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ABSTRACT

Given a point P in Euclidean space R3 we look for all
points Q such that the length PQ of the line segments PQ
from P to Q equals the length of the central image of the
segment. It turns out that for any fixed point P the set of
all points Q is a quartic surface ®. The quartic @ carries
a one-parameter family of circles, has two conical nodes,
and intersects the image plane Tt along a proper line and
the three-fold ideal line py of Ttif we perform the projective
closure of the Euclidean three-space. In the following we
shall describe and analyze the surface ®.
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1 Introduction

It is well-known that segments on lines which are parallel
to the image plan& or, equivalently, orthogonal to the fi-
bres of anorthogonal projectiorhave images of the same
length,i.e., they appear undistorted, see [1, 4, 5, 7]. The
lines orthogonal to the fibres of an orthogonal projection
are usually callegrincipal linesand they are the only lines
with undistorted images under this kind of projection.

In case of aroblique parallel projectioni.e., the fibres of

the projection are not orthogonal (and, of course, not par-

allel) to the image plane, the principal lines are still par-
allel to the image plana. Nevertheless, there is a further
class of principal lines in the case of a parallel projection
| : R® — R2 As illustrated in Figure 1, we can see that
in between the parallel fibrefp and fg of two arbitrary
points P and Q on a principal linel || T we can find a
second segment emanating fré?rand ending aQ with
PQ= PQ =P'Q. (Here and in the following we write”’

for the image point oP instead ofi(P).) In case of an
orthogonal projection, we hav@ = Q, cf. Figure 1.
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Udaljenosti i centralna projekcija
SAZETAK

Za danu to¢ku P u euklidskom prostoru R3 traZe se sve
totke Q takve da je duljina PQ duZine PQ jednaka duljini
njezine centralne projekcije. Pokazuje se da je za &vrstu
tolku P skup svih to¢aka Q kvartika ®. Kvartika ® sadrzi
jednoparametarsku familiju kruZnica, ima dvije dvostruke
tocke, te sijece ravninu slike Tt po jednom pravom pravcu
i tri puta brojanom idealnom pravcu pp ravnine Tt (proma-
tra se projektivno prosirenje trodimenzionalnog euklidskog
prostora). U radu se opisuje i istraZuje ploha ®.

Kljuéne rijeéi: centralna projekcija, udaljenost, glavni
pravac, distorzija, kruZni presjek, kvartika, dvostruka to¢ka
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Figure 1: Principal lines: orthogonal projection (left),
oblique parallel projection (right).

In both cases, the orthogonal projection and the oblique
parallel projection, the principal lines are mappemgru-
entonto their images.

What about the central projection? Let R3\ {O} — 1

be the a central projection with center (eyepoidtand
image planat For the sake of simplicity, we shall write

P’ instead ofk(P). Again the lines parallel tat serve as
principal lines. Of course, the restrictien of k to a line

| || Ttis a similarity mapping. The mapping is a congru-

ent transformation if, and only i, C 1t because it is the
identity in this case.

From Figure 2 we can easily guess that even in the case
of central projections there are more line segments than
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those in the image plame having central images of the Based on the canonical scalarproduct, we can compute the
same length. Once we have chosen a pBirmn the fi- length||v|| of a vector by ||v|| = 1/ (v, V).
bre fp throughP’ we can find up to two point®, Q on

the fibre f through@ such thaP’@ =PQ=PQholds 2 The set of all endpoints
as long aP fo < P’Q. The pointsQ andQ coincide ex-

actly if Pio = P'Q. Finally, there are no poin® andQ if In the following we assume that there is the central pro-
Pfo > PQ. ' jectionk : R — m= R? with theimage planert where

R := R3\ {O} and O ¢ mt shall be the center of the
projection,i.e., the eyepoint The principal (vanishing)
P’ point H € 1t is 1rs closest point to the eyepoif® and
d := OH = Oris called thedistanceof k. ThereforeH
is the pedalpoint of the normal from the eyepdto the
image planat
Let us assume thd& € R® \ {1t} is a point in Euclidean
three-space (neither coincident wi@ nor in ). With
P’ = [O,P]NnTt we denote the-image ofP. The set of
all pointsQ e mwith a certain fixed distancee R\ {0}
from P’ is a circlecp s in the image plane centered aP’
with radiuss, see Figure 3.

