
FPGA-Targeted High-Level Binding Algorithm for Power
and Area Reduction with Glitch-Estimation

∗

Scott Cromar, Jaeho Lee, Deming Chen
Department of Electrical and Computer Engineering

University of Illinois, Urbana-Champaign

ABSTRACT
Glitches (i.e. spurious signal transitions) are major sources
of dynamic power consumption in modern FPGAs. In this
paper, we present an FPGA-targeted, glitch-aware, high-
level binding algorithm for power and area reduction, accom-
plished via dynamic power estimation and multiplexer bal-
ancing. Our binding algorithm employs a glitch-aware dy-
namic power estimation technique derived from the FPGA
technology mapper in [6]. High-level binding results are
converted to VHDL, and synthesized with Altera’s Quar-
tus II software, targeting the Cyclone II FPGA architecture.
Power characteristics are evaluated with the Altera Power-
Play Power Analyzer. The binding results of our algorithm
are compared to LOPASS, a state-of-the-art low-power high-
level synthesis algorithm for FPGAs. Experimental results
show that our algorithm, on average, reduces toggle rate by
22% and area by 9%, resulting in a decrease in dynamic
power consumption of 19%. To the best of our knowledge
this is the first high-level binding algorithm targeting FP-
GAs that considers glitch power.

Categories and Subject Descriptors
B.6.3 [Hardware]: Design Aids—optimization

General Terms
Algorithms, Design, Measurement, Performance

Keywords
FPGA, high-level synthesis, glitch power, power reduction

1. INTRODUCTION
FPGAs hold significant promise as a fast-to-market re-

placement for ASICs in many applications. As the price
of single-purpose chip development skyrockets in each suc-
cessive technology iteration, the relative price of the FPGA
architecture becomes more and more attractive. This, cou-
pled with the many other advantages of FPGAs, such as
rapid prototyping and field reprogrammability, makes them
a more and more viable alternative in many current ASIC
applications. Unfortunately, the advantages of FPGAs are

∗This work is partially supported by NSF CCF 07-02501 and
a research grant from Altera. We used machines donated by
Intel. Jaeho Lee participated in the project when he was
an undergraduate student in ECE at University of Illinois.
Email contact: scromar2@illinois.edu or dchen@illinois.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-497-3/09/07 ...$5.00.

offset in many cases by high power consumption and large
area. In fact, it has been shown that FPGAs can be up to
40 times larger and consume up to 12 times more dynamic
power than the equivalent ASIC implementation [13].

In FPGAs there are two sources of power consumption:
static power and dynamic power. Static power is power
consumed when the circuit is either active or idle. Unless
power gating or other transistor-level techniques are built in
the chip, static power cannot be easily reduced. Dynamic
power, on the other hand, is power consumed when a signal
transition occurs at gate outputs, and, being a characteris-
tic of the design implemented on the FPGA, is more easily
mitigated. Signal transitions make up the switching activ-
ity (SA) of a circuit, and can be classified into two types:
functional transitions, and glitches. Functional transitions
are the signal transitions necessary to perform the required
logic function, while glitches are spurious transitions: un-
necessary signal transitions that occur due to unbalanced
path delays at the inputs of a gate.

Dynamic power consumption can be estimated as Pd =
0.5 × SA× C × V 2

dd × f , where SA is the switching activity
of the circuit, C is the effective capacitance, Vdd is the supply
voltage, and f is the operating frequency. Reducing any of
these factors will reduce the dynamic power of a circuit. In
Altera’s Stratix II FPGAs in the 90 nm process technology,
dynamic power is the dominant type of power consumed.
Further, glitches can account for up to 19% of the total
power consumed in FPGAs, and if considering only dynamic
power the percentage is even higher [16]. In this work, we
focus on reducing SA (through a glitch-aware SA estimator
and multiplexer balancing) and C (by indirectly reducing
multiplexer area), for power minimization.

High-level synthesis—the mapping of a behavioral de-
scription of a circuit to RTL—is a well studied topic con-
sisting of three steps: scheduling, allocation, and binding.
Scheduling determines when an operation will take place;
allocation determines how many of each resource is needed;
and binding assigns operations, or variables, to the resources.

