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ABSTRACT

Given a point P in Euclidean space R
3 we look for all

points Q such that the length PQ of the line segments PQ
from P to Q equals the length of the central image of the
segment. It turns out that for any fixed point P the set of
all points Q is a quartic surface Φ. The quartic Φ carries
a one-parameter family of circles, has two conical nodes,
and intersects the image plane π along a proper line and
the three-fold ideal line p2 of π if we perform the projective
closure of the Euclidean three-space. In the following we
shall describe and analyze the surface Φ.
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Udaljenosti i centralna projekcija

SAŽETAK

Za danu točku P u euklidskom prostoru R
3 traže se sve

točke Q takve da je duljina PQ dužine PQ jednaka duljini
njezine centralne projekcije. Pokazuje se da je za čvrstu
točku P skup svih točaka Q kvartika Φ. Kvartika Φ sadrži
jednoparametarsku familiju kružnica, ima dvije dvostruke
točke, te siječe ravninu slike π po jednom pravom pravcu
i tri puta brojanom idealnom pravcu p2 ravnine π (proma-
tra se projektivno proširenje trodimenzionalnog euklidskog
prostora). U radu se opisuje i istražuje ploha Φ.

Ključne riječi: centralna projekcija, udaljenost, glavni
pravac, distorzija, kružni presjek, kvartika, dvostruka točka

1 Introduction

It is well-known that segments on lines which are parallel
to the image planeπ or, equivalently, orthogonal to the fi-
bres of anorthogonal projectionhave images of the same
length, i.e., they appear undistorted, see [1, 4, 5, 7]. The
lines orthogonal to the fibres of an orthogonal projection
are usually calledprincipal linesand they are the only lines
with undistorted images under this kind of projection.

In case of anoblique parallel projection, i.e., the fibres of
the projection are not orthogonal (and, of course, not par-
allel) to the image plane, the principal lines are still par-
allel to the image planeπ. Nevertheless, there is a further
class of principal lines in the case of a parallel projection
ι : R

3 → R
2. As illustrated in Figure 1, we can see that

in between the parallel fibresfP and fQ of two arbitrary
points P and Q on a principal linel ‖ π we can find a
second segment emanating fromP and ending at̃Q with

PQ= PQ̃= P′Q′. (Here and in the following we writeP′

for the image point ofP instead ofι(P).) In case of an
orthogonal projection, we haveQ= Q̃, cf. Figure 1.
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Figure 1: Principal lines: orthogonal projection (left),
oblique parallel projection (right).

In both cases, the orthogonal projection and the oblique
parallel projection, the principal lines are mappedcongru-
entonto their images.
What about the central projection? Letκ : R

3 \ {O}→ π
be the a central projection with center (eyepoint)O and
image planeπ. For the sake of simplicity, we shall write
P′ instead ofκ(P). Again the lines parallel toπ serve as
principal lines. Of course, the restrictionκ|l of κ to a line
l ‖ π is a similarity mapping. The mappingκ|l is a congru-
ent transformation if, and only if,l ⊂ π because it is the
identity in this case.
From Figure 2 we can easily guess that even in the case
of central projections there are more line segments than
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those in the image planeπ having central images of the
same length. Once we have chosen a pointP on the fi-
bre fP throughP′ we can find up to two pointsQ, Q̃ on

the fibre fQ throughQ′ such thatP′Q′ = PQ= PQ̃ holds
as long asP fQ < P′Q′. The pointsQ andQ̃ coincide ex-
actly if P fQ = P′Q′. Finally, there are no pointsQ andQ̃ if
P fQ > P′Q′.

P’
P
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Q

O

Figure 2: Some of infinitely many segments of length s
with the same image P′Q′ and, therefore, also
of length s.

In the case of a central projectionκ, only the lines in the
image plane are mappedcongruentonto their images. All
the other lines which carry segments whose images are of
the same length arenot mapped congruentonto their im-
ages. Just one segment on all these lines has aκ-image of
the same length.
Note that if eitherQ or P equalsO the line[P,Q] is mapped
to a point. Thuss= PQ 6= P′Q′ since the latter quantity is
undefiend for eitherQ′ or P′ does not exist.
Assume further thatP 6= O is an arbitrary point in Eu-
clidean three-space. Now we can ask for the set of all
pointsQ at fixed distance, says∈ R\ {0}, such that

s= PQ= P′Q′ (1)

whereP′ := κ(P) and Q′ = κ(Q) and s∈ R \ {0}. The
left-hand equation of (1) can also be skipped. Then, we
are looking for all pointsQ being the endpoints of line
segments emanating fromP whose central image has the
same length. It is clear that the set of allQ is an algebraic
surface. In Section 2 we shall describe and analyze this
surface in more detail. Section 3 is devoted to the study of
algebraic properties of this surface. Surprisingly, this type
of quartic surface does appear among the huge number of
quartic surfaces in [3].
In the following x = (x,y,z)T ∈ R

3 are Cartesian coordi-
nates. For any two vectorsu andv fromR

3 we denote the
canonical scalarproduct by

〈u,v〉= uxvx+uyvy+uzvz.