0
Figure 2: Some of infinitely many segments of length s @
with the same image’® and, therefore, also
of length s.

In the case of a central projectien only the lines in the
image plane are mappedngruentnto their images. All
the other lines which carry segments whose images are of
the same length aneot mapped congrueminto their im-
ages. Just one segment on all these lines hkasraage of
the same length.

Note that if eitheiQ or P equaldO the line[P, Q] is mapped

to a point. Thus = PQ# P'Q since the latter quantity is
undefiend for eithe®’ or P’ does not exist.

Assume further thaP # O is an arbitrary point in Eu-
clidean three-space. Now we can ask for the set of all
pointsQ at fixed distance, say< R\ {0}, such that

o Figure 3: Line segments imand their equally long preim-
s=PQ=PC Q) ages.

whereP’ := k(P) andQ = k(Q) andsc R\ {0}. The We find all possible preimages @ on the quadratic cone
left-hand equation of (1) can also be skipped. Then, we ['ps = Cp sV O of k-fibres through all points og 5. The
are looking for all pointxQ being the endpoints of line  preimages shall satisfy

segments emanating fromwhose central image has the o

same length. It is clear that the set of@lis an algebraic s=PQ =PQ

surface. In Section 2 we shall describe and analyze this )

surface in more detail. Section 3 is devoted to the study of 2nd, therefore, they are located on a Euclidean spheye
algebraic properties of this surface. Surprisingly, thjset ~ centered aP with radiuss. Consequently, we can say:

of quartic surface does appear among the huge number of ) PP
quartic surfaces in [3]. Theorem 1 The set of all points @ R®> withPQ=P'Q =

i 3 . .
In the followingx = (x,y,2)T € R® are Cartesian coordi- S K\ {0} for some point R R*"\ {mi} is a quartic space

nates. For any two vectorsandv from R3 we denote the ~ CUrve g being the intersection of a sphéye; (centered at
canonical scalarproduct by P with radius s) with a quadratic conler ¢ whose vertex

is the eyepoint O and the circlexg (lying in 1T, centered
(U, V) = UxVx + UyVy + UzVy. at P'sk-image P, and with radius s) is a directrix.
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The quartic curvey mentioned in Theorem 1 has always Figure 5 shows the one-parameter family of quartic curves
two branches, since the two points on each genefatof mentioned in Theorem 1.

e s are the points of intersection of the generdigmwith Figures 5 and 6 show the quartic surfagenentioned in

the spheré&ps. Thereforeq is in general not rational. An Theorem 2.

example of such a quartic is displayed in Figure 4 where
the spher&ps and the coné€ p s are also shown.

Figure 5: The linear one-parameter family of spherical
guartic curves covers a quartic surface.

—

Figure 4: The quatrtic curve g of possible endpoints of line
segments starting at P with length s and equally
long image segments. The curve q is the in-
tersection of the quadratic conép s and the
sphereXps.

Not even in the casg®, P]_LtandP € ttan exeption oc-

curs: q happens to be the union of two circles (rational
curves). However, the union of rational curves is (in gen-
eral) not rational. In the first case> s is a cone of revolu-

tion andZps is centered on the cone’s axis. Consequently,

g degenerates and becomes a pair of parallel circles on bott
surfaces. In the second case the quayisalso the union

of two circles, namlegy s and a further circle olps and |
Mps.

Figure 4 shows an example of such a quartic curve (in
the non-rational or generic case) carrying the preimages
of possible endpoint®.