Our FPGA-targeted, glitch-aware, high-level binding al-
gorithm for power and area reduction is unique in that it
can connect to the gate-level implementation and employ
a glitch-aware dynamic power estimation to guide the syn-
thesis process. The dynamic power estimation is accom-
plished using a low-power FPGA technology mapper [6],
which makes use of a switching activity estimation model
considering glitches and has been shown to be effective at
capturing glitch power. Reduction of switching activity, and
thus dynamic power, is futher targeted via the balancing of
multiplexers on the two input ports of a functional unit. The
Altera Cyclone II FPGA is used as a testbed FPGA architec-
ture in our experiments (due to its support of a large num-
ber of I/O pins that can accommodate large benchmarks),
and our binding results are verified using Altera’s gate-level

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4818803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

power estimator, Quartus II PowerPlay Analyzer. To the
best of our knowledge this is the first FPGA-targeted high-
level binding algorithm that considers glitch power.

The rest of this paper is organized as follows: In Section 2
we discuss related work. In Section 3 we present the problem
formulation. In Section 4 we describe the technique used for
switching activity estimation considering glitches. In Sec-
tion 5 we describe the binding algorithm, herein referred to
as HLPower, in detail. In Section 6 we present experimental
results. In Section 7 the paper is concluded.

2. RELATED WORK
Much effort has gone into evaluating and reducing dy-

namic power in FPGAs. Recent work has included im-
proved SA estimation tools and architectural changes to re-
duce glitches [15]. Additionally, binding for ASICs is a well-
studied topic. The work in [18] proved that the problem of
resource binding for multiplexer reduction is NP-complete.
Work in the area of low-power binding has included a bipar-
tite graph formulation for multiplexer reduction [11], low-
power register binding through a network-flow formulation
[1], simultaneous register and resource binding and schedul-
ing algorithms [9], generalized low-power binding formulated
as an ILP problem with heuristic speed-ups [10], and early
evaluation of DFGs for low-power binding [14], among many
others. Reference [10] provides a good overview of the pre-
vious work in low-power binding.

Despite this previous work, low-power high-level synthe-
sis and binding for FPGAs is a relatively new area of re-
search. In [20], the switching activity characteristics of the
functional units were pre-characterized and used during low-
power synthesis targeting FPGAs. In [5], a low-power, si-
multaneous resource allocation and binding algorithm for
FPGAs was presented, and included a high-level power es-
timator. In [3] and [4], the authors presented a simulated
annealing-based algorithm which carried out high-level syn-
thesis subtasks simultaneously, targeting FPGAs for low-
power, called LOPASS. Their binding algorithm initially
used minimum weight bipartite matching, and then was en-
hanced using a network flow approach presented in [2] that
binds all the resources simultaneously. We compare our own
algorithm to LOPASS and show that an iterative approach
enables greater power savings.

HLPower, the FPGA targeted, low-power binding algo-
rithm we present here, sets itself apart from previous work
in that it considers low-level glitches in its power estimation.
This allows HLPower to target a major contribution to dy-
namic power during high-level synthesis that has not been
considered before. We think the main reason this has been
missing is because of the difficulty of estimating glitches dur-
ing high-level synthesis. We present a unique way to address
this problem in this paper.

3. PROBLEM FORMATION
The input to our binding algorithm is a scheduled CDFG,

a resource constraint, and a resource library. The problem to
be solved involves the allocation and assignment of registers
to variables, and functional units to operations. Efficient
sharing of functional units by operations, and registers by
variables, in order to reduce power and area, are the chal-
lenges of binding. The binding problem can be formulated
as follows:

Given: A scheduled CDFG, a resource constraint, and a
resource library.

Tasks: Allocate and bind registers to variables, and allo-
cate and bind functional units to operations.

Objectives: Produce a valid binding solution while meet-
ing the resource constraint and optimizing the solution for
power and area on the targeted FPGA.

