ISSN-0011-1643 CCA-2476

Original Scientific Paper

Wiener-Type Topological Indices

Mircea V. Diudea^a and Ivan Gutman^b

^a Department of Chemistry, Babş-Bolyai University, Arany Janos Str. 11, R-3400 Cluj-Napoca, Romania

^b Faculty of Science, University of Kragujevac, YU-34000 Kragujevac, Yugoslavia

Received May 8, 1997; revised September 15, 1997; accepted November 3, 1997

A unified approach to the Wiener topological index and its various recent modifications, is presented. Among these modifications particular attention is paid to the Kirchhoff, Harary, Szeged, Cluj and Schultz indices, as well as their numerous variants and generalizations. Relations between these indices are established and methods for their computation described. Correlation of these topological indices with physico-chemical properties of molecules, as well as their mutual correlation are examined.

INTRODUCTION

Half a century ago, in 1947, Harold Wiener published a paper¹ entitled »Structural Determination of Paraffin Boiling Points«. In this work the quantity W_e , eventually named Wiener index or Wiener number was introduced for the first time. (Note that in the great majority of chemical publications dealing with the Wiener number it is denoted by W. Nevertheless, in this paper we use the symbol W_e in order to distinguish between the Wiener index and other Wiener-type indices.) Using the language which in theoretical chemistry emerged several decades after Wiener, we may say that W_e was conceived as the sum of distances between all pairs of vertices in the molecular graph of an alkane, with the evident aim to provide a measure of the compactness of the respective hydrocarbon molecule.

In 1947 and 1948, Wiener published a whole series of papers^{1–5} showing that there are excellent correlations between W_e and a variety of physico--chemical properties of organic compounds. Nevertheless, progress in this field of research was by no means fast. It took some 15 years until Stiel and

Thodos⁶ became the first scientists apart from Wiener to use W_e . Only in 1971 Hosoya⁷ gave a correct and generally applicable definition of W_e . In 1975/76 Rouvaray and Crafford^{8,9} re-invented W_e , which shows that even at that time the Wiener-number-concept was not widely known among theoretical and mathematical chemists.

Finally, somewhere in the middle of the 1970s, the Wiener index began to rapidly gain popularity, resulting in scores of published papers. In the 1990s, we are witnesses of another phenomenon: a large number of other topological indices have been put forward, all being based on the distances between vertices of molecular graphs and all being closely related to W_{e} .

The aim of this article is to provide an introduction to the theory of the Wiener index and a systematic survey of various Wiener-type topological indices and their interrelations.

In order to achieve this goal, we first need to remind the readers of a few elementary facts of the chemical graph theory.

MOLECULAR GRAPHS

The branch of mathematics that studies graphs is called graph theory.¹⁰ A graph is a mathematical object that consists of two sorts of elements: vertices and edges. Every edge corresponds to a pair of vertices, in which case the respective two vertices are said to be adjacent. Not every pair of vertices need to be adjacent.

It is usual (although not necessary) to represent a graph by means of a diagram. In such a diagram the vertices are drawn either as small cycles or as big dots. The edges are then indicated by means of lines which connect the respective two adjacent vertices.

In Figure 1, three graphs, G_1 , G_2 and G_3 , are depicted. Graphs G_1 and G_2 have 12 vertices each whereas G_3 has 11 vertices.

Nowadays, graph theory has numerous applications in such diverse fields as electrotechnics, sociology, nuclear physics, computer science, ethnology, engineering, geography, linguistics, biology, transportation, and par-

Figure 1. Examples of graphs; note that G_1 and G_2 are molecular graphs whereas G_3 is not.

ticularly in chemistry. Numerous books^{11–18} and review articles^{19–23} have been written on the applications of graphs in chemistry. The applications are based on the fact that a very close analogy exists between a structural formula and a graph. In Figure 2, the structural formulas of 2,2,4,6-tetramethylheptane (I) and diphenylene (II) are depicted. These formulas should be compared with graphs G_1 and G_2 . Evidently, G_1 and G_2 can be understood as the graph representations of the carbon-atom skeletons of 2,2,4,6-tetramethylheptane and biphenylene, respectively. In this respect, we say that G_1 is the molecular graph of 2,2,4,6-tetramethylheptane whereas G_2 is the molecular graph of biphenylene. (Note that the hydrogen atoms and the double bonds are disregarded in G_1 and G_2 . This is not necessary, but has proved to be very convenient in practice). Recall that a molecular graph is necessarily connected. ^{14,16}

There are, of course, graphs that are not molecular graphs; an example is G_3 in Figure 1.

Figure 2. Structural formulas of 2,2,4,6-tetramethylheptane and diphenylene; their molecular graphs are G_1 and G_2 from Figure 1.

THE WIENER INDEX

In order to define the Wiener index, we have to explain the notion of distance in a graph.

Let G be an undirected connected graph and let its vertices be labeled by 1,2, ...,*n*. Let $i_0, i_1, i_2, ..., i_k$ be k+1 distinct vertices of graph G, so that for $j = 1,2, ...,k, i_{j-1}$ and i_j are adjacent. Then, vertices $i_0, i_1, i_2, ..., i_k$ form a path in graph G, whose length is k. The length of the shortest path connecting vertices x and y is called the distance between these vertices and is denoted by D_{xy} . In G, the distance is a metric, hence the following relations hold: $D_{xy} = 0$ if and only if x = y; $D_{xy} = D_{yx}$ and $D_{xy} + D_{yz} \ge D_{xz}$.

Consider graph G_4 depicted in Figure 3 as an example, this is the molecular graph of 1,1-dimethylcyclopentane. The sequence 2,3,7,6,5 is a path in G_4 connecting vertices 2 and 5 and having length 4. This, however, is not the shortest path between 2 and 5. There is, namely, another path 2,3,4,5 that has a length of only 3. Because 2,3,4,5 is the shortest path between vertices 2 and 5, we have $D_{25} = 3$.

Figure 3. The molecular graph of 1,1-dimethylcyclopentane.

At this point, the reader may check that for graph G_4 ,

$$\begin{array}{l} D_{12}=2,\, D_{13}=1,\, D_{14}=2,\, D_{15}=3,\, D_{16}=3,\, D_{17}=2\\ D_{23}=1,\, D_{24}=2,\, D_{25}=3,\, D_{26}=3,\, D_{27}=2\\ D_{34}=1,\, D_{35}=2,\, D_{36}=2,\, D_{34}=1\\ D_{45}=1,\, D_{46}=2,\, D_{47}=2\\ D_{56}=1,\, D_{57}=2\\ D_{67}=1\end{array}$$

Numbers D_{xy} , x = 1, 2, ..., N, y = 1, 2, ..., N define a square symmetric matrix of order N, which in this paper will be denoted by \mathbb{D}_{e} .

Now, the Wiener index is equal to the sum of distances between all pairs of vertices of the respective graph:

$$W_e = W_e(\mathbf{G}) = \Sigma_{x < y} D_{xy} . \tag{1}$$

In view of the above calculated distances in graph G₄, we have,

$$\begin{split} W_e(\mathbf{G}_4) &= (2\,+\,1\,+\,2\,+\,3\,+\,3\,+\,2)\,+\,(1\,+\,2\,+\,3\,+\,3\,+\,2)\,+\\ &+\,(1\,+\,2\,+\,2\,+\,1)\,+\,(1\,+\,2\,+\,2)\,+\,(1\,+\,2)\,+\,(1\,)\,=\,39. \end{split}$$

Such a direct calculation of the Wiener number may look very easy, and it is so only when the number of vertices of the graph considered is small. In the case of larger molecular graphs it would be very hard and impractical to compute the Wiener number from its definition, Eq. (1). Therefore, various methods²⁴ have been designed, by which W_e can be obtained in a much more efficient way, usually by means of computers. These computational details will not be outlined here.

CHEMICAL APPLICATIONS OF THE WIENER INDEX

In his first paper¹ Wiener used his index, W_e , for the calculation of the boiling points of alkanes. Wiener's formula for the boiling points (bp) reads:

$$bp = \alpha W_e + \beta P + \gamma \tag{2}$$

where α , β and γ are empirical constants and *P*, the polarity number, is the number of pairs of vertices whose distance is equal to 3. In a subsequent series of papers,^{2–5} Wiener pointed out the versatility of his index W_e in structure-property investigations.³ He used W_e to predict boiling points, molar volumes, refractive indices, heats of isomerization and heats of vaporization of alkanes.

Since 1976, the Wiener number has found a remarkable variety of chemical applications. These, as well as the underlying mathematical theory, are outlined in due detail in several monographs^{12,13,15} and numerous review articles.^{18,22,24–27} Anyway, the Wiener index happens to be one of the most frequently and most successfully employed structural descriptors that can be deduced from the molecular graph.

It has been recently demonstrated²⁸ that the Wiener index measures the area of the surface of the respective molecule and thus reflects its compactness. As a consequence, W_e is related to the intermolecular forces,^{18,29,30} especially in the case of hydrocarbons where polar groups are absent.

Physical and chemical properties of organic substances, which can be expected to depend on the area of the molecular surface and/or on the branching of the molecular carbon-atom skeleton, are usually well correlated with W_{e} . Among them are the heats of formation, vaporization and atomization, density, boiling point, critical pressure, refractive index, surface tension and viscosity of various, acyclic and cyclic, saturated and unsaturated as well as aromatic hydrocarbon species, velocity of ultra sound in alkanes and alkohols, rate of electroreduction of chlorobenzenes $etc.^{27}$ Correlations between W_e and melting points were also reported, but here the results were not completely satisfactory. Of particular practical importance is the prediction of the behaviour of organic substances in gas chromatography. For instance, chromatographic retention times (CRT) of monoalkyl- and o-dialkylbenzenes can be modeled by W_e .³¹

$$CRT = \alpha W_{\rho}^{\beta} + \gamma \tag{3}$$

where α , β and γ are empirically determined parameters (different, of course, from those in Eq. (2)). Some other examples can be given.

Since the pharmacological activity of a substance is related to some of its physico-chemical properties, it is not surprising that attempts have been made to use W_e in designing new drugs.^{32–34} Lukovits established correlations between W_e and cytostatic and antihistaminic activities of certain pharmacologically interesting compounds, as well as between W_e and their estron-binding affinities.³³ Recently he employed W_e in the study of the *n*-octanol/water partition coefficient (indicator of transport characteristics and interaction between receptor and bioactive molecule),³⁴ a physico-chemical parameter of profound importance for the forecasting of pharmacological activity of many compounds.