As the lengths of PQ as well as ofP’Q’ can vary freely,
there is a linear family of quartic curves dependingson
Thus, from Theorem 1 we can deduce the following:

Figure 6: The quartic surface& with its circles in planes
parallel to 1t has a singularity at O and P®
intersectgtin the line | and the ideal line pof

Theorem 2 The set of all points Q being the endpoints . the latter with multiplicity three.

of line segments PQ starting at an arbitrary pointeP
R\ {r} with PQ= P'Q is a quartic surfacep. 3 Thequartic surface

Proof. There exists d1,1)-correspondence between the In order to describe and investigate the quartic surfbce
pencil of quadratic coneBp s and the pencil of spheres we introduce a Cartesian coordinate system: It shall be

>ps. Consequently, the manifold of common poirits,, centered aH, the x-axis points toward©, and 1t shall
the set of points common to any pair of assigned surfacesserve as théyz-plane. ThusO = (d,0,0)" and the im-
is a quartic variety, cf. [6]. O age planatis given by the equation= 0.
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For any poinP € R3* with coordinate vectap = (§,n,0)"
with § # d the central imagé := k(P) = [O,P|NTtis
given by
dn  dz \'
/I

Obviously,P =P if Pe m i.e, & = 0. The points in the
plane

T Xx=d 3)

have no image in the affine part of the plame There-
fore, the planet, is calledvanishing plane The planer,
contains the cente® and is parallel tart at distanced.
Performing the projective closure & the images of all
points oftg, \ {O} are the ideal points at gathering ort's
ideal linepy .

Let now Q be the variable endpoint of a segment starting
at P. The pointQ shall be given by its coordinate vector
x = (x,¥,2)T. Then, an implicit equation ad is given by

(4)

Using Eq. (2) we can write Eq. (4) in terms of coordinates
as

®: PQ -PQ =0.

®: d?((n(d—x) —yd)%+
+((d—x) — )% =
(x=8)*+(y—n)*+(z—20)?) -
&% (d —x)?
whered:=d—¢&.

(5)

4 Propertiesof @

A closer look at the equation @b as given by Eq. (5) al-
lows us to formulate the following theorem which holds in
projectively extended Euclidean spagé&

Theorem 3 Letk : R* — 1tbe a central projection from
a point Oc R3 to a planert Z O and let further P R3*

and multiply byxs‘. The intersection of the (projectively)
extended surfac® with the ideal plane: X =0 is given
by insertingXy = 0 into the homogeneous equation®f
which yields the equations of a quartic cycle

@ XE(XZ4+ X2+ X2)=Xg=0. (6)

The first factor of the latter equation tells us that the ideal
line p, of the image plan&: X; =0is a part ofp= wN®
and has multiplicity two. In order to be sure that is a
double line on®, we compute the Hessian(#) of the
homogeneous equation @ and evaluate at

p2=(0:0:X2:X3)

(with X : X3 # 0 : 0 or equivalentlyX? + X2 # 0). This
yields

H(®) =28%(X3+X3) (7)

oo Qo
cNoNeNo}

—d 0
1 0
0 0
0 0

which shows that all but two partial derivatives®k ho-
mogeneous equation do not vanish algagThereforep,
is a double line orp.

The second factor of the left-hand side of (6) defines the
equation of thabsolute coniof Euclidean geometry with
multiplicity one. Thus® is uni-circular. O

A part of the double lingy, is shown in Figure 7 which
shows a perspective image of the surfdcand the circles
and lines orp.

be a point in Euclidean three-space. The set of all points Corollary 1 In the case R 1, i.e., & = 0, the surfaced

Q satisfying

PQ=PQ
(where P =k (P) and { = k(Q)) is a uni-circular alge-
braic surface®d of degree four. The ideal line;pof Ttis a
double line ofd.

Proof. The algebraic degre® can be easily read off from
Eq. (5).

In order to show the circularity ab, we perform the pro-
jective closure oR3 and writed’s equation (5) in terms of
homogeneous coordinates: We substitute

Xx=XXgt y=XoXyt, z=XaXg !

is the union of the image plarre(a surface of degree one)
and a cubic surface.