4. SWITCHING ACTIVITY ESTIMATION
As dynamic power estimation is a central driver of our

binding algorithm, the way this is accomplished is described
in this section. Dynamic power is estimated in the form of
a switching activity model based on probabilistic techniques
developed originally in [17], extended in [7], and further de-
veloped to target FPGA mapping and include glitches in
[6].

In [17] the ideas of transition density (also referred to as
toggle rate or switching activity) and signal probability are
initially developed. The transition density of a logic signal is
defined as the average number of transitions per unit time,
while the signal probability is defined as the fraction of the
time that the logic signal is in the 1 state (i.e. the average
value of the logic signal over all time). An efficient tech-
nique is presented that allows for the calculation of the total
circuit switching activity by means of propagation of tran-
sition densities and signal probabilities from input nodes to
output nodes. For a node y with independent fanin nodes
x1, x2, . . . , xn, and given the transition density (switching
activity) s(xi) of each fanin node xi, the transition density
of node y, s(y) can be computed using the Boolean difference
(∂y/∂x) of y with respect to xi:

s(y) =
n

X

i=1

P (
∂y

∂xi

)s(xi) (1)

where P (∂y/∂xi) is the signal probability of the Boolean
difference.

This technique was extended in [7] to take into account si-
multaneous switching, something that the technique in [17]
lacked. Let y be a Boolean expression, y(t) be its value at
time t, P (y) be the signal probability of y, and s(y) now be
the normalized switching activity of y. s(y) is the prob-
ability of y having different values at time t and t + T ,
where T is a unit time period, and is thus given by s(y) =

P (y(t)y(t + T)) + P (y(t)y(t + T)). Additionally, note that

P (y(t)y(t + T)) = P (y(t)y(t+T)). Thus, P (y(t)y(t + T)) =

P (y(t)y(t + T)) = 1/2 · s(y). Since P (y(t)) = P (y(t)y(t +

T)) + P (y(t)y(t + T)), we find

s(y) = 2(P (y(t))− P (y(t)y(t + T))) (2)

And, as noted in [6], the term P (y(t)y(t+T)) can be calcu-
lated from the probabilities and switching activities of fanin
nodes of y using the procedure in [7].

Finally, the technique for switching activity estimation
was applied to FPGA technology mapping in [6]. The algo-
rithm in [6] reads in a netlist, and uses a cut-enumeration
technique [8] to select K-input cuts that will be mapped to
the FPGA (K-input look-up tables). Primary inputs are as-
sumed to have signal probabilities and switching activities
of 0.5. For each node, the signal probability of all of the
K-input feasible cuts of that node are computed using the
weighted averaging algorithm from [12]. When calculating
the switching activities for each cut, the widely accepted
unit delay model is assumed for the FPGA look-up tables.
This means that signal transitions are assumed to happen

Algorithm 1 HLPower Binding Algorithm

1: Input: Scheduled CDFG, library, resource constraint
2: Output: Scheduled and bound CDFG
3: precalc SA values for all FU & MUX combinations
4: bind registers according to [11]
5: traverse CDFG, select nodes for set U
6: put remaining nodes in set V
7: while resource constraint is not met do
8: initialize bipartite graph G = (U, V, E)
9: for all edges in E do

10: calculate input MUX sizes (if nodes were combined)
11: look up SA value for particular FU & MUXs
12: calculate edge weight
13: end for
14: solve G for maximum weight
15: combine matched nodes & allocate functional units
16: end while

only at discrete time units: 1, 2, . . . , D(C), where D(C) is
the depth of the cut. The transition that takes place at
time D(C) is considered the functional transition, while the
transitions that occur at the other time steps are considered
glitches. Switching activities are then calculated and prop-
agated through the cut according to Equation (2). For a
given cut, the effective switching activity is a summation of
the switching activities at each time step. An example of
how this is accomplished can be found in [6].

The best cuts, those with the lowest switching activi-
ties, are then chosen for implementation of the node in the
FPGA. Summing up the switching activities, sai, for all
of the selected cuts, 1, 2, . . . n, provides the total estimated
switching activity, SA, for the netlist:

SA =
n

X

i=1

sai (3)

The total estimated switching activity, SA, is used in the
binding algorithm. This technique for switching activity es-
timation has the advantages over previous techniques of be-
ing mapping-aware and considering glitches.