Based on the canonical scalarproduct, we can compute the
length‖v‖ of a vectorv by ‖v‖=

√
〈v,v〉.

2 The set of all endpoints

In the following we assume that there is the central pro-
jection κ : R

3∗ → π ∼= R
2 with the image planeπ where

R
3∗ := R

3 \ {O} and O 6∈ π shall be the center of the
projection, i.e., the eyepoint. The principal (vanishing)
point H ∈ π is π’s closest point to the eyepointO and
d := OH = Oπ is called thedistanceof κ. Therefore,H
is the pedalpoint of the normal from the eyepointO to the
image planeπ.
Let us assume thatP ∈ R

3∗ \ {π} is a point in Euclidean
three-space (neither coincident withO nor in π). With
P′ = [O,P]∩ π we denote theκ-image ofP. The set of
all pointsQ′ ∈ π with a certain fixed distances∈ R \ {0}
from P′ is a circlecP′,s in the image planeπ centered atP′

with radiuss, see Figure 3.
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Figure 3: Line segments inπ and their equally long preim-
ages.

We find all possible preimages ofQ′ on the quadratic cone
ΓP′,s = cP′,s∨O of κ-fibres through all points oncP′,s. The
preimages shall satisfy

s= P′Q′ = PQ

and, therefore, they are located on a Euclidean sphereΣP,s

centered atP with radiuss. Consequently, we can say:

Theorem 1 The set of all points Q∈R
3 with PQ=P′Q′ =

s∈R\{0} for some point P∈R
3∗ \{π} is a quartic space

curve q being the intersection of a sphereΣP,s (centered at
P with radius s) with a quadratic coneΓP′,s whose vertex
is the eyepoint O and the circle cP′,s (lying in π, centered
at P’sκ-image P′, and with radius s) is a directrix.
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The quartic curveq mentioned in Theorem 1 has always
two branches, since the two points on each generatorfQ of
ΓP′,s are the points of intersection of the generatorfQ with
the sphereΣP,s. Therefore,q is in general not rational. An
example of such a quartic is displayed in Figure 4 where
the sphereΣP,s and the coneΓP′,s are also shown.
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Figure 4: The quartic curve q of possible endpoints of line
segments starting at P with length s and equally
long image segments. The curve q is the in-
tersection of the quadratic coneΓP′,s and the
sphereΣP,s.

Not even in the cases[O,P]⊥π andP∈ π an exeption oc-
curs: q happens to be the union of two circles (rational
curves). However, the union of rational curves is (in gen-
eral) not rational. In the first caseΓP′,s is a cone of revolu-
tion andΣP,s is centered on the cone’s axis. Consequently,
q degenerates and becomes a pair of parallel circles on both
surfaces. In the second case the quarticq is also the union
of two circles, namleycP′,s and a further circle onΣP,s and
ΓP′,s.
Figure 4 shows an example of such a quartic curve (in
the non-rational or generic case) carrying the preimages
of possible endpointsQ.
As the lengths of PQ as well as ofP′Q′ can vary freely,
there is a linear family of quartic curves depending ons.
Thus, from Theorem 1 we can deduce the following:

Theorem 2 The set of all points Q being the endpoints
of line segments PQ starting at an arbitrary point P∈
R

3∗ \ {π} with PQ= P′Q′ is a quartic surfaceΦ.

Proof. There exists a(1,1)-correspondence between the
pencil of quadratic conesΓP′,s and the pencil of spheres
ΣP,s. Consequently, the manifold of common points,i.e.,
the set of points common to any pair of assigned surfaces
is a quartic variety, cf. [6]. �

Figure 5 shows the one-parameter family of quartic curves
mentioned in Theorem 1.
Figures 5 and 6 show the quartic surfaceΦ mentioned in
Theorem 2.
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Figure 5: The linear one-parameter family of spherical
quartic curves covers a quartic surface.
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Figure 6: The quartic surfaceΦ with its circles in planes
parallel to π has a singularity at O and P.Φ
intersectsπ in the line l and the ideal line p2 of
π, the latter with multiplicity three.