Proof. If P € 1, we have = 0. Inserting§ = 0 into Eq.
(5) we find

X([IX[|?(x — 2d) — 2(x— d)(ny + {2) + d)) =0

Obviously,® is the union of the plana (with the equation
x = 0) and a cubic surface. O
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Figure 7: A perspective image of the situation in space:
The ideal line p of the image planetofk is a
part of the double curve ab. The two parallel
lines | and m meet in the common ideal point
L € pz. The two planestand x= 2d serve as
tangent planes ob along p and meetb along
p2 with multiplicity three and | and m appear as
the remaining linear part.

Proof. Each planar section of the affine part®fis an al-
gebraic curve whose degree is at most 4. As we have seen
in the proof of Theorem 3, the ideal lin® of the image
planerttis a two-fold line in®. Thus, the intersection of
(the projectively extended) surfadewith any plane paral-

lel to Ttalso contains this repeated line. The remaining part
r of these planar intersetions is at most of degree 2.

The planes parallel tat meet the absolute conic of Eu-
clidean geometry at the@ibsolute pointsvhich induce Eu-
clidean geometry in these planes. Since the absolute conic
is known to be a part of, the curves are Euclidean cir-
cles (including pairs of isotropic lines and the jgia of

the two absolute points as limiting cases). The equations
of the intersections of with planes parallel tat can be
found by rearrangin@’s equation (5) consideringandz

as variables in these planes. The coefficients are unieariat
functions inx and we find

X(x— 2d)8%(y? + )+
+25(d — x)(8x+ d&) (ny + {2)+
+(d = x)28%((p,p) + X(x— 2¢))

—-d?’(n+¢%) =0

The essential monomialg, 7, y, andz are underlined in

(8)

The spheres of the one-parameter family of concentric order to emphasize them. Note that the monorwyialoes

spheres centered & carrying the one-parameter family
of quartic curveq) C ® intersect® along the quartics
and the absolute circle of Euclidean geometry. At the lat-

ter the spheres are in concact with each other and with the

quartic surfacabd. This can easily be shown by comput-
ing the resultants ofb’s and the spheres’ homogeneous
equations with respect &. From this resultant the factor
X2+ X2+ X2 splits off with multiplicity 2. In other words:

@ and all spheres abo& share an isotropic tangent cone
with vertex atP.

The shape of the curven @ together withn2 422 # 0,
i.e, P¢[O,H], tells us:

Theorem 4 A plane x= k (k € R) parallel to the image
planettintersectsp along

1. the union of a circle whose center lies on a rational
planar cubic curvey and the two-fold ideal line pif
k+#0,d,2d,¢&,

2. the union of a line | and the three-fold line fif
k=0,

3. the union of a line njj | and the three-fold line pif
k=2d, and

4. the union of a pair of isotropic lines and the two-fold
line ppifk =d,&.
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not show up. Since coé#’) = coeff(y?) the curves in Eq.
(8) are Euclidean circles.

1. We only have to show that the centers of the cir-
cles given in Eq. (8) o in planesx = k (with
k#£0,d,2d,&) are located on a rational planar cubic
curve. For that purpose we conside’s inhomoge-
neous equation (5) as an equation of conics in the
ly,Z] plane. By completing the squares in Eq. (8), we
find the center of these conics. Keeping in mind that
xvaries freely inR \ {0,d, 2d, &} we can parametrize
the centers by

X

n(d —x)(d§ + dx—x§)
ox(2d — x)

X)(d& 4 dx—x&)
ox(2d — x)

which is the parametrization of a rational cubic
curve. The cubic passes througtandP which can

be verified by inserting eithec=d orx=_&. In or-

der to show thamm is planar, we show that any four
points ony are coplanar. We insett # 0,d,2d,§
with i € {1,2,3,4} into (9) and show that the in-
homogeneous coordinate vectors of the four points
y(ti) are linearly dependent for any choice of mutu-
ally distinctt;.