5. BINDING ALGORITHM
The HLPower binding algorithm proceeds in two major

parts. First, registers are allocated and bound, and second,
functional units are allocated and bound. In this paper we
focus on the functional unit binding. The functional unit
binding proceeds in an iterative fashion until the resource
constraint is met, driven by the estimated dynamic power us-
age and multiplexer sizes of various operation-to-functional
unit bindings, as will be explained below. Algorithm 1 pro-
vides a summary of the HLPower binding algorithm.

5.1 Register Binding
Register binding is accomplished in a manner similar to

that described in [11], where variables are bound by solving
a weighted bipartite graph. An allocated set of registers is
determined by counting the number of variables present in
the control step with the largest number of variables with
overlapping lifetimes. This set of registers is allocated, and
a cluster of mutually unsharable variables (meaning the life-
times of these variables are overlapping) is bound at a time,
by way of a weighted bipartite graph, sorted in ascending
order according to their birth times. Operator ports are
randomly bound during this step.

4+

6+

8+

5×

7×

3 ×

2 +

1 +

U

V

8+

7×
3,5

2,6 + +

1,4

U

V

Iter 1

Iter 2

Final Binding

3,5,7

× ×
×

1,4,8

+ +

2,6

+ ++

+ +

× ×

Nodes:

+Operations: ×

Nodes:

+Operations: ×1 + 2 + 3 ×

6 + 7 × 8 +

4 + 5 ×

cstep1

cstep2

cstep3

CDFG Selected for U

Figure 1: An example of the functional unit binding.

5.2 Functional Unit Binding

5.2.1 Algorithm Overview
Functional unit binding iteratively constructs weighted bi-

partite graphs, finds a maximum matching, and combines
nodes that are matched. Before the first iteration of the
functional unit binding, the scheduled CDFG is traversed,
and for each operation type, the control step with the largest
number of operations of that type is found. This gives a
lower bound on the possible resource constraint. These oper-
ations are selected to make up one set of vertices (or nodes),
U , in the bipartite graph. The second set of vertices, V ,
includes all of the other nodes. See Figure 1.

During functional unit binding, the nodes of the graph
are each considered an allocated functional unit. Initially,
as none of the operations have been bound to functional
units, every operation is considered to be bound to its own
functional unit, and each is represented by an individual
node of the graph. On subsequent iterations, each node
(functional unit) of the graph may contain more than one
operation. Edges (making up the set E) are created between
compatible nodes in the graph. Two nodes are compatible
if they meet the following two criteria:

1. They perform the same type of operation, e.g. are
both multiplications.

2. They do not contain any operations that have overlap-
ping lifetimes in the schedule.

Each edge of the graph represents a possible binding of
two sets of operations to the same functional unit. Edge
weights are then assigned as described in the next section.
This formulation is similar to binding that works with a
compatibility graph, but not all nodes will be bound in a
single iteration.

Figure 1 illustrates the bipartite graph formulation. In
iteration one, add operations 1 and 2, and mult operation
3 are selected for set U , because they come from the con-
trol steps of maximum density for their respective types in
the scheduled CDFG. (Note that, alternatively, any of the
mult operations could have been chosen, or add operations 6
and 8 could have been chosen.) Solid edges represent those
selected in the maximum weighted matching. Nodes are
combined, and in iteration two nodes are further combined.

In iteration three there is no longer any compatibility be-
tween the nodes, and the algorithm is completed. The final
allocation is 2 adders and 1 multiplier.

Theorem 1. A weighted bipartite graph G = (U, V, E),
containing the single-cycle operations of a scheduled CDFG,
if iteratively generated and solved, combining matching nodes
in each iteration (as previously described), guarantees that
the minimum possible resource constraints can be met.

Proof. Suppose on the contrary that the minimum re-
source constraint cannot be met. This would mean that
there exists a node in the set V that is incompatible with
all nodes in the set U . Since this incompatibility could not
be due to compatibility criterion 1 given above—the non-
existence of a compatible operation type (if, for example,
there was only one operation of a particular type in a CDFG,
then it would already lie in set U)—it must be due to cri-
terion 2—operations that have overlapping lifetimes. That
would imply that there were more operations in the incom-
patible operation’s control step than were in the control step
chosen initially for set U . This could not be the case due to
the selection criteria for set U .

