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Basic topological matrices: the adjacency matrix, A, the distance

matrix, D, the Wiener matrix, W, the detour matrix, D, the Szeged

matrix, SZu, and the Cluj matrix, CJu, after application of the

walk matrix operator, W(M1,M2,M3), result in matrices whose row

sums express the product between a local property of a vertex i and

its valency. One of the two variants of these valency-property ma-

trices is derived by a simple graphical method. Non-Cramer matrix

algebra involved in the walk matrix is exemplified. Relations of the

indices, calculated on these matrices, with the well known indices

of Schultz and Dobrynin (valency-distance) indices are discussed.

Further use of the obtained matrices is suggested.

Key words: basic topological matrices, walk matrix operator, valen-

cy-property matrices

INTRODUCTION

A molecular structure can be represented by different mathematical ob-

jects: matrices, polynomials, numeric sequences and single numbers (i.e., to-

pological indices). All these representations are based on the association of

a molecule with a graph (actually a molecular graph where vertices repre-

sent atoms and edges chemical bonds) and all of them are aimed to be uni-

que.

First identification of an organic molecule with a graph and its repre-

sentation by a matrix was made by Sylvester,1 in early 1874. The matrix is
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called the adjacency matrix; its (i, j)-entries, �A�ij are 1 if the vertices i and j

are connected by an edge and 0, otherwise
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where E(G) is the set of edges in a connected graph, G. The diagonal ele-

ments are zero. The adjacency matrix is a N 
 N array (N being the number

of vertices in a connected graph, G), symmetric vs. the main diagonal. The

row sum, RS(A)i, or column sum, CS(A)i, provides the vertex degree, degi, or

the valency, vi. Within this paper, the two terms will be used interchange-

ably. Figure 1 illustrates the adjacency matrix for graph G1.

A second basic matrix in chemical graph theory is the distance matrix. It

came late in the '70s and is due to Harary.2 It is a square symmetric array

whose entries are defined as

�De�ij =
N i, j i j

i j

i je if

if

,( , ); min,|( )|� �

�

�
�
	 0

(2)

where Ne,(i,j) is the number of edges separating vertices i and j on the short-

est path, (i, j). Entry �De�ij is the topological distance, Dij, between vertex i

and vertex j. The matrix De of graph G1 is illustrated in Figure 1.

The half sum of all entries in De is, according to Hosoya,3 the famous

Wiener index,4 W

W = (1/2) i j�� [ ]De ij = (1/2) i i� [ ]RS e( )D = (1/2) i i� [ ]CS e( )D . (3)

By using the matrix algebra, W can be calculated by

W = (1/2)uDeu
T (4)

where u and uT are the unit vector (of order N) and its transpose, respect-

ively. It is easily seen that RS(M) = MuT and CS(M) = uM, with M being a

square matrix.

The distance-path matrix, Dp, has been recently proposed.5,6 This matrix

is defined by the expression

�Dp�ij =
N i, j i j

i j

i jp if

if

,( , ); min,|( )|� �

�

�
�
	 0

(5)

where Np,(i,j) is the number of all internal paths of length 1 � p � ( , )i j included

in the shortest paths (i,j). Np,(i,j) can be obtained from the classical distance

matrix, De (i.e., distance-edge matrix) by

Np,(i,j) =
[ ]D ije �

�
��

�

�
��

1

2
. (6)
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Figure 1 illustrates this matrix for graph G1. The Dp matrix allows di-

rect calculation of the hyper-Wiener index, WW, proposed by Randi}7
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Figure 1. Adjacency, Cluj, Distance and Wiener Matrices for the Graph 1.



WW = (1/2)uDpuT . (7)

In fact, Eq. (7) is the matrix form of the general definition of WW, pro-

posed by Klein, Lukovits and Gutman.8

In full analogy with distance matrices, Eqs. (2) and (5), the detour ma-

trices, De and Dp, were introduced.9–11 The only difference is ( , )i j = max (i.e.,

the longest path joining vertices i and j). Correspondingly, Np,(i,j) is calcu-

lated by changing De with De in Eq. (6). The indices defined on the detour

matrices, the detour, w, and the hyper-detour, ww, can be calculated accord-

ing to Eqs. (3), (4) and (7), respectively, by changing the distance matrices

with the detour ones.10–12 Figure 2 illustrates these matrices for 1-ethyl-2-

methylcyclopropane, G2.