() 9)

2(d—
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From
1 V(tl)l
1 yta) | _
det 1 yite)T | 0
1 xyz
we obtain the equation
ny—nz=0

of the plane that carriggs

Figure 8 shows the cubic curwe with its three
asymptotes.

2. The image plane: x = 0 of the underlying central
projectionk touches (the projective extended sur-
face) ® along the ideal lingx; of . This can be
concluded from the following: We write down the
quadratic form

XTH(®)X = Xg (X1 —2dX) =0

with H(®) being the Hessian from (7) and =
(X07X17X2,X3)T being homogeneous coordinates.
(Non-vanishing factors are cancelled out.) This form
gives the equations of the two planes thropglthat
intersect® along p, with higher multiplicity than
two, i.e., in this case with multiplicity three. Thus,
the multiplicity of the linep, considered as the in-
tersection ofltand® is of multiplicity three and a
single linel of multiplicity one remains. This line is
given by

I (2d—&)(p,p) — d*’€=28(ny+{2)

wherey andz are used as Cartesian coordinates in
the image planet

3. In a similar manner we find the lima which is the
only proper intersection ap with the planex = 2d:

m: d(2d2 — 5d€ + 4€2) — &(p,p) =
=28(ny+22)

The plane of the cubic curweis orthogonal to the
linesl andm.

. In case ofk = &, the plane runs through. Again,
the ideal linep; splits off with multiplicity two. The
remaining part is the pair of isotropic lines through
P with the equation

x=& (y—n)?+(z—-0?*=0.

The same situation occurs@ti.e., x = d where the
isotropic lines have the equation

x=d, y¥+Z=0. 0

Figure 8: The cubic curve carries the centers of all cir-
cles on®. lts ideal doublepoint0:0:n: Q)
is the ideal point of the lines orthogonal to
[ || m. The tangent of c at the third ideal point
(0:1:0:0 passes through P. The three dashed
lines arey's asymptotes.

The circles as well as the linen the quartic surfac® can
be seen in Figures 6, 9 and 8. In Figure 8, a small piece of
the linem shows up.

Remark 1 In the case of P [O,H], or equivalently,
n?+ ¢? = 0 the lines | and m coincide with the ideal line
of mand, thusytin @ is the ideal line oftwith multiplicity
four. The same holds true for the plane-2d if P € [O, H].

Remark 2 The planestand x= 2d behave like théan-
gentsof a planar algebraic curve ¢ at an ordinary double
point D because these tangents intersect ¢ at D with multi-
plicity three. This cannot just be seen from Figure 7.

The linesl andmfrom the proof of Theorem 4 are parallel
to each other but skew and orthogonal to the [@gP] as
long ast (& —2d) £0. If § =0 or& = 2d, we have the case
mentioned in Remark 1 arldandm are ideal lines. They
are still skew to[O, P] but orthogonality is not defined in
that case.

The set of singular surface points @rtontains only points
of multiplicity two. A more detailed description of the set
of singular surface points is given by:

Theorem 5 The set of singular surface points dnis the
union of eyepoint O, the object point P, and the ideal line
p2 of the image planegt The eyepoint O and the object
point P are conical nodes of.
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Proof. The ideal line offtis a line with multiplicity two
on®. The planegt: x= 0 andx = 2d intersect® along
this ideal line with multiplicity three as shown in the proof
of Theorem 4. Therefore, the points ois ideal line are
singular points considered as points®n

The pointsO andP are singular surface points @nsince
the gradients o> vanish at both points:

grad ®)(d,0,0) = (0,0,0)"
and
gfad‘b)(ﬁaﬂl) = (O, O= O)T

Now we apply the translation, : O+~ (0,0,0)T to @, i.e,,
the singular poin® moves to the origin of the new coor-
dinate system. The equation®fdoes not alter its degree.
However, the monomials in the equation®fare at least
of degree two in the variables y, z. If we remove the

monomials of degree three and four, we obtain the equa-

tion of a quadratic conEg centered aO. Its equation (in
the new coordinate system, but still labelled, 2) reads

Mo d28%(x,x)+2d?dx(ny+L2) =
=(&*+&(2d+&)(p,p)+&3(d +3))x2.

o is the second order approximation®dfat O. Sincel o
is a quadratic cone the singular pots a conical node,
see [2].