For work on the Wiener index of benzenoid hydrocarbons see the recent review. 35

WIENER MATRIX, HYPER-WIENER INDEX AND RELATED QUANTITIES

For acyclic structures, the Wiener index¹ W_e and its extension, the hyper-Wiener index³⁶, W_p , can be defined as

$$W_e = W_e(\mathbf{G}) = \Sigma_e N_{i,e} N_{j,e}$$
(4)

$$W_p = W_p(\mathbf{G}) = \Sigma_p N_{i,p} N_{j,p}$$
(5)

where N_i and N_j denote the number of vertices lying on two sides of the edge **e** or path **p**, respectively; here and later **e** and **p** denote an edge and a path, respectively, having endpoints **i** and **j**. Eq. (4) follows the method of calculation given by Wiener himself¹: »Multiply the number of carbon atoms on one side of any bond by those on the other side; W_e is the sum of those values for all bonds«.

Edge and path contributions, $N_{i,e} N_{j,e}$ and $N_{i,p} N_{j,p}$ are just entries in the Wiener matrices,^{37,38} W_e and W_p, (see Figure 4) from which W_e and W_p , can be calculated by:

$$W_e = (1/2) \Sigma_{i \Sigma i} [W_e]_{ii} \text{ and } W_p = (1/2) \Sigma_{i \Sigma i} [W_p]_{ii}.$$
(6)

Recall that by definition $[W_e]_{ii} = [W_p]_{ii} = 0$ for all **i**. Also, if **i** and **j** are not adjacent vertices, then the (ij)-entry of matrix W_e is zero. Note that W_e is the Hadamard product³⁹ (see symbol •) between W_p and the adjacency matrix: $W_e = W_p \bullet A$. Recall that the (ij)-entry of the Hadamard product of matrices X and Y is equal to the product of the (ij)-entries of X and of Y.

Note that, in the above formulas, numbers (*i.e.*, topological indices) are denoted by boldface italic symbols derived from the name of matrices, whereas matrices (and their entries) by special capital letters. The reason

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{split} W_e &= (1/2) \ \Sigma_{i \ \Sigma j} \ [\mathbb{D}_e]_{ij} = 46 \\ & \mathbb{D}_p \\ \hline 1 & 0 & 1 & 3 & 6 & 10 & 3 & 6 & 29 \\ \hline 1 & 0 & 1 & 3 & 6 & 10 & 3 & 6 & 29 \\ \hline 2 & 1 & 0 & 1 & 3 & 6 & 1 & 3 & 15 \\ \hline 2 & 1 & 0 & 1 & 3 & 6 & 1 & 3 & 15 \\ \hline 3 & 3 & 1 & 0 & 1 & 3 & 3 & 1 & 12 \\ \hline 4 & 6 & 3 & 1 & 0 & 1 & 6 & 3 & 20 \\ \hline 5 & 10 & 6 & 3 & 1 & 0 & 10 & 6 & 36 \\ \hline 5 & 10 & 6 & 3 & 1 & 0 & 10 & 6 & 36 \\ \hline 7 & 6 & 3 & 1 & 3 & 6 & 6 & 0 & 25 \\ \hline 7 & 6 & 3 & 1 & 3 & 6 & 6 & 0 & 25 \\ \hline W_p \\ \hline W_p &= (1/2) \ \Sigma_{i \ \Sigma j} \ [\mathbb{D}_p]_{ij} = 83 \\ \hline SZ_u \\ \hline S$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$W_{p} = (1/2) \Sigma_{i} \Sigma_{j} [D_{p}]_{ij} = 83 \qquad \qquad W_{p} = (1/2) \Sigma_{i} \Sigma_{j} [W_{p}]_{ij} = 83$ $SZ_{u} \qquad \qquad SZ_{u} \qquad \qquad SZ_{u} \qquad \qquad$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 0 1 1 3 3 1 3 12 1 0 1 1 1 1 1 6
2 6 0 3 3 5 6 3 26 2 6 0 3 3 3 6 3 24
3 4 4 0 5 5 4 6 28 3 4 4 0 5 5 4 6 28
4 4 2 2 0 6 4 2 20 4 2 2 2 0 6 2 2 16
5 2 2 1 1 0 2 2 10 5 1 1 1 1 0 1 1 6
6 1 1 1 3 3 0 3 12 6 1 1 1 1 1 0 1 6
7 4 1 1 1 -5 4 0 16 7 1 1 1 1 1 1 0 6
21 11 9 16 27 21 19 15 10 9 12 17 15 14
$SZ_{2} = \Sigma_{2} [SZ_{n}]_{ii} [SZ_{n}]_{ii} = 46$ $CJ_{2} = \Sigma_{2} [CJ_{n}]_{ii} [CJ_{n}]_{ii} = 46$
$SZ_{p} = \sum_{n} [SZ_{n}]_{ii} [SZ_{n}]_{ii} = 151$ $CJ_{n} = \sum_{n} [CJ_{n}]_{ii} [CJ_{n}]_{ii} = 83$

Figure 4. Distance-, Wiener-, Szeged- and Cluj-type matrices and derived Wiener-type indices for graph G_5 .

for such a notation comes from the aim to suggest that different graph-theoretical properties are related to particular matrices.

Indices W_e and W_p count all »external« paths⁴⁰ passing through the two endpoints of all edges and paths, respectively, in the graph.

Attempts have been made to extend the »edge contribution« definition (4) to cycle-containing structures, $^{41-43}$ such as:

$$W_e = (1/2) \sum_{i \sum j} C^e_{ij} / C_{ij}$$

$$\tag{7}$$

where C_{ij} is the number of the shortest paths joining vertices **i** and **j**, and C^{e}_{ij} denotes the number of those shortest paths between **i** and **j** which contain edge **e**. For the W_p contributions, Lukovits and Linert⁴⁰ have proposed a definition, which resulted in a variant of the hyper-Wiener index.

Another definition^{7,44} of Wiener-type numbers is based on the distance matrix, which, for reasons that will become clear later on, will be denoted by \mathbb{D}_{e} (see Figure 4). Following the procedure of Klein, Lukovits and Gutman,⁴⁰ the path analogue of the distance matrix is defined⁴⁴ as

$$[\mathbb{D}_{p}]_{ij} = \begin{pmatrix} [\mathbb{D}_{e}]_{ij} + 1\\ 2 \end{pmatrix}.$$
(8)

Then,

 $W_e = (1/2) \Sigma_i \Sigma_j [\mathbb{D}_e]_{ij} \text{ and } W_p = (1/2) \Sigma_i \Sigma_j [\mathbb{D}_p]_{ij}.$ (9)

Recall that Wiener himself defined the path number as »the sum of the distances between any two carbon atoms in the molecule, in terms of carbon-carbon bonds.« In other words, W_e is given as a sum of elements above the diagonal of the distance matrix.⁷ In opposition to the bond/path contribution definition, (see Eqs. (4) and (5)), relation (9) is valid both for acyclic and cycle-containing structures.

The Wiener index of a path graph, P_N , is given by the well known relation:⁴⁵

$$W_e = \binom{N}{2} + \binom{N}{3} = \binom{N+1}{3}.$$
 (10)

In trees, the branching introduced by vertices *r*, of degree $d_r > 2$, will lower the value of W_e , as given by the Doyle-Graver formula:^{45–48}

$$W_e = \binom{N}{2} + \binom{N}{3} - \sum_{r} \sum_{1 \le i < j < k \le d_r} n_i n_j n_k$$
(11)

where $n_1, n_2, ..., n_{dr}$ are the number of vertices in branches attached to vertex $r; n_1+n_2 + ... + n_{dr} + 1 = N$, and summation runs as follows: first summation over all branching points in the graph and the second one over all $\begin{pmatrix} d_r \\ 3 \end{pmatrix}$ trip-

let products around a branching point. In Eqs. (10), and (11), the first term appears to be the »size« term while the second (and the third) give/s account of the »shape« of a structure.⁴⁷

A relation similar to Eq. (10) can be written for the hyper-Wiener index of the path graph:

$$W_{p} = \binom{N+1}{3} + \binom{N+1}{4} = \binom{N+2}{4}.$$
 (12)

Klein, Lukovits and Gutman⁴⁰ have decomposed the hyper-Wiener number of trees by a relation which can be written as:

$$W_{p} = (\text{Tr}(\mathbb{D}_{e}^{2})/2 + W_{e})/2 \tag{13}$$

where $(Tr(D_e^2))$ is the trace of the squared distance matrix. Relation (13) is nowadays regularly used as the definition for the hyper-Wiener index of cycle-containing graphs.

Expansion of the second part of Eq. (9), by taking into account the definition of \mathbb{D} matrix,^{44,48} Eq. (8), results in a new decomposition (*i.e.*, a new definition) of the hyper-Wiener index, W_p :

$$W_{p} = \sum_{i < j} \left[\mathbb{D}_{p} \right]_{ij} = \sum_{i < j} \left(\begin{bmatrix} \mathbb{D}_{e} \right]_{ij} + 1 \\ 2 \end{bmatrix} = \sum_{i < j} \left[\mathbb{D}_{e} \right]_{ij} + \sum_{i < j} \left(\begin{bmatrix} \mathbb{D}_{e} \right]_{ij} \\ 2 \end{bmatrix}.$$
(14)

The first term is just the Wiener index, W_e . The second term is the »non-Wiener« part of the hyper-Wiener index, or the contributions of $[\mathbb{D}_p]_{ij}$ when |p|>1. It is denoted by $W_{\Delta}(D_{\Delta} \text{ in Refs. 44 and 48})$:

$$W_{\Delta} = \sum_{i < j} { \begin{bmatrix} \mathbb{D}_{e} \end{bmatrix}_{ij} \\ 2 }.$$
(15)

Thus, the hyper-Wiener index can be written as:

$$W_p = W_e + W_{\Delta} \,. \tag{16}$$

 W_{Λ} index is related to the $(Tr(\mathbb{D}_{e}^{2}))$ by:¹⁸

$$W_{\Delta} = (\text{Tr}(\mathbb{D}_{e}^{2}) - 2W_{e})/4$$
. (17)

 W_{Δ} has gained the status of a Wiener-type index both by the matrix definition, (Eq. (15)) and by its participation, along with the Wiener index, in the composition of the hyper-Wiener index (Eq. (16)). It is highly correlated (r = 0.99975) with W_p in the set of octanes.

Wiener indices express the compactness (or the expansiveness) of a molecular graph (see above). Their values (see Table I) decrease as the branching increases within a set of isomers.