Theorem 1 guarantees that, for a library of single-cycle
resources, the minimum resource constraint for the given
scheduled CDFG can be met. Although no similar guarantee
can be made for multi-cycle resources, our experiments show
that the algorithm is nonetheless effective in achieving a
minimum resource allocation in most cases. The runtime
complexity of the algorithm is O(|N |2 ∗ (|E| + |N |log|N |)),
where |N | is the total number of nodes in the CDFG. This
is because the number of bipartite graphs solved is, in the
worst case, linear with the number of nodes in the CDFG.

5.2.2 Edge Weight Calculation
Edge weights for each graph edge are calculated as follows:

1. The sizes of the input multiplexers to the functional
unit to which the operations connected by the edge
would be bound (if the matching included the given
edge) are found. This is possible because the registers
have already been assigned, enabling the calculation
of the exact multiplexer sizes. This combination of
multiplexers and a functional unit make up a partial
datapath.

2. A gate-level netlist of the partial datapath is generated
in .blif format [19]. This is accomplished by creating
a new .blif file with proper input and output ports,
importing existing instantiations of the multiplexers
and functional units, and making the necessary con-
nections. See Figure 2.

3. The switching activity is estimated for the gate-level
netlist (.blif), based on the technique described in Sec-
tion 4. This produces an estimate of the dynamic
power, including glitch power, which will be used to
estimate part of the cost of this particular binding of
operations to functional unit.

4. The weight on the edge is computed as follows:

w(ei,j) = α×
1

SA
+(1−α)×

1

(muxDiff + 1) × β
(4)

where SA is the total estimated switching activity as
defined in Equation (3), α is a weighting coefficient, β
is a value used to adjust the size of the muxDiff fac-
tor relative to SA (based on emperical study β ≈ 30

Nodes:

+Operations: ×

Nodes:

+Operations: ×

If combined × × × ×
×

i j
ei,j

× ×

mult

mux2 mux3

reg1

...

.search mux2.blif

.search mux3.blif

.search mult.blif

.model mult_2_3 ...

.inputs A0 A1 A2 ...

.outputs S0 S1 ...

.subckt mux2 A=A0 ...
.
.
.

.

.

.

To .blif(2)

(1)

(3)

Figure 2: Gate-level partial data-path netlist gener-
ation. Based on the register binding, and operations
assigned to the edge nodes (1), it is determined that
a 2-input and a 3-input MUX are needed (2). The
.blif netlist is then generated (3).

for add operations, and 1000 for mult), and muxDiff
is defined as the absolute difference in the sizes of
the two multiplexers that input to the functional unit.
((muxDiff + 1) is used so the equation will be valid
if muxDiff = 0.)

Equation (4) uses the weighting coefficient α to balance
the contribution to the weight of two important factors for
the reduction of glitches and switching activity: the total
estimated switching activity, or SA, and the difference in
size between the two multiplexers, or muxDiff .

SA provides a low-level consideration of the circuit. It ex-
plicitly estimates dynamic power usage (including glitches)
at the gate-level, taking into account the multiplexers in the
partial datapath. It also implicitly considers area through
the number of look-up tables required to implement the par-
tial datapath, because a larger area correlates with a higher
SA. muxDiff , on the other hand, provides a high-level con-
sideration of the circuit. It explicitly considers multiplexer
balancing, which would have a direct impact on glitch re-
duction, even if the SA estimation is not 100% accurate.
This combination of high-level multiplexer balancing, and
low-level SA estimation, work together to select the best
matches for power and area reduction in each iteration of
the binding algorithm.