3 The quartic surface

In order to describe and investigate the quartic surfaceΦ,
we introduce a Cartesian coordinate system: It shall be
centered atH, the x-axis points towardsO, and π shall
serve as the[yz]-plane. Thus,O = (d,0,0)T and the im-
age planeπ is given by the equationx= 0.
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For any pointP∈R
3∗ with coordinate vectorp= (ξ,η,ζ)T

with ξ 6= d the central imageP′ := κ(P) = [O,P]∩ π is
given by

p′ =

(
0,

dη
d− ξ

,
dζ

d− ξ

)T

. (2)

Obviously,P′ = P if P ∈ π, i.e., ξ = 0. The points in the
plane

πv : x= d (3)

have no image in the affine part of the planeπ. There-
fore, the planeπv is calledvanishing plane. The planeπv

contains the centerO and is parallel toπ at distanced.
Performing the projective closure ofR3 the images of all
points ofπv\{O} are the ideal points ofπ gathering onπ’s
ideal linep2 .
Let nowQ be the variable endpoint of a segment starting
at P. The pointQ shall be given by its coordinate vector
x = (x,y,z)T. Then, an implicit equation ofΦ is given by

Φ : PQ
2
−P′Q′2 = 0. (4)

Using Eq. (2) we can write Eq. (4) in terms of coordinates
as

Φ : d2((η(d− x)− yδ)2+

+(ζ(d− x)− zδ)2) =

=
(
(x−ξ)2+(y−η)2+(z−ζ)2

)
·

·δ2(d− x)2

(5)

whereδ := d− ξ.

4 Properties of Φ

A closer look at the equation ofΦ as given by Eq. (5) al-
lows us to formulate the following theorem which holds in
projectively extended Euclidean spaceR

3:

Theorem 3 Let κ : R3∗ → π be a central projection from
a point O∈ R

3 to a planeπ 6∋ O and let further P∈ R
3⋆

be a point in Euclidean three-space. The set of all points
Q satisfying

PQ= P′Q′

(where P′ = κ(P) and Q′ = κ(Q)) is a uni-circular alge-
braic surfaceΦ of degree four. The ideal line p2 of π is a
double line ofΦ.

Proof. The algebraic degreeΦ can be easily read off from
Eq. (5).
In order to show the circularity ofΦ, we perform the pro-
jective closure ofR3 and writeΦ’s equation (5) in terms of
homogeneous coordinates: We substitute

x= X1X−1
0 , y= X2X−1

0 , z= X3X−1
0

and multiply byX4
0 . The intersection of the (projectively)

extended surfaceΦ with the ideal planeω : X0 = 0 is given
by insertingX0 = 0 into the homogeneous equation ofΦ
which yields the equations of a quartic cycle

φ : X2
1 (X

2
1 +X2

2 +X2
3 ) = X0 = 0. (6)

The first factor of the latter equation tells us that the ideal
line p2 of the image planeπ : X1 = 0 is a part ofφ = ω∩Φ
and has multiplicity two. In order to be sure thatp2 is a
double line onΦ, we compute the Hessian H(Φ) of the
homogeneous equation ofΦ and evaluate at

p2 = (0 : 0 :X2 : X3)

(with X2 : X3 6= 0 : 0 or equivalentlyX2
2 +X2

3 6= 0). This
yields

H(Φ)=2δ2(X2
2+X2

3 )




0 −d 0 0
−d 1 0 0

0 0 0 0
0 0 0 0


 (7)

which shows that all but two partial derivatives ofΦ’s ho-
mogeneous equation do not vanish alongp2. Therefore,p2

is a double line onΦ.

The second factor of the left-hand side of (6) defines the
equation of theabsolute conicof Euclidean geometry with
multiplicity one. Thus,Φ is uni-circular. �

A part of the double linep2 is shown in Figure 7 which
shows a perspective image of the surfaceΦ and the circles
and lines onΦ.

Corollary 1 In the case P∈ π, i.e., ξ = 0, the surfaceΦ
is the union of the image planeπ (a surface of degree one)
and a cubic surface.

Proof. If P ∈ π, we haveξ = 0. Insertingξ = 0 into Eq.
(5) we find

x(‖x‖2(x−2d)−2(x−d)(ηy+ ζz)+d2x)=0.