TABLE I

Graph	W_e	W_p	$W_{W(A,D,1)}$	H_{De}	$H_{W\!e}$	H_{Dp}	H_{Wp}	$H_{W(A,D,1)}$
C8	84	210	256	13.7429	0.6482	10.56429	5.8593	7.4281
2MC7	79	185	253	14.1000	0.7077	10.86191	7.8938	7.4450
3MC7	76	170	209	14.2667	0.7244	10.98095	8.5244	7.6542
4MC7	75	165	208	14.3167	0.7286	11.01429	8.6897	7.6562
3EC6	72	150	172	14.4833	0.7452	11.13333	9.2952	7.8529
25M2C6	74	161	207	14.4667	0.7673	11.16667	10.1784	7.5312
24M2C6	71	147	194	14.6500	0.7839	11.30000	10.8923	7.6650
23M2C6	70	143	181	14.7333	0.7881	11.36667	11.0992	7.8140
34M2C6	68	134	167	14.8667	0.8006	11.46667	11.6339	7.9382
3E2MC5	67	129	161	14.9167	0.8048	11.50001	11.7881	7.9500
22M2C6	71	149	208	14.7667	0.7839	11.43333	10.9589	7.5250
33M2C6	67	131	179	15.0333	0.8048	11.63333	11.8548	7.7762
234M3C5	65	122	167	15.1667	0.8476	11.73333	13.7587	7.8996
3E3MC5	64	118	145	15.2500	0.8214	11.79999	12.5714	8.0202
224M3C5	66	127	209	15.1667	0.8435	11.76667	13.5768	7.4805
223M3C5	63	115	164	15.4167	0.8601	11.96667	14.4018	7.8850
233M3C5	62	111	147	15.5000	0.8643	12.03334	14.5976	7.9971
2233M4C4	58	97	139	16.0000	0.9196	12.50000	17.4196	7.9643

Wiener-type and Harary-type indices in octanes

QUASI-WIENER AND KIRCHHOFF INDICES

The *Quasi-Wiener* index, $^{49-52}$ *W*^{*}, is defined by means of the Laplace matrix:

$$W^* = N \sum_{i=2}^{N} \frac{1}{\lambda_i} \tag{18}$$

where λ_i , $i = 2,3, \ldots, N$ denote the positive eigenvalues of the Laplace matrix. In acyclic structures, $W^* = W_e$, but in cycle-containing graphs the two quantities are different. In benzenoid molecules, a linear (but not particularly good) correlation between these indices was found.⁵¹

Klein and Randić⁵³ have recently considered the so-called resistance distances between the vertices of a graph, by analogy to the resistance between the vertices of an electrical network (superimposable on the considered graph and having unit resistance of each edge). The sum of resistance distances is a topological index which was eventually named the *Kirchhoff index*.^{54,55} It satisfies the relation^{53,54}

$$Kf = N \operatorname{Tr}(\mathbb{L}^*) \tag{19}$$

where $Tr(L^{*})$ is the trace of the Moore-Penrose generalized inverse^{56,57} of the Laplace matrix. Recently, Gutman and Mohar have demonstrated the identity of the quasi-Wiener and the Kirchhoff numbers for any graph.⁵⁴

HARARY INDICES

If M is a matrix, then its reciprocal matrix RM is defined so that $[RM]_{ij} = 1/[M]_{ij}$ if $[M]_{ij}$ is different from zero, and $[RM]_{ij} = 0$ if $[M]_{ij} = 0$. *Harary* indices are constructed on the basis of reciprocal matrices, RM, and are called so in honour of Frank Harary^{18,24,58–61} They are defined by

$$H_M = (1/2) \Sigma_i \Sigma_i [\mathbb{RM}]_{ii}$$
(20)

subscript M being the identifier of matrix M.

The original Harary index, H_{De} , is constructed from the reciprocal distance matrix, \mathbb{RD}_{e} , introduced in Refs. 58 and 61. The entries in \mathbb{RD}_{e} suggest interactions between the atoms of a molecule, which decrease as their mutual distances increase. Table I lists H_{De} values for octanes. One can see that they increase with the branching (in contrast to the Wiener number values) within the set of isomers and no degeneracy appears. This index was tested^{18,44,62} on correlations with boiling points and van der Waals areas of octanes.

By analogy to H_{De} , Diudea⁶² has proposed the H_{We} index, derived from the reciprocal Wiener matrix, \mathbb{RW}_{e} . This number shows excellent correlation with the octane number, ON, both in linear (r = 0.971) and parabolic (r = 0.991) regression. H_{We} values for octanes are given in Table I. They show the same degenerate pairs (marked by italics) as the Wiener index within this set.

Another Harary-type index is $H_{W(A,D,1)}$. It is calculated from the »restricted random walk« matrix of Randić,⁶⁴ which is identical to the $\mathbb{RW}_{(A,D,1)}$ matrix,⁶³ (matrix $\mathbb{W}_{(A,D,1)}$ will be defined by Eq. (51)). Values of this index, for octanes, are listed in Table I, along with the corresponding $W_{W(A,D,1)}$ values. $W_{W(A,D,1)}$ index correlates with critical pressures, CP, of octanes (r = 0.919) while for 1/ $W_{W(A,D,1)}$ the correlation is higher (r = 0.962); in triple variable regression (W_p , *MTI* and 1/ $W_{W(A,D,1)}$), a coefficient of correlation r = 0.994 is obtained (*MTI* being the molecular topological index, discussed in the section »Schultz-type indices«).

Hyper-Harary numbers can be constructed by considering the reciprocal of a property collected in a path-defined square matrix:⁶²

$$H_{Dp} = (1/2) \Sigma_{i\Sigma j} [\mathbb{R}\mathbb{D}_{p}]_{ij}$$
(21)

$$H_{Wp} = (1/2) \Sigma_{i\Sigma j} [\mathbb{RW}_p]_{ij}.$$
⁽²²⁾

All the Harary indices are intercorrelated (over r = 0.98 within the set of octanes). The hyper-Harary index, H_{Wp} , shows an excellent correlation with the octane number (*e.g.*, linear (r = 0.9620) and parabolic (r = 0.9922) regression). Van der Waals area of octanes is quite well described by the H_{De} and H_{Dp} indices (in two variable regression, r = 0.9204).⁶³ A variant of hyper-Harary index is proposed in Ref. 60.

SZEGED INDICES

A Wiener analogue, referred to as the Szeged index, SZ, was recently proposed by Gutman.^{65–70} It is defined in analogy to Eq. (4), but the sets N_i and N_j are defined so the equation holds both for acyclic and cycle-containing graphs:

$$N_{i} = |\{ v \mid v \in V(G); [\mathbb{D}_{e}]_{iv} < [\mathbb{D}_{e}]_{jv} \}|$$
(23)

$$N_{i} = |\{v \mid v \in V(G); [\mathbb{D}_{e}]_{iv} < [\mathbb{D}_{e}]_{iv} \}|.$$
(24)

Thus, N_i and N_j represent the cardinalities of the sets of vertices closer to **i** and to **j**, respectively; vertices equidistant to **i** and **j** are not counted. Note that in N_i and N_j , defined by Eqs. (23) and (24), vertices **i** and **j** need to be adjacent. Note also that N_i depends on both **i** and **j**. The same is hold for N_j .

Based on the product $N_i N_j$, two symmetric Szeged matrices, $S\mathbb{Z}_e$ and $S\mathbb{Z}_p$ can be defined. In $S\mathbb{Z}_e$ the (ij)-entry is equal to $N_i N_j$ if **i** and **j** are adjacent vertices, and is zero otherwise. In $S\mathbb{Z}_p$ all matrix elements are given by $N_i N_j$. Note that $S\mathbb{Z}_e$ is the Hadamard product between $S\mathbb{Z}_p$ and the adjacency matrix, A.

A third, unsymmetric Szeged matrix,^{71,72} SZ_u can be defined (see Figures 4 and 5). The (*ij*)-entry of SZ_u is equal to N_i .

In analogy to the Wiener and hyper-Wiener indices, one defines the Szeged, SZ_e and the hyper-Szeged, SZ_p indices as follows

$$SZ_e = (1/2) \Sigma_{i \ \Sigma j} [SZ_e]_{ij} = \Sigma_e [SZ_u]_{ij} [SZ_u]_{ji}$$
(25)

$$SZ_p = (1/2) \Sigma_{i \Sigma j} [\mathbb{SZ}_p]_{ij} = \Sigma_p [\mathbb{SZ}_u]_{ij} [\mathbb{SZ}_u]_{ji} .$$
⁽²⁶⁾

Numbers SZ_e and SZ_p count the vertices closer to one and the another of the two endpoints of all edges and paths, respectively in a graph.

Figure 5. Matrices D_{e} , D_{p} , $S\mathbb{Z}_{u}$ and CJ_{u} and derived indices for graph G₆.

In the case of tree graphs, the index defined on edge is identical in Szeged and Wiener matrices (*i.e.* $SZ_e = W_e$) while the index defined on path is different (*i.e.* $SZ_p \sqrt{W_p}$). However, in cyclic graphs, the Szeged indices and the Wiener indices are different quantities and it is only accidentally or in special cases⁶⁵ (*e.g.* in complete graphs, $SZ_e(K_N) = W_e(K_N) = N(N-1)/2$; N>2) that they show identical values. Values of Szeged indices in octanes and simple cycles are listed in Tables II and III, respectively. Analytical relations for calculating Szeged indices in some classes of graphs can be found in Refs. 63, 65 and 71.

ГA	BL	Æ	Π

Graph	SZ_e	SZ_p	H_{SZe}	H_{SZp}
C8	84	340	0.6482	2.5024
2MC7	79	320	0.7077	3.5952
3MC7	76	307	0.7244	3.2286
4MC7	75	294	0.7286	3.2286
3EC6	72	272	0.7452	3.3952
25M2C6	74	308	0.7673	4.6464
24M2C6	71	288	0.7839	4.3173
23M2C6	70	282	0.7881	4.2714
34M2C6	68	268	0.8006	4.0298
2E2MC5	67	242	0.8048	4.6381
22M2C6	71	280	0.7839	5.7714
33M2C6	67	250	0.8048	5.1381
234M3C5	65	258	0.8476	5.4032
3E3MC5	64	220	0.8214	5.0714
224M3C5	66	254	0.8435	6.8976
223M3C5	63	242	0.8601	6.5744
233M3C5	62	234	0.8643	6.2476
2233M4C4	58	232	0.9196	8.9821

Szeged-type indices in octanes

The hyper-Szeged index was tested,⁷⁰ with good results, for discriminating ability (*i.e.* separating nonisomorphic isomers) on catafusenes and other cyclic structures. Enthalpies of the formation of (unsubstituted) cycloalkanes are well described by Szeged indices, in single (SZ_e , r = 0.9813; SZ_p , r = 0.9623) and two variable (SZ_e & W_e , r = 0.9912; SZ_p & W_e , r = 0.9910) correlations.

