiabatic
constant is γ = 5/3. In equations (1)-(3) the source terms S1, S2 and S3

characterize the effects of ionization/recombination, ion-neutral drag and
collision heating:
S1 = −ρp(αrρp − αiρn),
S2 = αcρpρn(vn − vp)− ρp(αrρpvp − αiρnvn),
S3 = αcρpρn(vn − vp)vp ,
where the coefficients αi, αr and αc denote the effects of ionization, recom-
bination and ion-neutral collisions.
Secondly, the equations for the ion fluid can be described as
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∂ρp
∂t

+∇ · (ρpvp) = S1 (4)

∂(ρpvp)

∂t
+∇ · (ρpvpvp)− J ×B +∇pp = S2 (5)

∂B

∂t
−∇× (vp ×B) = η∇2B (6)

∂ep
∂t

+∇ · [(ep + pp) vp]− qp = S3 (7)

where the ion heat flux is given by qp = ∇2(λpp/ρp) + µ0η | J |2 and
includes thermal conduction as well as Joule heating. The current density
is given by J = (∇ × B)/µ0 and η is the magnetic diffusivity. The heat
transfer constant is denoted by λ and µ0 is the vacuum permeability. The
ion energy density can be written as ep =

pp
γ−1 +

ρp|vp|2

2 + |B|2

2µ0
.

3. Initial Conditions

In order to implement the initial conditions we use the model of an ana-
lytically constructed vertically open magnetic fluxtube (Gent et al. 2013)
which represents one footpoint of a coronal loop. In Cartesian coordinates
the components of the magnetic field can be written as

Bx = −x

(

∂Bbz

∂z
+B0zG

∂B0z

∂z

)

, (8)

By = −y

(

∂Bbz

∂z
+B0zG

∂B0z

∂z

)

, (9)

Bz = B2
0zG+ 2Bbz , (10)

where

Bbz = b00 exp
(

− z

zb

)

, (11)

B0z = b01 exp
(

− z

z1

)

+ b02 exp
(

− z

z2

)

, (12)

G =
2l√
πf0

exp

[

−
(

f

f0

)2
]

. (13)
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Here B0z, G and f = rB0z represent the self-similar expanding axially
symmetric magnetic flux tube and r prescribes the radial distance to the
centre of the flux tube. Bbz denotes a vertically diminishing background
term and b01, b02, b00 are constants which control the strength of the ver-
tical component of the magnetic field. Here l is the scaling length whereas
f0 is used to scale the horizontal length. Moreover, z1 and z2 are used for
scaling the magnetic field strength and zb is included to scale the external
magnetic field.
This magnetic flux tube configuration in magnetohydrostatic equilibrium is
embedded within a realistic solar atmosphere which is based on the combi-
nation of the results of Vernazza, Avrett & Loeser (1975, Table 12, VALI-
IIC) and McWhirter, Thonemann & Wilson (1975, Table 3). Furthermore,
the equation of pressure is integrated analytically to find the pressure and
density correction required to preserve the magnetohydrostatic equilibrium.

4. Numerical Scheme

The general formulation of the MHD equations (1)-(7) can be written as

∂U

∂t
+

∂F (U)

∂x
+

∂G(U)

∂y
= S(U) (14)

where U denotes the vector of conserved variables, which are built of
the primitive variables mass density, pressure, velocity and magnetic field
given by ρi, pi, vi (i = n, p) and B. Moreover, F (U) and G(U) represent the
fluxes in x- and y-direction, whereas S(U) denotes the source term which
includes all the source terms of (1)-(7).
It can be shown (Toro 2009) that (14) can be solved by using the so called
alternating-direction implicit method (ADI), which means that one applies
one-dimensional methods in each coordinate direction. For solving the ho-
mogeneous one-dimensional equations we make use of the so called Total
Variation Diminishing Lax-Friedrichs (TVDLF; Tóth and Odstrčil 1996)
scheme which is based on the idea that the total variation of the analyt-
ical solution of a linear system of hyperbolic equations does not increase
in time. It is the simplest version of a TVD scheme and is built on the
first order Lax-Friedrichs scheme. Furthermore, our algorithm includes the
well known Hancock-predictor step which is based on the following idea:
Within our computational grid, first cell averages are used for predicting
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the values of the conserved quantities at cell edges at an auxiliary time
step. Subsequently, these predicted values are used to update the solution.
By applying this Hancock-scheme we achieve temporally second order accu-
racy. In order to get second order spatial accuracy, linear approximations of
U and the corresponding fluxes at the boundary interfaces are incorporated
in the algorithm. Due to numerical issues, the order of the one-dimensional
TVDLF-operators is changed in every time step.
There are several advantages of applying the TVDLF-method:

• no spurious oscillations are generated

• the method behaves well near discontinuities

• no Riemann-solvers are needed

• fully explicit method, which leads to benefits regarding the paralleliza-
tion process

To include the source term in our algorithm, we make use of a simple four-
stage Runge-Kutta method to solve the inhomogeneous ordinary differential
equation. For numerical reasons, the operator of the source term is splitted
up by calculating one half of a time step before and one half time step after
applying the two different TVDLF-operators .
In order to maintain the ∇ · B = 0 constraint, which has to be fulfilled in
every single time step of the algorithm, we apply a field-interpolated central
differencing scheme (Field-CD) for the induction equation (Tóth 2000).
The complete numerical scheme can therefore be described as follows:

1. ∂Un

∂t + ∂F (Un)
∂x = 0 =⇒ U

n+1 (TVDLF)

2. ∂U
n+1

∂t + ∂G(U
n+1

)
∂y = 0 =⇒ Ûn+1 (TVDLF)

3. d
dt Û

n+1 = S(Ûn+1) =⇒ Un+1 (Runge-Kutta)

4. ∇ ·B = 0 (Field-CD)

Two full time-steps can be formulated as

Un+2 = DM△t/2LxLyM△t/2DM△t/2LyLxM△t/2U
n (15)
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Figure 1: Thermal pressure of the MHD Orszag-Tang vortex system. The initial conditions
for the 192x192 grid with 0 < x, y < 2π lead to a system of supersonic MHD turbulence.
The algorithm stops at the time of t = 3.1 and the thermal pressure is plotted with 60
contour levels. The boundary conditions are periodic everywhere.

with
Lx ... 1D TVDLF-operator in x-direction,
Ly ... 1D TVDLF-operator in y-direction,
M ... Runge-Kutta-operator,
D ... Field-CD-operator.

5. Code Tests

In order to test our code, we implemented e.g. the well known Orszag-
Tang vortex test which was performed by Tóth and Odstrčil (1996). It is
a common test of numerical MHD codes in two spatial dimensions. The
initial conditions lead to a system of supersonic MHD turbulence (see Fig.
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1), which makes this problem an appropriate test of the algorithm’s ability
to handle the formation of such turbulence and MHD shocks.

6. Outlook

As a next step of research we will continue performing comprehensive code
tests especially concerning the code’s ability to handle magnetic reconnec-
tion. Subsequently we will apply our newly developed two-fluid 2.5D code to
the above described initial conditions and observe the time evolution of the
magnetic flux tubes as well as potential reconnection events within our com-
putational grid. Also the single-fluid approach will be applied to the initial
conditions and the subsequent output will be compared to the results of the
two-fluid approach. The code will be extended to three spatial dimensions
and we plan to augment the already existing parallelized versions of the
code to a hybrid-version, i.e. a combination of the MPI (Message Passing
Interface)-based and the OpenMP (OpenMultiProcessing)-based version of
the code, in order to reduce computing time.
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