Obviously,Φ is the union of the planeπ (with the equation
x= 0) and a cubic surface. �
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Figure 7: A perspective image of the situation in space:
The ideal line p2 of the image planeπ of κ is a
part of the double curve ofΦ. The two parallel
lines l and m meet in the common ideal point
L ∈ p2. The two planesπ and x= 2d serve as
tangent planes ofΦ along p2 and meetΦ along
p2 with multiplicity three and l and m appear as
the remaining linear part.

The spheres of the one-parameter family of concentric
spheres centered atP carrying the one-parameter family
of quartic curvesq ⊂ Φ intersectΦ along the quarticsq
and the absolute circle of Euclidean geometry. At the lat-
ter the spheres are in concact with each other and with the
quartic surfaceΦ. This can easily be shown by comput-
ing the resultants ofΦ’s and the spheres’ homogeneous
equations with respect toX0. From this resultant the factor
X2

1 +X2
2 +X2

3 splits off with multiplicity 2. In other words:
Φ and all spheres aboutP share an isotropic tangent cone
with vertex atP.
The shape of the curveω∩Φ together withη2 + ζ2 6= 0,
i.e., P /∈ [O,H], tells us:

Theorem 4 A plane x= k (k∈ R) parallel to the image
planeπ intersectsΦ along

1. the union of a circle whose center lies on a rational
planar cubic curveγ and the two-fold ideal line p2 if
k 6= 0,d,2d,ξ,

2. the union of a line l and the three-fold line p2 if
k= 0,

3. the union of a line m‖ l and the three-fold line p2 if
k= 2d, and

4. the union of a pair of isotropic lines and the two-fold
line p2 if k = d,ξ.

Proof. Each planar section of the affine part ofΦ is an al-
gebraic curve whose degree is at most 4. As we have seen
in the proof of Theorem 3, the ideal linep2 of the image
planeπ is a two-fold line inΦ. Thus, the intersection of
(the projectively extended) surfaceΦ with any plane paral-
lel to π also contains this repeated line. The remaining part
r of these planar intersetions is at most of degree 2.
The planes parallel toπ meet the absolute conic of Eu-
clidean geometry at theirabsolute pointswhich induce Eu-
clidean geometry in these planes. Since the absolute conic
is known to be a part ofφ, the curvesr are Euclidean cir-
cles (including pairs of isotropic lines and the joinp2 of
the two absolute points as limiting cases). The equations
of the intersections ofΦ with planes parallel toπ can be
found by rearrangingΦ’s equation (5) consideringy andz
as variables in these planes. The coefficients are univariate
functions inx and we find

x(x−2d)δ2(y2+ z2)+

+2δ(d− x)(δx+dξ)(ηy+ ζz)+

+(d− x)2δ2(〈p,p〉+ x(x−2ξ))

−d2(η2+ ζ2) = 0.

(8)

The essential monomialsy2, z2, y, andz are underlined in
order to emphasize them. Note that the monomialyzdoes
not show up. Since coeff(x2) = coeff(y2) the curves in Eq.
(8) are Euclidean circles.

1. We only have to show that the centers of the cir-
cles given in Eq. (8) onΦ in planesx = k (with
k 6= 0,d,2d,ξ) are located on a rational planar cubic
curve. For that purpose we considerΦ’s inhomoge-
neous equation (5) as an equation of conics in the
[y,z] plane. By completing the squares in Eq. (8), we
find the center of these conics. Keeping in mind that
x varies freely inR\{0,d,2d,ξ}we can parametrize
the centers by

γ(x) =




x

η(d− x)(dξ+dx− xξ)
δx(2d− x)

ζ(d− x)(dξ+dx− xξ)
δx(2d− x)




(9)

which is the parametrization of a rational cubic
curve. The cubic passes throughO andP which can
be verified by inserting eitherx= d or x= ξ. In or-
der to show thatm is planar, we show that any four
points onγ are coplanar. We insertti 6= 0,d,2d,ξ
with i ∈ {1,2,3,4} into (9) and show that the in-
homogeneous coordinate vectors of the four points
γ(ti) are linearly dependent for any choice of mutu-
ally distinctti .
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From

det




1 γ(t1)T

1 γ(t2)T

1 γ(t3)T

1 x y z


= 0

we obtain the equation

ηy−ηz= 0

of the plane that carriesγ.
Figure 8 shows the cubic curveγ with its three
asymptotes.