Reciprocal Szeged matrices, ⁷² RSZ_e , RSZ_p and RSZ_u , allow calculation of Harary-type indices, H_{SZe} and H_{SZp}

$$H_{SZe} = (1/2) \Sigma_{i \Sigma j} [\mathbb{RSZ}_{e}]_{ij} = \Sigma_{e} [\mathbb{RSZ}_{u}]_{ij} [\mathbb{RSZ}_{u}]_{ji}$$
(27)

$$H_{SZp} = (1/2) \Sigma_{i \Sigma j} [\mathbb{RSZ}_p]_{ij} = \Sigma_p [\mathbb{RSZ}_u]_{ij} [\mathbb{RSZ}_u]_{ji} .$$
(28)

In trees, $H_{SZe} = H_{We}$ but $H_{SZp} \vee H_{Wp}$. However, in cycle-containing structures, H_{SZe} and H_{We} as well as H_{SZp} and H_{Wp} are distinct quantities. Values of these indices in octanes and simple cycles are listed in Tables II and IV, respectively.

Like other Harary-type numbers, H_{SZe} and H_{SZp} indices correlate quite well (*r* about 0.88) with the van der Waals areas of octanes. The H_{SZp} index contributes, along with SW_3 and SW_4 indices,⁷³ to a correlation of r = 0.986; s = 1.15 with the boiling points of octanes, in a multilinear regression.

CLUJ INDICES

Before we proceed with the definition of Cluj indices and Cluj matrices, we remind the reader that the Wiener index W_e and the hyper-Wiener index W_p are constructed by means of numbers $N_{i,e}$ and $N_{i,p}$, see Eqs. (4) and (5). These equations strictly hold for acyclic systems. Generalization of numbers $N_{i,e}$ to cycle-containing graphs leads to numbers N_i , Eq. (23), which ultimately resulted in introduction of Szeged indices and Szeged matrices. We now give an analogous generalization of the numbers $N_{i,p}$ which is used in defining the Cluj matrix, CJ_u ,^{48,74–76}

$$[\mathbb{CJ}_{u}]_{ij} = N_{i, p, (i, j)} = \max |V_{i, p, (i, j)}|$$
(29)

where $|V_{i, p_k(i,j)}|$ is the number of elements of the set $V_{i, p_k(i,j)}$, where the maximum is taken over all paths $p_k(i,j)$ and where

$$V_{i, p_k(i,j)} = \{ v / v + V(G); \mathbb{D}_{iv} < \mathbb{D}_{jv}; p_h(i,v) \equiv p_k(i,j) = \{i\}; |p_k(i,j)| = \min \}$$
(30)
$$k = 1, 2, ...; h = 1, 2, ...$$

The set $V_{i, p_k(i,j)}$ (Eq. (30)), consists of vertices lying *closer* to vertex **i** and *external* with respect to the path $p_k(i,j)$ (condition $p_h(i,v) \equiv p_k(i,j) = \{\mathbf{i}\}$). Since in cycle-containing structures various shortest/longest paths, $p_k(i,j)$, could supply various sets $V_{i, p_k(i,j)}$, by definition, the (ij)- entries in the Cluj matrices are taken as max $|V_{i, p_k(i,j)}|$. The diagonal entries are zero. The above definitions (Eqs. (29) and (30)) hold for any connected graph. Cluj matrices, CJ_u , are square arrays of dimension $N \times N$ and are, in general, unsymmetric with respect to the main diagonal.

The symmetric Cluj matrices CJ_e and CJ_p are now defined in full analogy to the symmetric Szeged matrices, SZ_e and SZ_p :

$$[\mathbb{CJ}_{\mathbf{e}}]_{ij} = \Sigma_{\mathbf{e}} [\mathbb{CJ}_{\mathbf{u}}]_{ij} [\mathbb{CJ}_{\mathbf{u}}]_{ji}$$
(31)

$$[\mathbb{CJ}_{p}]_{ij} = \Sigma_{p} [\mathbb{CJ}_{u}]_{ij} [\mathbb{CJ}_{u}]_{ji} .$$
(32)

Also in this case, ${\rm CJ}_e$ is the Hadamard product between ${\rm CJ}_p$ and the adjacency matrix.

The respective Cluj indices are calculated in full analogy to the Szeged indices

$$CJ_e = (1/2) \Sigma_i \Sigma_j [CJ_e]_{ij} = \Sigma_e [CJ_u]_{ij} [CJ_u]_{ji}$$
(33)

$$CJ_p = (1/2) \Sigma_i \Sigma_j [\mathbb{CJ}_p]_{ij} = \Sigma_p [\mathbb{CJ}_u]_{ij} [\mathbb{CJ}_u]_{ji} .$$
(34)

When defined on edge, the CJ_e , index shows the following relations with the Wiener and Szeged indices: $CJ_e(T) = SZ_e(T) = W_e(T)$ and $CJ_e(C) = SZ_e(C)$ $\sqrt{W_e(C)}$, where T and C denote trees and cycle-containing structures, respectively. When defined on path, $CJ_p(T) = W_p(T) \sqrt{SZ_p(T)}$ and $CJ_p(C) \sqrt{W_p(C)} \sqrt{SZ_p(C)}$. Despite formal similarity between CJ_p and SZ_p indices, (Eqs. (34) and (26)), the externality condition $(p_h(i,v) \equiv p_k(i,j) = \{i\}$, see above) detaches the two hyper-indices (and the corresponding matrices).

Since, in trees, the Cluj indices superimpose over the Wiener indices, values of these indices are given for simple cycles, C_N , (Table III). Analytical relations for calculating Cluj indices in some classes of graphs can be found in Refs. 63.

 CJ_p index correlates⁷⁴ well (r = 0.920; s = 17.29) with the boiling points, BP, of a set of 45 cyclo-alkanes. The correlation increases (r = 0.991; s = 5.93) if a logarithmic scale is used for the topological descriptor.

C_N	W_e	W_p	SZ_e	SZ_p	CJ_e	CJ_p
3	3	3	3	3	3	3
4	8	10	16	18	16	18
5	15	20	20	40	20	40
6	27	42	54	105	54	90
7	42	70	63	189	63	154
8	64	120	128	364	128	288
9	90	180	144	576	144	450
10	125	275	250	945	250	705
11	165	385	275	1375	275	1001
12	216	546	432	2046	432	1470

TABLE III

Wiener, Szeged and Cluj indices in simple cycles

Reciprocal Cluj matrices, \mathbb{RCJ}_e , \mathbb{RCJ}_p and \mathbb{RCJ}_u , allow calculation of the Harary-type indices,⁶³ H_{CJe} and H_{CJp}

$$H_{CJe} = (1/2) \Sigma_{i \Sigma j} [\mathbb{RCJ}_{e}]_{ij} = \Sigma_{e} [\mathbb{RCJ}_{u}]_{ij} [\mathbb{RCJ}_{u}]_{ji}$$
(35)

$$H_{CJp} = (1/2) \Sigma_{i \Sigma j} [\mathbb{RCJ}_{p}]_{ij} = \Sigma_{p} [\mathbb{RCJ}_{u}]_{ij} [\mathbb{RCJ}_{u}]_{ji} .$$
(36)

In trees, $H_{CJe} = H_{We}$ and $H_{CJp} = H_{Wp}$. Correlations with the van der Waals areas of octanes were shown above. However, in cycle-containing structures, $H_{CJe/p}$ and $H_{We/p}$ are distinct quantities. Values of these indices, in simple cycles, are listed in Table IV.

TABLE IV

C_N	H_{De}	H_{Dp}	H_{SZe}	H_{SZp}	H_{CJe}	H_{CJp}
3	3.0000	3.0000	3.0000	3.0000	3.00003	.0000
4	5.0000	4.6667	1.0000	3.0000	1.00003	.0000
5	7.5000	6.6667	1.2500	2.5000	1.25002	.5000
6	10.0000	8.5000	0.6667	2.5000	0.66672	.9167
$\overline{7}$	12.8333	10.5000	0.7778	2.3333	0.77783	.3056
8	15.6667	12.4000	0.5000	2.3333	0.50003	.2778
9	18.7500	14.4000	0.5625	2.2500	0.56253	.1250
10	21.8333	16.3333	0.4000	2.2500	0.40003	.3167
11	25.1167	18.3333	0.4400	2.2000	0.44003	.4772
12	28.4000	20.2857	0.3333	2.2000	0.33333	.4600

Harary-type (reciprocal property) indices in simple cycles

DISTANCE EXTENDED INDICES

Tratch *et al.*⁷⁷ have recently proposed an *expanded distance matrix*, \mathbb{E} , which in this paper will be considered only in the case of trees, and will be denoted by \mathbb{D}_{W_p} . On this matrix, a distance-extended Wiener index, $D_{-}W_p$, was defined

$$D_W_p = (1/2) \sum_{i \ \Sigma_i} [D_W_p]_{ij} = (1/2) \sum_{i \ \Sigma_j} D_{ij} N_i N_j$$
(37)

where D_{ij} is the distance between vertices **i** and **j** whereas N_{ij} , N_j have the same meaning as above. Values of this index for octanes are listed in Table V.

 \mathbb{D}_{w_p} matrix results as the Hadamard product³⁹ $\mathbb{D}_{e} \cdot \mathbb{W}_{p}$.

Applying the procedure to other square matrices (e.g. SZ, CJ, $W_{(A,D,1)}$) results in distance-extended matrices: they can be operated either by Eq.

(38) or by the »orthogonal« operator (in fact, the half sum of entries in $\mathbb{M} \bullet \mathbb{M}^{\mathrm{T}}$ (Eq. (39)), thus giving two types of distance-extended indices, $D_{-}M$ and $D^{2}_{-}M$, respectively:⁷²

$$D_M = (1/2) \Sigma_{i \Sigma j} [D_M]_{ij}$$
(38)

$$D^{2}_{M} = \Sigma_{p} \left[\mathbb{D}_{M} \right]_{ij} \left[\mathbb{D}_{M} \right]_{ji} = (1/2) \Sigma_{i\Sigma j} \left[\mathbb{D}_{M} \bullet (\mathbb{D}_{M})^{\mathrm{T}} \right]_{ij}.$$
(39)

Note that the first type operator may operate both on symmetric and unsymmetric square matrices while the second one is valid only on unsymmetric square matrices (*e.g.*, SZ_u , CJ_u – see below).

Indices D^2_M involve squared distances (indicated by superscript 2), which are used for calculating the moment of inertia of molecules (see Ref. 77). Values of distance-extended indices in octanes are listed in Table V.