In order to show thal is also a conical node @b we ap-
ply the translationt, : P+ (0,0,0)T. Again we usex,

Figure 9: The two singular points O and P are conical
nodesj.e., the terms of degree two dfs equa-
tion when translated to O or P are the equations
of quadratic cones.The circular sectionsifie
in planes that meet the quadratic corfes and
I'p along circles.

If P € [O,H] (butP # O,H), then® is a surface of revolu-
tion with the equation

X(x— 2d) (X, X) + &(§ — 2x)(x—d)?— d*>** = 0 (11)

wheren? + 22 # 0 in contrast to earlier assumptions.

y, z as the new coordinates and the quadratic term of theThe set of singular surface points @contains only points

transformed equation @b given by
Mp: &(84d)&(x,x)+2d%dx(ny+{2)+
+d?({p,p) — & — 282)x* = 0.

is the equation of a quadratic cohg centered aP. Con-
sequentlyP is also a conical node (cf. [2]). O

Remark 3 The homogeneous equations of the quadratic

coneslp and 'p are the quadratic forms whose coeffi-

cient matrices are (non-zero) scalar multiples of the Hes-
sian matrix of®’s homogeneous equation evaluated at O

and P.

Figure 9illustrates the two quadratic coriesandlp. The
planes parallel tat (exceptx = k with k € {d, &}) intersect
both quadratic condsp andl'p along circles.

If P=P but[0,P] LT i.e, P mandP # H, then® is the
union of the image plangand a cubic surfac® with the

equation
(x—2d)(x,x) =2(x—d)(ny+&z) — d’x. (10)

The cubic surfacé has only one singularity & which is
a conical node.
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of multiplicity two. A more detailed description of the set
of singular surfaces points is given by:

Theorem 6 The set of singular surface points dnis the
union of eyepoint O, the object point P, and the ideal line
p2 of the image planet The eyepoint O and the object
point P are conical nodes of.

Proof. The ideal line offtis a line with multiplicity two
on®. The planegt: x= 0 andx = 2d intersect® along
this ideal line with multiplicity three as shown in the proof
of Theorem 4. Therefore, the points ois ideal line are
singular points considered as points®n

The pointsO andP are singular surface points @nsince
the gradients o> vanish at both points:

grad ®)(d,0,0) = (0,0,0)"
and

gradCD) (Ev T],Z) = (Oa 0, O)T

Now we apply the translation : O+~ (0,0,0)T to @, i.e,,
the singular poinD moves to the origin of the new coor-
dinate system. The equation®fdoes not alter its degree.
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However, the monomials in the equation®fare at least

of degree two in the variables y, z. If we remove the
monomials of degree three and four, we obtain the equa-
tion of a quadratic conEp centered aO. Its equation (in

the new coordinate system, but still labelled, 2) reads

Fo: d?&%(x,x)+2d23x(ny+{2) =
= (8"+&(2d+8)(p,p) +&3(d + &) )x°.

o is the second order approximation®dfat O. Sincel o

is a quadratic cone the singular potis a conical node,
see [2].

In order to show thaP is also a conical node @b we ap-

ply the translatiort, : P+~ (0,0,0)T. Again we usex,

y, z as the new coordinates and the quadratic term of the

transformed equation @b given by Figure 11: ® is the union ofitand a cubic surface of revo-
lution touchingrtat H if P=H.

Mp: &(8+d)&(x,x)+2d2dx(ny-+{2)+

+d?({p,p) — & — 282)x* = 0. References
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