2. The image planeπ : x= 0 of the underlying central
projectionκ touches (the projective extended sur-
face) Φ along the ideal linep2 of π. This can be
concluded from the following: We write down the
quadratic form

XTH(Φ)X = X1(X1−2dX0) = 0

with H(Φ) being the Hessian from (7) andX =
(X0,X1,X2,X3)

T being homogeneous coordinates.
(Non-vanishing factors are cancelled out.) This form
gives the equations of the two planes throughp2 that
intersectΦ along p2 with higher multiplicity than
two, i.e., in this case with multiplicity three. Thus,
the multiplicity of the linep2 considered as the in-
tersection ofπ andΦ is of multiplicity three and a
single linel of multiplicity one remains. This line is
given by

l : (2d− ξ)〈p,p〉−d2ξ=2δ(ηy+ ζz)

wherey andz are used as Cartesian coordinates in
the image planeπ.

3. In a similar manner we find the linem which is the
only proper intersection ofΦ with the planex= 2d:

m: d(2d2−5dξ+4ξ2)− ξ〈p,p〉=

= 2δ(ηy+ ζz)

The plane of the cubic curveγ is orthogonal to the
lines l andm.

4. In case ofx = ξ, the plane runs throughP. Again,
the ideal linep2 splits off with multiplicity two. The
remaining partr is the pair of isotropic lines through
P with the equation

x= ξ, (y−η)2+(z− ζ)2 = 0.

The same situation occurs atO, i.e., x= d where the
isotropic lines have the equation

x= d, y2+z2 = 0. �

P

O

Φ

m

l

γ

γ

γ

Figure 8: The cubic curveγ carries the centers of all cir-
cles onΦ. Its ideal doublepoint(0 : 0 : η : ζ)
is the ideal point of the lines orthogonal to
l ‖ m. The tangent of c at the third ideal point
(0 : 1 : 0 : 0) passes through P. The three dashed
lines areγ’s asymptotes.

The circles as well as the linel on the quartic surfaceΦ can
be seen in Figures 6, 9 and 8. In Figure 8, a small piece of
the linem shows up.

Remark 1 In the case of P∈ [O,H], or equivalently,
η2+ ζ2 = 0 the lines l and m coincide with the ideal line
of π and, thus,π∩Φ is the ideal line ofπ with multiplicity
four. The same holds true for the plane x= 2d if P∈ [O,H].

Remark 2 The planesπ and x= 2d behave like thetan-
gentsof a planar algebraic curve c at an ordinary double
point D because these tangents intersect c at D with multi-
plicity three. This cannot just be seen from Figure 7.

The linesl andm from the proof of Theorem 4 are parallel
to each other but skew and orthogonal to the line[O,P] as
long asξ(ξ−2d) 6= 0. If ξ = 0 orξ = 2d, we have the case
mentioned in Remark 1 andl andm are ideal lines. They
are still skew to[O,P] but orthogonality is not defined in
that case.
The set of singular surface points onΦ contains only points
of multiplicity two. A more detailed description of the set
of singular surface points is given by:

Theorem 5 The set of singular surface points onΦ is the
union of eyepoint O, the object point P, and the ideal line
p2 of the image planeπ. The eyepoint O and the object
point P are conical nodes onΦ.

33



KoG•18–2014 B. Odehnal: Distances and Central Projections

Proof. The ideal line ofπ is a line with multiplicity two
on Φ. The planesπ : x = 0 andx= 2d intersectΦ along
this ideal line with multiplicity three as shown in the proof
of Theorem 4. Therefore, the points onπ’s ideal line are
singular points considered as points onΦ.
The pointsO andP are singular surface points onΦ since
the gradients ofΦ vanish at both points:

grad(Φ)(d,0,0) = (0,0,0)T

and

grad(Φ)(ξ,η,ζ) = (0,0,0)T

Now we apply the translationτ1 : O 7→ (0,0,0)T to Φ, i.e.,
the singular pointO moves to the origin of the new coor-
dinate system. The equation ofΦ does not alter its degree.
However, the monomials in the equation ofΦ are at least
of degree two in the variablesx, y, z. If we remove the
monomials of degree three and four, we obtain the equa-
tion of a quadratic coneΓO centered atO. Its equation (in
the new coordinate system, but still labelledx, y, z) reads

ΓO : d2δ2〈x,x〉+2d2δx(ηy+ζz)=

=(δ4+ ξ(2d+ξ)〈p,p〉+ξ3(d+ δ))x2.