In acyclic structures, the following relations hold⁷²

$$D_{-}CJ_{p} = (1/2) \Sigma_{i\Sigma j} [D_{-}CJ_{p}]_{ij} = (1/2) \Sigma_{i\Sigma j} D_{ij} N_{i,p} N_{j,p} = D_{-}W_{p} \quad (40)$$
$$D^{2}_{-}CJ_{u} = \Sigma_{p} [D_{-}CJ_{u}]_{ij} {}^{[D}_{-}CJ_{u}]_{ji} = (1/2) \Sigma_{i\Sigma j} (D_{ij})^{2}N_{i,p}N_{j,p} =$$
$$= (1/2) \Sigma_{i\Sigma j} [D_{e}]_{ij} [D_{-}W_{p}]_{ij} = (1/2) \Sigma_{i\Sigma j} [D_{e} \bullet D_{e} \bullet W_{p}]_{ij} . \quad (41)$$

When Eq. (38) is applied on the CJ_u matrix, it results in a D_CJ_u index, which, in acyclic structures, equals the hyper-Wiener index:

$$D_{-}CJ_{u} = (1/2) \Sigma_{i\Sigma j} [\mathbb{D}_{-}\mathbb{C}J_{u}]_{ij} = (1/2) \Sigma_{i\Sigma j} D_{ij}N_{i,p} =$$

= (1/2) $\Sigma_{i\Sigma j} N_{i,p}N_{j,p} = (1/2) \Sigma_{i\Sigma j} [\mathbb{W}_{p}]_{ij} = W_{p} .$ (42)

Other D_M indices, such as D_SZ_p and $D_W_{(A,D,1)}$, are distinct quantities.⁷² All these indices are distinct in cycle-containing structures.

(3D) D_M and (3D) D^2_M indices are also conceivable,⁷⁵ using the (3D) \mathbb{D}_e matrix in the extending procedure.

When the Hadamard multiplication is performed using the reciprocal distance matrix, ${}^{\mathbb{RD}}_{e}(i.e. \mathbb{RD}_{e} \bullet \mathbb{M})$, it results in new (reciprocal) distance-extended indices, ${}^{63,72}H_{-}M$ and $H^{2}_{-}M$:

$$H_M = (1/2) \Sigma_{i\Sigma j} [\mathbb{RD}_M]_{ij}$$
(43)

$$H^2_M = \Sigma_p [\mathbb{RD}_M]_{ij} [\mathbb{RD}_M]_{ji} .$$
(44)

In acyclic structures, $H_Wp = H_CJp \ \sqrt{H_SZp}$, relations which come out of: $D_Wp = D_CJp \ \sqrt{D_SZp}$. Values of these indices, for octanes, are included in Table V.

TABLE	

Distance-extended Wiener-type indices in octanes

1	/II (1	ע מע	/II (n2 n1	n2 an	11 11	11 0.1	112 01	112 0.7	11 11
urapn	D^{-W_p}		$D_{-}W(A,D,I)$	$D^{-}Cd_{u}$	$D^{-}DL_{u}$	m_{-m}	п_024р	$n^ C d_u$	$n^{-}DL_{u}$	$II_{-W}(A,D,I)$
C8	462	1068	1181	1386	4440	131.4762	161.8190	103.6704	$111.36 \ 10$	70.5833
2MC7	382	963	1072	1056	3715	120.2333	153.7333	96.4189	105.2822	74.7667
3MC7	336	891	803	880	3269	113.4167	149.3667	92.0403	102.0206	68.0917
4MC7	321	821	783	825	2877	111.1333	146.2500	90.5767	100.5958	68.9333
3EC6	275	724	569	649	2384	104.3167	139.0000	86.1981	96.4500	63.3000
25M2C6	309	906	752	775	3310	109.1333	147.1333	89.1878	99.5044	70.4338
24M2C6	269	799	653	635	2713	102.4833	141.5667	84.8369	96.0856	70.1333
23M2C6	259	762	599	605	2514	100.4000	140.5000	83.4133	95.4083	67.0833
34M2C6	234	692	517	520	2148	96.0333	136.5333	80.5261	93.0844	65.2333
3E2MC5	219	581	471	465	1643	93.7500	129.5000	79.0625	90.5000	65.0833
22M2C6	278	791	721	676	2779	102.9333	138.0000	84.9394	94.7583	74.3000
33M2C6	228	643	553	506	2011	94.2000	129.5000	79.1650	89.9333	70.3500
234M3C5	203	643	482	421	1869	89.8333	132.5000	76.2778	89.8333	68.5000
3E3MC5	193	508	388	391	1372	87.7500	121.0000	74.8542	85.7500	63.7500
224M3C5	217	664	643	467	2072	92.1667	129.0000	77.7639	88.6667	80.6667
223M3C5	187	589	454	377	1667	85.9167	126.5000	73.4931	86.5833	70.1667
233M3C5	177	556	383	347	1524	83.8333	124.0000	72.0694	85.2500	66.1667
2233M4C4	145	550	322	259	1474	76.0000	121.0000	66.5000	81.5000	68.5000

Indices D^2_M and H^2_M show a better discriminating ability than that shown by the D_M and H_M indices, as it can be seen from Table VI (degenerate values are shaded).

In correlating tests, $1/D_W_{(A,D,1)}$ correlates well with the critical pressure of octanes (r = 0.973). The same property is excellently expressed (r = 0.991) in a three variable regression by H_W_p , W_p and *MTI* indices⁷² (see below). Van der Waals areas of these hydrocarbons are correlated up to r = 0.870 with the H^2_M indices included in Table V.

WALK NUMBERS, ${}^{e}W_{M}$: WIENER-TYPE INDICES OF HIGHER RANK

The idea of Wiener-type indices of higher rank comes out⁴⁴ of the following facts: (*i*) occurrence of degeneracy (since C7 isomers) among the values of classical Wiener indices; (*ii*) the higher rank Wiener indices ${}^{k}W$, (*i. e.* Wiener numbers counting all paths of length k=1, 2, 3, ...), proposed by Randić³⁷ show no good separating ability (*i.e.* a spectrum of values is necessary for discriminating pairs of isomers like 2,2-dimethylhexane (${}^{k}W$ sequence: 71, 43, 22, 10, 3) and 2,4-dimethylhexane (${}^{k}W$ sequence: 71, 43, 22, 9, 2)); and (*iii*) use of higher power distance matrix (*e.g.* in the definition of W_{p} or in the topographic indices of shape profile).⁷⁷

Walk is a continuous sequence of edges $e_1, e_2, ..., e_l$ traversed so that any two subsequent edges are adjacent.¹⁶ The number of traversed edges is called the length (*i.e.* elongation; rank) of the walk. Revisit of vertices and edges is allowed. Walk numbers (*i.e.*, walk degrees;⁷⁹ atomic walk count⁸⁰) can be calculated by raising the adjacency matrix (*i.e.*, the matrix having the nondiagonal entries 1 if two vertices of a graph are connected by an edge, and 0 otherwise) to a power *e*, equaling the requested elongation of walk.

Diudea *et al.* ⁷⁹ have proposed the so called ${}^{e}W_{M}$ algorithm, which eludes the matrix power calculation. It evaluates walk numbers of various ranks, ${}^{e}W_{M,i}$, on any square matrix, \mathbb{M} , by iterative summation of vertex contributions over all first neighbours of vertex **i**, in a graph.

The algorithm ${}^{e}W_{M}$ is defined by:

$$\mathbb{M} + {}^{\mathrm{e}}\mathbb{W} = {}^{\mathrm{e}}\mathbb{W}_{\mathbb{M}} \tag{45}$$

$$[{}^{e+1W}{}_{\mathbf{M}}]_{ii} = \sum_{j} ([\mathcal{M}]_{ij} [{}^{eW}{}_{\mathbf{M}}]_{jj}); \quad [{}^{0W}{}_{\mathbf{M}}]_{jj} = 1$$

$$(46)$$

$$[{}^{\mathrm{e}+1\mathbb{W}}{}_{\mathrm{M}}]_{ij} = [{}^{\mathrm{e}\mathbb{W}}{}_{\mathrm{M}}]_{ij} = [\mathbb{M}]_{ij}$$

$$\tag{47}$$

where ${}^{eW}{}_{M}$ is the walk diagonal matrix. Diagonal elements, $[{}^{eW}{}_{M}]_{ii}$ equal the sum, on row **i**, of entries $[M^{e}]_{ij}$, thus giving the walk degrees (weighted by the property collected in M, specified as a subscript letter), ${}^{eW}_{M,i}$:

$$[{}^{\mathrm{eW}}{}_{\mathrm{M}}]_{ii} = \sum_{i} [\mathbb{M}^{\mathrm{e}}]_{ij} = {}^{e}W_{M,i} .$$

$$(48)$$

The algorithm offers global walk numbers, ${}^{e}W_{M}$, as the half-sum of local numbers:

$${}^{e}W_{M} = (1/2) \Sigma_{i} {}^{e}W_{M,i} = (1/2) \Sigma_{i \Sigma_{i}} [M^{e}]_{ii}.$$
(49)

When \mathbb{M} is the distance matrix (or some other matrix involving distances or paths), ${}^{e}W_{M}$ is just a Wiener-type index of rank $e: {}^{e}W_{De}$ denotes the Wiener index as defined by Hosoya; ${}^{e}W_{We}$ represents the Wiener index as defined by Wiener; ${}^{e}W_{Wp}$ denotes the hyper-Wiener index as defined by Randić and so on. Walk numbers of rank 2 are listed in Table VI. for octane isomers. The degenerate values are italicized.