As dynamic calculation of the switching activities for each
edge during the binding iterations can be time consuming, in
our experiments we precalculate the switching activities for
all combinations of multiplexers and functional units. This
is done by generating the gate-level netlists for the partial
data-path of each combination of functional unit and mul-
tiplexers, and running the SA estimation on each. The cal-
culated SA values are then stored in a text file. A hash
table is then generated when HLPower is initially run by
reading in the precalculated values from the text file. This
allows fast look-up of the estimated SA value for a partic-
ular combination of input multiplexer sizes, and functional
unit. Experimental results show that this method provided
us with the same results as running the algorithm with dy-
namic SA estimation, but with a much shorter run time.

The iterative approach to functional unit binding allows
the multiplexer size to be better controlled than is possible
with single iteration approaches, such as with a network flow
algorithm. By iteratively building up the numbers of opera-
tions assigned to allocated functional units, the multiplexer
sizes, balance among multiplexers, and the contributions of

Table 1: Benchmark Profiles.
Bench- No. of No. of No. of No. of Total No.
marks PIs POs Adds Mults of Edges

chem 20 10 171 176 731
dir 8 8 84 64 314

honda 9 2 45 52 214
mcm 8 8 64 30 252
pr 8 8 26 16 134

steam 5 5 105 115 472
wang 8 8 26 22 134

Table 2: Resource Constraints, Scheduling Length,
and Number of Registers used for both LOPASS and
HLPower binding. Identical schedules and register
bindings were used by both LOPASS and HLPower.

Benchmarks Add Mult Cycle Reg HLPower
Runtime (s)

chem 9 7 39 70 812
dir 3 2 41 25 56

honda 4 4 18 13 14
mcm 4 2 27 54 16
pr 2 2 16 32 2

steam 7 6 28 39 189
wang 2 2 18 39 2

the multiplexers to dynamic power (including glitch power)
consumption can be carefully controlled and evaluated.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
Our experiments are carried out on a 2.8 GHz Intel Pen-

tium 4 Linux machine, with 2 GB of memory. A number of
data-intensive benchmarks are used. The benchmark CD-
FGs include several different DCT algorithms including pr,
wang, and dir, and several DSP programs including chem,
steam, mcm and honda. The benchmarks are profiled in
Table 1. Each node in the benchmarks is either an addi-
tion/subtraction or a multiplication.

We compare our binding algorithm, HLPower, to a state-
of-the-art low-power high-level synthesis algorithm for FP-
GAs, LOPASS [3] [4], which can perform scheduling, allo-
cation, and binding. We use a resource library containing
single-cycle resources, including a multiplier, an adder, a
register, and multiplexers. The benchmarks are first run
through LOPASS, and a binding solution is obtained. Then
they are run through HLPower with the same schedule,
register allocation, and resource constraints, to obtain the
HLPower binding solution. Table 2 summarizes the sched-
uled benchmark characteristics used for both the LOPASS
and the HLPower solutions.

The binding solutions, in CDFG format, are then con-
verted to RTL design in VHDL with a CDFG to VHDL
tool. To verify our results using a commercial tool, the de-
signs are put into Quartus II for RTL synthesis, placement
and routing, timing analysis, simulation, and power analysis.
This is done by first building a project on each benchmark’s
VHDL, setting the device family to Cyclone II, and selecting
the same device for each benchmark. We use the Quartus II
vector waveform file (.vwf) editor to generate 1000 random
input vectors for each benchmark. We also set the simulator
settings glitch filtering to never, max balancing dsp blocks to
0, wysiwyg remap to on, optimization technique to speed, and
synthesis effort to fast. These settings help to ensure that

Table 4: Mean and variance of muxDiff across all
allocated resources for the final binding solutions.

Bench- LOPASS HLPower HLPower
marks α = 1 α = 0.5

mean/var mean/var mean/var # muxes

chem 7.4/16.1 4.6/9.8 2.4/5.3 16
dir 5.4/12.2 4/11.2 4.2/3.8 5

honda 3.1/11.1 3.9/6.4 3/6.3 8
mcm 1/0.3 1.8/0.5 0.5/0.3 6
pr 0.8/0.2 0.3/0.2 0.8/0.2 4

steam 8.1/56.1 6.8/29.9 5.8/26.7 8
wang 1.3/0.7 0.8/0.2 1.8/0.7 4

average 3.9/13.8 3.2/8.3 2.6/6.2

the benchmarks for both LOPASS and HLPower are syn-
thesized in the same way without Quartus II optimizations
that would invalidate the power results produced by both al-
gorithms. The same .vwf file is used for both LOPASS and
HLPower. Then we run the command quartus sh –flow com-
pile (which runs the synthesis, placement and routing, and
timing analysis), quartus sim (which makes use of the .vwf
file, and generates a switching activity file, .saf), and quar-
tus pow (which makes use of the .saf file). The command
quartus pow runs PowerPlay Power Analyzer, and reports
the dynamic power consumption.