ΓO is the second order approximation ofΦ at O. SinceΓO

is a quadratic cone the singular pointO is a conical node,
see [2].
In order to show thatP is also a conical node ofΦ we ap-
ply the translationτ2 : P 7→ (0,0,0)T. Again we usex,
y, z as the new coordinates and the quadratic term of the
transformed equation ofΦ given by

ΓP : ξ(δ+d)δ2〈x,x〉+2d2δx(ηy+ζz)+

+d2(〈p,p〉− δ2−2ξ2)x2 = 0.

is the equation of a quadratic coneΓP centered atP. Con-
sequently,P is also a conical node (cf. [2]). �

Remark 3 The homogeneous equations of the quadratic
conesΓO and ΓP are the quadratic forms whose coeffi-
cient matrices are (non-zero) scalar multiples of the Hes-
sian matrix ofΦ’s homogeneous equation evaluated at O
and P.

Figure 9 illustrates the two quadratic conesΓO andΓP. The
planes parallel toπ (exceptx= k with k∈ {d,ξ}) intersect
both quadratic conesΓO andΓP along circles.

If P= P′ but [0,P] 6⊥π, i.e., P∈ π andP 6= H, thenΦ is the
union of the image planeπ and a cubic surfaceΦ with the
equation

(x−2d)〈x,x〉=2(x−d)(ηy+ ζz)−d2x. (10)

The cubic surfaceΦ has only one singularity atO which is
a conical node.

P

O

l

π

Γ
P
 

Γ
O
 Φ

Figure 9: The two singular points O and P are conical
nodes,i.e., the terms of degree two ofΦ’s equa-
tion when translated to O or P are the equations
of quadratic cones.The circular sections ofΦ lie
in planes that meet the quadratic conesΓO and
ΓP along circles.

If P∈ [O,H] (butP 6= O,H), thenΦ is a surface of revolu-
tion with the equation

x(x−2d)〈x,x〉+ ξ(ξ−2x)(x−d)2−d2x2 = 0 (11)

whereη2+ ζ2 6= 0 in contrast to earlier assumptions.
The set of singular surface points onΦ contains only points
of multiplicity two. A more detailed description of the set
of singular surfaces points is given by:

Theorem 6 The set of singular surface points onΦ is the
union of eyepoint O, the object point P, and the ideal line
p2 of the image planeπ. The eyepoint O and the object
point P are conical nodes onΦ.

Proof. The ideal line ofπ is a line with multiplicity two
on Φ. The planesπ : x = 0 andx= 2d intersectΦ along
this ideal line with multiplicity three as shown in the proof
of Theorem 4. Therefore, the points onπ’s ideal line are
singular points considered as points onΦ.
The pointsO andP are singular surface points onΦ since
the gradients ofΦ vanish at both points:

grad(Φ)(d,0,0) = (0,0,0)T

and

grad(Φ)(ξ,η,ζ) = (0,0,0)T

Now we apply the translationτ1 : O 7→ (0,0,0)T to Φ, i.e.,
the singular pointO moves to the origin of the new coor-
dinate system. The equation ofΦ does not alter its degree.
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However, the monomials in the equation ofΦ are at least
of degree two in the variablesx, y, z. If we remove the
monomials of degree three and four, we obtain the equa-
tion of a quadratic coneΓO centered atO. Its equation (in
the new coordinate system, but still labelledx, y, z) reads

ΓO : d2δ2〈x,x〉+2d2δx(ηy+ζz)=

=(δ4+ ξ(2d+ξ)〈p,p〉+ξ3(d+ δ))x2.

ΓO is the second order approximation ofΦ at O. SinceΓO

is a quadratic cone the singular pointO is a conical node,
see [2].

In order to show thatP is also a conical node ofΦ we ap-
ply the translationτ2 : P 7→ (0,0,0)T. Again we usex,
y, z as the new coordinates and the quadratic term of the
transformed equation ofΦ given by

ΓP : ξ(δ+d)δ2〈x,x〉+2d2δx(ηy+ζz)+

+d2(〈p,p〉− δ2−2ξ2)x2 = 0.

is the equation of a quadratic coneΓP centered atP. Con-
sequently,P is also a conical node (cf. [2]). �

Figures 10 and 11 show the two distinct cases whereΦ is
a surface of revolution.

Figure 10:The setΦ of all points Q is a quartic surface of
revolution if P∈ [O,H] and P6= O,H.

Figure 11:Φ is the union ofπ and a cubic surface of revo-
lution touchingπ at H if P= H.
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