TABLE VI

Walk numbers, ${}^{e}W_{M}$; e = 2, in octanes

Graph	$^{2}W_{De}$	$^2W_{We}$	$^{2}W_{Dp}$	$^2W_{Wp}$	$^{2}W_{CJu}$	$^{2}W_{SZu}$
C8	1848	2100	12726	12054	1596	2620
2MC7	1628	2000	9711	9829	1396	2430
3MC7	1512	1892	8256	8338	1284	2380
4MC7	1476	1848	7830	7815	1248	2302
3EC6	1360	1740	6412	6460	1136	2142
25M2C6	1420	1900	7171	7825	1206	2286
24M2C6	1312	1792	6023	6536	1102	2195
23M2C6	1280	1748	5772	6163	1072	2154
34M2C6	1208	1684	5050	5426	1004	2074
3E2MC5	1172	1640	4646	4992	968	1858
22M2C6	1316	1808	6277	6779	1112	2089
33M2C6	1176	1664	4878	5221	978	1939
234M3C5	1096	1648	4076	4700	906	1922
3E3MC5	1072	1564	3916	4222	880	1702
224M3C5	1128	1708	4406	5165	940	1868
223M3C5	1032	1600	3653	4220	850	1784
233M3C5	1000	1564	3402	3917	820	1730
2233M4C4	868	1516	2521	3169	706	1570

Walk numbers can be calculated by means of the *Walk matrix*^{44,48,75} $W_{(M_1,M_2,M_3)}$, which is defined on the basis of the above presented algorithm, as follows:

$$[\mathbb{W}_{(\mathbf{M}_{1},\mathbf{M}_{2},\mathbf{M}_{3})}]_{ij} = {}^{[M_{2}]}{}_{ij} W_{M_{1},i} [\mathbb{M}_{3}]_{ij}$$
(50)

where: $W_{M_1,i}$ is the walk number of vertex **i**, weighted by the property collected in matrix M_1 ; $[M_{2]ij}$ gives the length of the walk and the factor $[M_{3]ij}$ is taken from a third square matrix. Appropriate combinations of M_1 , M_2 and M_3 matrices offer various unsymmetric matrices (see Figure VI). Values of $W_{W(A,D,1)}$ in octanes are listed in Table I.

Considering M_2 in (51) as a matrix having all the nondiagonal entries equal to 1 (in general *n*), one can obtain ${}^{e}W_{M}$ numbers which represent half sums on the matrix product M_{1M3}

$$\sum_{j} [\mathbb{W}_{(M_{1}, 1, M_{3})}]_{ij} = \sum_{j} ({}^{I}W_{M_{1}, i} [\mathbb{M}_{3}]_{ij}) = {}^{I}W_{M_{1}, i} \sum_{j} [\mathbb{M}_{3}]_{ij} = {}^{I}W_{M_{1}, i} {}^{I}W_{M_{3}, i}$$
(51)

$${}^{l}W_{W(M_{1},I,M_{3}),i} = {}^{l}W_{M_{1},i} \; {}^{l}W_{M_{3},i}$$
(52)

and by summing over all vertices in the graph, one obtains:

$$\Sigma_i {}^{l} W_{W(M_1, l, M_3), i} = \Sigma_i ({}^{l} W_{M_1, i} {}^{l} W_{M_3, i})$$
(53)

or as global walk numbers:

$$2 {}^{1}W_{W(M_{1},I,M_{3})} = 2 {}^{1}W_{M_{1},M_{3}}.$$
(54)

When $\mathbb{M}_1 = \mathbb{M}_3$, then ${}^1W_{M_1,M_3} = {}^1W_{M_1,M_1} = {}^2W_{M_1}$. Relation (54) can be extended to:

$$2^{n+1}W_M = \sum_i ({^nW}_{M,i} {^1W}_{M,i}) = \sum_i {_{W(M,n,M),i}} = 2W_{W(M,n,M)}$$
(55)

where n is the matrix having entries $[n]_{ij}$. Eq. (55) proves that $[W_{(M_1, M_2, M_3)}]_{ij}$ is a true matrix operator.

Walk number ${}^{2}W_{CJu}$ deserves more attention. By raising CJ_{u} matrix to the second power results in the walk number of rank 2, ${}^{2}W_{CJu}$, which is the mean of the half sum of entries in the matrix product, $D_{e} W_{e}$

$${}^{2}W_{CJu} = (1/2) \Sigma_{i\Sigma j} \left[C \mathbb{J}_{u}^{2} \right]_{ij} = (1/2) \Sigma_{i\Sigma j} \left[\mathbb{D}_{e} W_{e} \right]_{ij}.$$
(56)

In walk number terms, Eq. (56) can be written as:

$${}^{2}W_{CJu} = (1/2) \Sigma_{i} {}^{1}W_{De,i} {}^{1}W_{We,i} = (1/2) \Sigma_{i} {}^{1}W_{We,i} {}^{1}W_{De,i} = {}^{1}W_{DeWe}$$
(57)

proving that the product of local walk numbers is commutative. CJ_u matrix is thus a chimera between the D_e and W_e matrices.

(A,D,1)

	1	2	3	4	5	6	7	8
1	0	1	6	15	52	6	15	52
2	3	0	3	10	39	3	10	39
3	14	3	0	3	14	14	3	14
4	27	8	2	0	2	27	8	27
5	36	12	4	1	0	36	12	36
6	6	1	6	15	52	0	15	52
7	27	8	2	8	27	27	0	2
8	36	12	4	12	36	36	1	0

		(A	,1,D)					
	1	2	3	4	5	6	7	8
1	0	1	2	3	4	2	3	4
2	3	0	3	6	9	3	6	9
3	6	3	0	3	6	6	3	6
4	6	4	2	0	2	6	4	6
5	4	3	2	1	0	4	3	4
6	2	1	2	3	4	-0	3	4
7	6	4	2	4	6	6	0	2
8	4	3	2	3	4	4	1	0

Figure 6. Graph G7 (and its weighted graphs $G_{7}({}^{e}W_{A,i})$ and $W_{(M_{1},M_{2},M_{3})}$ matrices.

Walk numbers, ${}^{e}W_{M}$, are useful in discriminating structural isomers. Usually, a rank of two suffices in discriminating *e.g.*, octane isomers.⁴⁴ Special graphs, however need, a rank higher than two.

Walk numbers, as the classical Wiener index, exhibit good correlation with octane numbers: W_e (r = 0.957); ${}^2W_{De}$ (r = 0.966); ${}^2W_{Dp}$ (r = 0.969) in a single variable regression and in two variables one, r = 0.991 with ${}^2W_{DA}$ and ${}^1W_{W(A,D,D)}$.

SCHULTZ-TYPE INDICES

Among modifications of the Wiener index, the »molecular topological index«,⁸¹ *MTI*, (or the Schultz number) appears to be one of the most studied (for a complete bibliography see Ref. 82). It is defined as

$$MTI = MTI(G) = \sum_{i} \left[\mathbb{V}_{(A + De)} \right]_{i}$$
(58)

where A and \mathbb{D}_e are the adjacency and the distance matrices, respectively, and $w = (v_1, v_2, \ldots, v_N)$ is the vector of the vertex valences / degrees of the graph.

By applying the matrix algebra, MTI can be written^{82–89} as

$$MTI = \boldsymbol{u}(A(A+D_{e}))\boldsymbol{u}^{\mathrm{T}} = S(A^{2}) + S(AD_{e})$$
(59)

where

$$S(\mathbb{A}^2) = \boldsymbol{u}(\mathbb{A}^2)\boldsymbol{u}^{\mathrm{T}} = \Sigma_i \Sigma_j [\mathbb{A}^2]_{ij} = \Sigma_i (v_i)^2$$
(60)

$$S(AD_e) = \boldsymbol{u}(AD_e)\boldsymbol{u}^{\mathrm{T}} = \Sigma_i \Sigma_j [AD_e]_{ij} = \Sigma_i (v_i d_i).$$
(61)

The term $S(\mathbb{A}^2)$ is just the first Zagreb group index^{90,91} while $S(\mathbb{AD}_e)$ is the true Schultz index (*i.e.*, the non-trivial part of *MTI*), then re-invented by others.^{88,92} The parameter d_i , (Eq. (61)) stands for the i^{th} row sum of entries in the distance matrix: $d_i = \Sigma_j [\mathbb{D}_e]_{ij}$. In the above relations, \boldsymbol{u} and \boldsymbol{u}^T are the unit vector (of order N, which is the number of vertices in G) and its transpose, respectively, as recently used by Estrada *et al.*^{88,89} for rejecting the double sum symbol.

In acyclic structures, there exists^{85,93–95} a linear dependency between the number $S(AD_e)$ and the Wiener index

$$S(AD_{e}) = 4W - N(N-1)$$
. (62)

S in symbols of the type $S(AD_e)$ reminds of the name of Schultz.

In the formalism of Eq. (59), the Wiener index can be written as

$$W = (1/2) \Sigma_i \Sigma_j [W_e]_{ij} = (1/2)\boldsymbol{u} W_e \boldsymbol{u}^{\mathrm{T}}$$
(63)

$$W = (1/2) \Sigma_i \Sigma_j [\mathbb{D}_e]_{ij} = (1/2)\boldsymbol{u} \mathbb{D}_e \boldsymbol{u}^{\mathrm{T}}$$
(64)

when calculated either from the \mathbb{W}_e or \mathbb{D}_e matrix.

Gutman⁸⁵ has expressed the $S(AD_e)$ index by analogy to the Wiener index, *cf.* Eq. (4)),

$$S(AD_{e}) = \Sigma_{(i,j)} \left[N_{i \ \Sigma k \in I} v_{k} + N_{j \ \Sigma k \in J} v_{k} \right]$$
(65)

where $\Sigma_{k \in I}$ and $\Sigma_{k \in J}$ denote the summation over all vertices lying on the **i**-side and **j**-side (*i.e.*, to the **I** and **J** fragments, respectively) of the edge (**i**,**j**). Other valency-distance indices, composing two or three matrices, have been subsequently proposed.^{85,88}

A Schultz-type index, built up on a product of square matrices (of dimension $N \times N$), one of them being obligatory the adjacency matrix, A, can be written as⁸⁷

$$MTI(M_1, A, M_3) = \boldsymbol{u}(M_1(A + M_3))\boldsymbol{u}^{\mathrm{T}} = \boldsymbol{u}(M_1A + M_1M_3)\boldsymbol{u}^{\mathrm{T}} =$$

= $S(M_1A) + S(M_1M_3).$ (66)

It is easily seen that $MTI(A,A,D_e)$ is the Schultz original index. Analogue Schultz indices of sequence: (D_e,A,D_e) , (RD_e,A,RD_e) , (W_p,A,W_p) have been proposed^{82,86,89} and tested for the correlating ability (see below).