6.2 FPGA Area and Power Reduction Results
Table 3 summarizes the synthesis and power analysis re-

sults for both LOPASS and HLPower (with α = 0.5 from
Equation (4)), for each benchmark. There was an average
reduction in dynamic power of 19.3%, and area (in the form
of LUTs) of 9.1%. These reductions came at the expense
of 0.6% of the clock period, on average. For comparison,
an α = 1 yielded an average power reduction of 6.5%, clock
period increase of 3.5%, and an area reduction of 5.1%. (See
below for a further discussion of the choice of α.)

Table 3 columns 5, 6, 10, and 11 show the multiplexer
reduction results. In the table, Largest MUX is the largest
multiplexer needed to implement the binding solution, while
MUX length is a measure of the total number of multiplex-
ers implemented, and is calculated by adding up the total
number of multiplexer inputs (sizes).

HLPower reduced the largest multiplexer size by an aver-
age of 2.6, and the length an average of 7.2%, over LOPASS.
Additionally, Table 4 shows the change in the mean and
variance of muxDiff across all allocated resources for the
final binding solutions of LOPASS, HLPower with α = 1,
and HLPower with α = 0.5. The variation from α = 1 (no
muxDiff influence in the weighting equation) to α = 0.5
(equal weighting of SA and muxDiff) shows a clear reduc-
tion in both the mean and variance of muxDiff . (Note that
the same number of multiplexers were allocated in each of
the solutions.) This better balancing of multiplexers on the
resource inputs contributes to a power reduction by balanc-
ing paths and eliminating extra glitch transitions.

Evidence for the decrease in switching activity, and indi-
rectly glitches, is given in Figure 3. Average toggle rate is
defined as number of transitions per second, and is a num-
ber reported by Quartus II. HLPower with α = 1 reduces
the toggle rate for most benchmarks (averaging 8.4%), while
α = 0.5 produces reductions for all benchmarks, averaging
21.9%. Again we see that SA estimation alone (in Equa-
tion (4)) effectively helps reduce toggling, but the combina-

Table 3: Power, Clock Period, Number of LUTs, and Multiplexer Results for LOPASS and HLPower Bindings.
LOPASS/HLPower Change

Bench- Dynamic Clk Per. Largest MUX Dynamic Clk Per. LUTs Lrgst MUX
marks Power (mW) (ns) LUTs MUX Length Pow.(%) (%) (%) MUX Len.(%)

chem 1602.3/1468.6 26.0/27.5 9,806/9,613 26/23 672/637 -8.35 5.67 -1.97 -6 -5.2
dir 709.1/405.8 23.8/24.2 4,527/3,453 18/15 167/157 -42.78 2.04 -23.72 -3 -6.0

honda 658.7/534.1 23.5/23.2 3,352/3,057 15/13 165/162 -18.92 -1.40 -8.80 -2 -1.8
mcm 351.3/208.7 24.1/24.2 3,274/2,548 17/14 159/153 -40.60 0.38 -22.17 -3 -3.8
pr 232.7/192.9 20.9/21.7 1,714/1,732 11/8 70/57 -17.09 3.60 1.05 -3 -18.6

steam 729.6/690.6 24.4/23.6 5,121/4,469 19/22 429/321 -5.35 -3.32 -12.73 3 -25.2
wang 161.5/158.5 20.5/19.9 1,697/1,775 12/8 69/76 -1.85 -2.88 4.60 -4 10.1

Average -19.28 0.58 -9.11 -2.6 -7.2

0

100

200

300

400

wang pr dir honda mcm steam chem

A
v
er

ag
e

T
o
g
g
le

 R
at

e
(m

il
li
o
n
s

/
se

c)