Walk matrix, $\mathbb{W}_{(M_1,M_2,M_3)},$ can be related to the Schultz numbers as follows

$$MTI(M_1, A, M_3) = \boldsymbol{u}(W_{(M_1^{T}, 1, A)} + W_{(M_1^{T}, 1, M_3)})\boldsymbol{u}^{T} = \boldsymbol{S}(M_1A) + \boldsymbol{S}(M_1M_3)$$
(67)

$$S(\mathbf{M}_{1}\mathbf{A}) = \boldsymbol{u} \mathbf{W}_{(\mathbf{M}_{1}^{\mathrm{T}}, \mathbf{1}, \mathbf{A})} \boldsymbol{u}^{\mathrm{T}}$$
(68)

$$S(\mathbb{M}_1\mathbb{M}_3) = \boldsymbol{u}\mathbb{W}_{(\mathbb{M}_1^{\mathrm{T}},\mathbb{I},\mathbb{M}_3)}\boldsymbol{u}^{\mathrm{T}}.$$
(69)

Quantity \boldsymbol{u} W_{(M1^T}, \boldsymbol{u} ^T is twice the walk number ¹WW_{(M1^T,1} (compare Eqs. (69) and (54)). Thus, it is not difficult to write a Schultz⁻type index in terms of walk numbers

$$MTI(M_1, A, M_3) = 2({}^{1}W_{M_1 A} + {}^{1}W_{M_1 M_3})$$
(70)

which is $W_{(M_1, M_2, M_3)}$ -calculable, as:

$$MTI(M_1, A, M_3) = 2({}^{1}W_{W_{(M_{1,d,A})}} + {}^{1}W_{W_{(M_{1,d,M_3})}}.$$
(71)

Let us consider the case of CJ_u in the sequence $(M_1, A, M_3) = (CJ_u, A, CJ_u)$. Since the Cramer product is not commutative, and since CJ_u is an unsymmetric matrix, a Schultz-type index can be written as

$$MTI(CJ_{u}, A, CJ_{u}) = (\boldsymbol{u}(CJ_{uA})\boldsymbol{u}^{T} + \boldsymbol{u}(ACJ_{u})\boldsymbol{u}^{T})/2 + \boldsymbol{u}(CJ_{u}^{2})\boldsymbol{u}^{T} = (72)$$
$$= (\boldsymbol{u}(CJ_{uA})\boldsymbol{u}^{T} + \boldsymbol{u}(CJ_{u}^{TA})\boldsymbol{u}^{T})/2 + \boldsymbol{u}(CJ_{u}^{2})\boldsymbol{u}^{T} =$$
$$= S(CJ_{uA}) + S(CJ_{u}^{2})$$

and considering that, in acyclic structures, $RS(\mathbb{CJ}_u) = RS(\mathbb{W}_e)$ and $CS(\mathbb{CJ}_u) = CS(\mathbb{D}_e)$, RS and CS being the row sums and column sums in a matrix, respectively, Eq. (72) becomes

$$MTI(CJ_{u}, A, CJ_{u}) = (\boldsymbol{u}(D_{eA})\boldsymbol{u}^{T} + \boldsymbol{u}(AW_{e})\boldsymbol{u}^{T})/2 + \boldsymbol{u}(D_{eWe})\boldsymbol{u}^{T} = (73)$$
$$= (S(D_{eA}) + S(AW_{e}))/2 + S(D_{eWe}).$$

Since A, \mathbb{D}_{e} and \mathbb{W}_{e} are symmetric matrices, it is obvious that $S(\mathbb{D}_{eA}) = S(\mathbb{A}\mathbb{D}_{e})$ and $S(\mathbb{A}\mathbb{W}_{e}) = S(\mathbb{W}_{eA})$.

In terms of the $\mathbb{W}_{(M_1,\ M_2,\ M_3)}$ matrix, (see Eqs. (50) and (67)), $\textit{MTI}(\mathrm{CJ}_u, A, \mathrm{CJ}_u)$ can be written as

$$MTI(CJ_{\mathbf{u}}, A, CJ_{\mathbf{u}}) = (\boldsymbol{u} \mathbb{W}_{(CJ_{\mathbf{u}}^{\mathrm{T}}, 1, A)} \boldsymbol{u}^{\mathrm{T}} + \boldsymbol{u} \mathbb{W}_{(CJ_{\mathbf{u}}, 1, A)} \boldsymbol{u}^{\mathrm{T}})/2 + \boldsymbol{u} \mathbb{W}_{(CJ_{\mathbf{u}}^{\mathrm{T}}, 1, CJ_{u})} \boldsymbol{u}^{\mathrm{T}} (74)$$

which gives the exact result of Eq. (72) or (73). Relations (72) and (74) allow the calculation of this index in any connected graph. Relation (73) offers a *MTI* number which encloses the information of three matrices.

Szeged matrix, SZ_u , behaves similarly:

$$MTI(SZ_{u}, A, SZ_{u}) = (\boldsymbol{u}(SZ_{uA})\boldsymbol{u}^{T} + \boldsymbol{u}(ASZ_{u})\boldsymbol{u}^{T})/2 + \boldsymbol{u}(SZ_{u}^{2})\boldsymbol{u}^{T} = (75)$$
$$= (\boldsymbol{u}(SZ_{uA})\boldsymbol{u}^{T} + \boldsymbol{u}(SZ_{u}^{TA})\boldsymbol{u}^{T})/2 + \boldsymbol{u}(SZ_{u}^{2})\boldsymbol{u}^{T}$$

$$MTI(SZ_{u}, A, SZ_{u}) = (\boldsymbol{u} \mathbb{W}_{(SZ_{u}^{T}, 1, A)} \boldsymbol{u}^{T} + \boldsymbol{u} \mathbb{W}_{(SZ_{u}, 1, A)} \boldsymbol{u}^{T})/2 + \boldsymbol{u} \mathbb{W}_{(SZ_{u}^{T}, 1, SZ_{u})} \boldsymbol{u}^{T}$$
(76)

$$MTI(SZ_{u}, A, SZ_{u}) = S(SZ_{uA}) + S(SZ_{u}^{2}).$$
(77)

Within a set of acyclic isomers, a very interesting property comes from the definition of SZ_u , which is presented as follows

Ι	
TABLE	

 $S(\mathbb{M}_1\mathbb{A}) \text{ and } MTI(\mathbb{M}_1,\mathbb{A},\mathbb{M}_3) \text{ indices in octane isomers}$

		S(M)	[1 []] ①			$MTI(\mathbb{M}_1$	(,A,M3)	
urapn	$(\mathbb{D}_{e}\mathbb{A})$	(WeA)	$(\mathbb{CJ}_{\mathbf{u}}\mathbb{A})$	$(\mathbb{SZ}_{\mathbf{u}}\mathbb{A})$	$(D_{e}, \mathbb{A}, D_{e})$	(W_e, \mathbb{A}, W_e)	$(\mathbb{CJ}_{\mathbf{u}},\mathbb{A},\mathbb{CJ}_{\mathbf{u}})$	(SZ_u, \mathbb{A}, SZ_u)
C8	280	322	301	371	3976	4522	3493	5611
2MC7	260	324	292	363	3516	4324	3084	5223
3MC7	248	318	283	359	3272	4102	2851	5119
4MC7	244	316	280	357	3196	4012	2776	4961
3EC6	232	306	269	348	2952	3786	2541	4632
25M2C6	240	326	283	355	3080	4126	2695	4927
24M2C6	228	320	274	350	2852	3904	2478	4740
23M2C6	224	318	271	346	2784	3814	2415	4654
34M2C6	216	314	265	341	2632	3682	2273	4489
3E2MC5	212	308	260	345	2556	3588	2196	4061
22M2C6	228	330	279	347	2860	3946	2503	4525
33M2C6	212	322	267	338	2564	3650	2223	4216
234M3C5	204	320	262	334	2396	3616	2074	4178
3E3MC5	200	314	257	326	2344	3442	2017	3730
224M3C5	208	332	270	339	2464	3748	2150	4075
223M3C5	196	326	261	327	2260	3526	1961	3895
233M3C5	192	324	258	323	2192	3452	1898	3783
2233M4C4	176	338	257	311	1912	3370	1669	3451

Conjecture: the sum, over all vertices in the graph, of the products between the valency of a vertex **i** and the number of vertices closer to **i** (than to any other vertex **j**) is a constant⁸⁷

$$\boldsymbol{u}(ASZ_{u})\boldsymbol{u}^{T} = \boldsymbol{u}(RS(A) \bullet RS(SZ_{u})) = 2\left[2\binom{N}{3} + \binom{N+1}{3}\right].$$
(78)

In other words, the sum on the product to the left of the Szeged matrix SZ_u with the adjacency matrix is a constant. In contrast, the product to the right, $\boldsymbol{u}(SZ_{uA})\boldsymbol{u}^T = \boldsymbol{u}(RS(A) \square CS(SZ_u))$, is variable within a set of acyclic isomers. Values $S(M_{1A})$ and the corresponding $MTI(M_1, A, M_3)$ indices $(M_1 = M_3 = De$, We, CJ_u and SZ_u) are listed in Table VII.

Schultz-type indices show good correlation⁷² with some physico-chemical properties of octanes, in two-variables regression: boiling points ($MTI(D_e, A, D_e)$ & MTI : r = 0.953), critical pressure ($MTI(CJ_u, A, CJ_u)$ & MTI : r = 0.988; $MTI(SZ_u, A, SZ_u)$ & $\chi: r = 0.967 - \chi$ being the connectivity index⁹⁶, octane number ($MTI(CJ_u, A, CJ_u)$ & MTI : r = 0.987). Note that the Schultz original index MTI(A, A, D) was written above as simple MTI.

REFERENCES

- 1. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17-20.
- 2. H. Wiener, J. Am. Chem. Soc. 69 (1947) 2636-2638.
- 3. H. Wiener, J. Chem. Phys. 15 (1947) 766-766.
- 4. H. Wiener, J. Phys. Chem. 52 (1948) 425-430.
- 5. H. Wiener, J. Phys. Chem. 52 (1948) 1082–1089.
- 6. L. Stiel, G. Thodos, J. Am. Inst. Chem. Eng. 8 (1962) 527-534.
- 7. H. Hosoya, Bull. Chem. Soc. Japan 44 (1971) 2332–2339.
- 8. D. H. Rouvray, Commun. Math. Comput. Chem. (MATCH) 1 (1975) 125-134.
- 9. D. H. Rouvray and B. C. Crafford, South Afr. J. Sci. 72 (1976) 47-51.
- 10. F. Harary, Graph Theory, Addison-Wesley, Reading, 1971.
- A. T. Balaban (Ed.), Chemical Application of Graph Theory, Academic Press, London, 1976.
- A. Graovac, I. Gutman, and N. Trinajstić, *Topological Approach to the Chemistry* of Conjugated Molecules, Springer-Verlag, Berlin, 1977.
- 13. D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structure, Research Studies Press, Chichester, 1983.
- 14. I. Gutman and O. E. Polansky, *Mathematical Concepts in Organic Chemistry*, Springer-Verlag, Berlin, 1986.
- 15. D. Bonchev and D. H. Rouvray (Eds.), *Chemical Graph Theory Introduction and Fundamentals*, Gordon & Breach, New York, 1991.
- N. Trinajstić, Chemical Graph Theory, 2nd revised ed.; CRC, Boca Raton, Fl., 1992.

- 17. J. R. Dias, Molecular Orbital Calculations Using Chemical Graph Theory, Springer-Verlag, Berlin, 1993.
- M. V. Diudea and O. Ivanciuc, *Molecular Topology*, Comprex, Cluj 1995 (in Romanian).
- 19. D. H. Rouvray, *Sci. Amer.* **255** (1986) 36–43. (note error in the previous version)
- 20. P. G. Seybold, M. May, and U. A. Bagal, J. Chem. Educ. 64 (1987) 575-581.
- A. T. Balaban, J. W. Kennedy, and L. V. Quintas, J. Chem. Educ. 65 (1988) 304–313.
- 22. P. J. Hansen and P. C. Jurs, J. Chem. Educ. 65 (1988) 574-580.
- 23. Z. Mihalić and N. Trinajstić, J. Chem. Educ. 69 (1992) 701-712.
- 24. S. Nikolić, N. Trinajstić, and Z. Mihalić, Croat. Chem. Acta 68 (1995) 105–129.
- 25. D. H. Rouvray, in: R. B. King (Ed.), *Chemical Applications of Topology and Graph Theory*, Elsevier, Amsterdam, 1983, pp. 159–177.
- D. H. Rouvray, in: N. Trinajstić (Ed.), Mathematics and Computational Concepts in Chemistry, Horwood, Chichester, 1986, pp. 295–306.
- 27. I. Gutman, Y. N. Yeh, S. L. Lee, and Y. L. Luo, Indian J. Chem. 32A (1993) 651-661.
- 28. I. Gutman and T. Körtévlyesi, Z. Naturforsch. 50a (1995) 669-671.
- 29. I. Gutman and J. H. Potgieter, South Afr. J. Sci. 92 (1996) 47-48.
- 30. I. Gutman and J. H. Potgieter, J Serb. Chem. Soc. 62 (1997) 185-192.
- 31. N. Bošnjak and Z. Mihalić, and N. Trinajstić, J. Chromatogr. 540 (1991) 430-434.
- 32. D. H. Rouvray, Acta Pharm. Jugosl. 36 (1986) 239-251.
- 33. I. Lukovits, J. Chem. Soc. Perkin II, (1988) 1667-1671.
- 34. I. Lukovits, Intern. J. Quantum Chem. Quantum Biol. Symp. 19 (1992) 217-223.
- 35. I. Gutman, Topics Curr. Chem. 162 (1992) 1-28.
- 36. M. Randić, Chem. Phys. Lett. 211 (1993) 478-483.
- 37. M. Randić, X. Guo, T. Oxley, and H. Krishnapriyan, J. Chem. Inf. Comput. Sci. 33 (1993) 709–716.
- M. Randić, X. Guo, T. Oxley, H. Krishnapriyan, and L. Nayor, J. Chem. Inf. Comput. Sci. 34 (1994) 361–367.
- R. A. Horn and C. R. Johson, *Matrix Analysis*, Cambridge Univ. Press, Cambridge, 1985.
- 40. D. J. Klein, I. Lukovits, and I. Gutman, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52.
- 41. I. Lukovits, J. Chem. Inf. Comput. Sci. 34 (1994) 1079–1081.
- 42. I. Lukovits and W. Linert, J. Chem. Inf. Comput. Sci. 34 (1994) 899-902.
- 43. I. Lukovits, Croat. Chem Acta, 68 (1995) 99-103.
- 44. M. V. Diudea, J. Chem. Inf. Comput. Sci. 36 (1996) 535-540.
- 45. I. Gutman, J. Mol. Struct. (Theochem) 285 (1993) 137-142.
- 46. I. Gutman, J. Serb. Chem. Soc. 58 (1993) 745-750.
- 47. I. Gutman, Y. N. Yeh, S. L. Lee, and J. C. Chen, Commun. Math. Comput. Chem. (MATCH) 30 (1994) 103–115.
- 48. M. V. Diudea, J. Chem. Inf. Comput. Sci. 36 (1996) 833-836.
- 49. R. Merris, Lin. Multilin. Algebra, 25 (1989) 291–296.
- 50. B. Mohar, D. Babić, and N. Trinajstić, J. Chem. Inf. Comput. Sci. 33 (1993) 153–154.
- 51. S. Marković, I. Gutman, and Ž. Bančević, J. Serb. Chem. Soc. 60 (1995) 633-636.
- 52. I. Gutman, S. L. Lee, C. H. Chu, and Y. L. Luo, *Indian J. Chem.* **33A** (1994) 603–608.
- 53. D. J. Klein and M. Randić, J. Math. Chem. 12 (1993) 81-95.
- 54. I. Gutman and B. Mohar, J. Chem. Inf. Comput. Sci. 36 (1996) 982-985.

- D. Bonchev, A. T. Balaban; X. Liu, and D. J. Klein, *Internat. J. Quantum Chem.* 50 (1994) 1–20.
- 56. S. L. Campbell and C. D. Meyer, *Generalized Inverses of Linear Transformations*, Pitman, London, 1979.
- A. Ben-Israel and T. N. E. Greville, Generalized Inverses Theory and Applications, Wiley, New York, 1974.
- D. Plavšić, S. Nikolić, N. Trinajstić, and Z. Mihalić, J. Math. Chem., 12 (1993) 235–250.
- 59. A. T. Balaban, J. Chem. Inf. Comput. Sci. 34 (1994) 398-402.
- M. V. Diudea, O. Ivanciuc, S. Nikolić, and N. Trinajstić, Commun. Math. Comput. Chem. (MATCH) 35 (1997) 41–64.
- 61. O. Ivanciuc, T. S. Balaban, and A. T. Balaban, J. Math. Chem. 12 (1993) 309-318.
- 62. O. Ivanciuc, Applications of Graph Theory in Organic Chemistry, Ph. D., Bucharest, 1996 (in Romanian).
- 63. M. V. Diudea, J. Chem. Inf. Comput. Sci. 37 (1997) 292-299.
- 64. M. Randić, Theor. Chem. Acta. 92 (1995) 97-106.
- 65. I. Gutman, Graph Theory Notes of New York, 26 (1994) 9-15.
- 66. A. A. Dobrynin and I. Gutman, Publ. Inst. Math. (Beograd), 56 (1994) 18-22.
- 67. A. A. Dobrynin, I. Gutman, and G. Dömötör, Appl. Math. Lett. 8 (1995) 57-62.
- 68. A. A. Dobrynin and I. Gutman, Graph Theory Notes New York, 28 (1995) 21–23.
- P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. A. Dobrynin, I. Gutman, and G. Dömötör, J. Chem. Inf. Comput. Sci. 35 (1995) 547–550.
- 70. I. Gutman and S. Klavžar, J. Chem. Inf. Comput. Sci. 35 (1995) 1011-1014.
- M. V. Diudea, O. Minailiuc, G. Katona, and I. Gutman, Commun. Math. Comput. Chem. (MATCH), 35 (1997) 129–143.
- 72. M. V. Diudea, B. Pârv, and M. Topan, J. Serb. Chem. Soc. 62 (1997) 267-276.
- M. V. Diudea, O. M. Minailiuc, and G. Katona, Croat. Chem. Acta, 69 (1996) 857– 871.
- 74. M. V. Diudea, J. Chem. Inf. Comput. Sci. 37 (1997) 300-305.
- 75. M. V. Diudea, Commun. Math. Comput. Chem. (MATCH), 35 (1997) 169-183.
- 76. M. V. Diudea, B. Parv, and I. Gutman, J. Chem. Inf. Comput. Sci. 37 (1997) 000-000.
- 77. S. S. Tratch, M. I. Stankevich, and N. S. Zefirov, J. Comput. Chem. 11 (1990) 899–908.
- 78. M. Randić and M. Razinger, J. Chem. Inf. Comput. Sci. 35 (1995) 140-147.
- 79. M. V. Diudea, M. Topan, and A. Graovac, J. Chem. Inf. Comput. Sci. 34 (1994) 1072–1078.
- 80. G. Rücker; C. Rücker, J. Chem. Inf. Comput. Sci. 33 (1993) 683-695.
- 81. H. P. Schultz, J. Chem. Inf. Comput. Sci. 29 (1989) 227-228.
- 82. M. V. Diudea, Commun. Math. Comput. Chem. (MATCH), 32 (1995) 85-103.
- Z. Mihalić, S. Nikolić, and N. Trinajstić, J. Chem. Inf. Comput. Sci. 32 (1992) 28–37.
- 84. H. P. Schultz, E. B. Schultz, and T. P. Schultz, J. Chem. Inf. Comput. Sci. 33 (1993) 863–867.
- 85. I. Gutman, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.
- 86. M. V. Diudea, C. M. Pop, Indian J. Chem. 35A. (1996) 257-261.
- 87. M. V. Diudea and M. Randić, J. Chem. Inf. Comput. Sci. 37 (1997) 000-000
- E. Estrada, L. Rodriguez, and A. Gutierrez, Commun. Math. Comput. Chem. (MATCH), 35 (1997) 145–156.

- 89. E. Estrada and L. Rodriguez, Commun. Math. Comput. Chem. (MATCH), 35 (1997) 157-167.
- 90. I. Gutman and N. Trinajstić, Chem. Phys. Lett. 17 (1972) 535-538
- I. Gutman, B. Rusčić, N. Trinajstić, and C. F. Wilcox, J. Chem. Phys. 62 (1975) 3399–3405.
- 92. A. Dobrynin and A. A. Kochetova, J. Chem. Inf. Comput. Sci. 34 (1994) 1082–1086.
- D. J. Klein, Z. Mihalić, D. Plavšić, and N. Trinajstić, J. Chem. Inf. Comput. Sci. 32 (1992) 304–305.
- 94. D. Plavšić, S. Nikolić, N. Trinajstić, and D. J. Klein, Croat. Chem. Acta, 66 (1993) 345–358.
- 95. S. Klavžar and I. Gutman, J. Chem. Inf. Comput. Sci. 36 (1996) 1001-1003.
- 96. M. Randić, J. Am. Chem. Soc. 97 (1975) 6609-6615.

SAŽETAK

Topologijski indeksi Wienerova tipa

Mircea V. Diudea i Ivan Gutman

Prikazan je unificiran pristup Wienerovu topologijskom indeksu i njegovim inačicama. Osobita pozornost obraćena je Kirchoffovu, Harareyevu, Cluj-skom i Shultzovu indeksu te njihovim brojnim varijantama i poopćenjima. Razmotreni su odnosi između tih indeksa i metoda njihova računanja. Izražene su korelacije tih topologijskih indeksa s fizikalnim i kemijskim svojstvima molekula.