LOPASS

HLPower, α = 1

HLPower, α = 0.5

α = 0.5 Average decrease: 21.9 %

Figure 3: Average Toggle Rate.

tion of SA and muxDiff is more effective. The combination
of area savings through multiplexer reduction, and reduced
glitching (as evidenced by the significant decrease in toggle
rate), produces an aggregate reduction in dynamic power,
for a negligible change in clock period.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a new high-level binding

algorithm for power and area reduction, targeting FPGAs.
The binding algorithm, HLPower, is based on weighted bi-
partite matching, and makes use of glitch power-aware, dy-
namic power estimation. HLPower successfully reduces the
switching activity and area of a design, producing savings in
dynamic power consumption. Future work will include inte-
grating HLPower into a complete high-level synthesis algo-
rithm that includes scheduling and module selection, while
providing better support for multi-cycle resources.

8. REFERENCES
[1] J.-M. Chang and M. Pedram. Register allocation and

binding for low power. DAC, 1995.

[2] D. Chen and J. Cong. Register binding and port
assignment for multiplexer optimization. ASP-DAC,
2004.

[3] D. Chen, J. Cong, and Y. Fan. Low-power high-level
synthesis for FPGA architectures. In ISLPED, 2003.

[4] D. Chen, J. Cong, Y. Fan, and L. Wan. LOPASS: A
low-power architectural synthesis system for FPGAs
with interconnect estimation and optimization. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, to be published.

[5] D. Chen, J. Cong, Y. Fan, and Z. Zhang. High-level
power estimation and low-power design space
exploration for FPGAs. In ASP-DAC, 2007.

[6] L. Cheng, D. Chen, and M. D. F. Wong. GlitchMap:
an FPGA technology mapper for low power
considering glitches. In DAC, 2007.

[7] T.-L. Chou and K. Roy. Estimation of activity for
static and domino CMOS circuits considering signal
correlations and simultaneous switching. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 15(10):1257–1265, Oct. 1996.

[8] J. Cong, C. Wu, and Y. Ding. Cut ranking and
pruning: enabling a general and efficient FPGA
mapping solution. In FPGA, 1999.

[9] A. Dasgupta and R. Karri. Simultaneous scheduling
and binding for power minimization during
microarchitecture synthesis. In ISLPED, 1995.

[10] A. Davoodi and A. Srivastava. Effective techniques for
the generalized low-power binding problem. ACM
Trans. Des. Autom. Electron. Syst., 11(1):52–69, 2006.

[11] C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu.
Data path allocation based on bipartite weighted
matching. DAC, 1990.

[12] B. Krishnamurthy and I. Tollis. Improved techniques
for estimating signal probabilities. IEEE Transactions
on Computers, 38(7):1041–1045, Jul. 1989.

[13] I. Kuon and J. Rose. Measuring the gap between
FPGAs and ASICs. In FPGA, 2006.

[14] E. Kursun, A. Srivastava, S. O. Memik, and
M. Sarrafzadeh. Early evaluation techniques for low
power binding. In ISLPED, 2002.

[15] J. Lamoureux, G. G. Lemieux, and S. J. E. Wilton.
GlitchLess: an active glitch minimization technique
for FPGAs. In FPGA, 2007.

[16] F. Li, Y. Lin, L. He, D. Chen, and J. Cong. Power
modeling and characteristics of field programmable
gate arrays. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,,
24(11):1712–1724, Nov. 2005.

[17] F. Najm. Transition density: a new measure of
activity in digital circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 12(2):310–323, Feb. 1993.

[18] B. Pangrle. On the complexity of connectivity binding.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 10(11):1460–1465,
Nov. 1991.

[19] E. Sentovich, et al. SIS: A system for sequential circuit
synthesis. Technical report, UCB/ERL Memorandum
M89/49, Department of EECS, University of
California, Berkeley, Nov. 1992.

[20] F. Wolff, M. Knieser, D. Weyer, and C. Papachristou.
High-level low power FPGA design methodology.
NAECON, 2000.