Another basic matrix is the Wiener matrix,13,14 W, whose entries are cal-

culated according to the original method given by Wiener4 to calculate index W

�We/p�ij = Ni,(i,j) Nj,(i,j) (8)

where Ni,(i,j) and Nj,(i,j) are the numbers of vertices on the two sides of the

edge/path (i, j). The �We/p�ij entry is the number of (external) paths in G

containing the edge/path, e/p, (i, j) The matrix defined on edges, We, gives W

while that defined on paths, Wp, leads to WW

W = (1/2)uWeu
T (9)

WW = (1/2)uWpuT . (10)

Equations (8)–(10) hold only for acyclic graphs. Matrix We can be ob-

tained from Wp as the Hadamard product15 (i.e., �Ma � Mb�ij = �Ma�ij �Mb�ij)

between Wp and A

We = Wp � A . (11)

Matrices We and Wp, for graph G1, are depicted in Figure 1.

SZEGED AND CLUJ TOPOLOGICAL MATRICES

Two square unsymmetrical matrices, SZu (Szeged) and CJu (Cluj) have

been recently proposed.16–22 They are defined by a single endpoint charac-

terization of a path, (i, j)

�SZu�ij = �Vi,(i,j)� (12)
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Vi,(i,j) = �v�v �V(G); Div < Djv (13)

�CJXu�ij = max �Vi i j k,( , ) � (14)

Vi,(i,j) = �v�v �V(G); Div < Djv; (i,v)h � (i, j)k = �i�; �(i, j)k� = min/max� (15)

k = 1, 2, ...; h = 1,2,...; X = D for �(i, j)k� = min; X = � for �(i, j)k� = max.
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Figure 2. Detour, Detour-Cluj, Szeged and Cluj Matrices for the Graph G2.



The set Vi,(i,j), Eqs. (12) and (13), is defined in the same way as Gut-

man23 did in the case of the Szeged index (see also Refs. 24–30). Vi,(i,j) con-

sists of vertices being closer to vertex i, with respect to the path (i,j). V(G) in

the above equations means the set of vertices in G. All diagonal entries are

zero. The Szeged matrix of graph G2 is shown in Figure 2.

The condition (i,v)h � (i,j)k = �i� Eq. (15) means that any vertex belong-

ing to the path (i,v)h; h = 1, 2,.. is external with respect to any shortest path

(i,j)k. In a cycle-containing structure, various shortest/longest paths (i,j)k, k

= 1, 2, ... can generate different sets Vi,(i,j). The matrix element, �CJXu�ij, is,

by definition, max �V i,(i,j)k � (see also Refs. 22 and 29). The diagonal entries

are zero. When defined according to the minimum path concept (Eq. (15),

�(i,j)k� = min; X = D), the Cluj-Distance matrix is denoted by CJDu. Matrix

CJDu is the Cluj-Detour matrix,31 i.e., the matrix based on the maximum

path concept Eq. (15), �(i,j)k� = max; X = D).

Both matrices, SZu and CJXu, are defined for any connected graph, in

contrast to the Wiener matrix, defined Eq. (8) only for acyclic graphs. Matri-

ces CJDu and CJDu are illustrated in Figures 1 and 2. In the present paper,

only the CJDu matrix will be considered. For simplicity, it will be denoted

by CJu.

The unsymmetrical matrices, Mu, M = SZ; CJ allow construction of the

corresponding symmetric matrices, Mp (defined on paths) and Me (defined

by edges) using the relation

Mp = Mu � (Mu)T (16)

Me = Mp � A . (17)

Matrices CJe and CJp are identical to the Wiener matrices, We and Wp,

in acyclic structures. In cyclic graphs, the entries of CJe equal those of SZe

while the entries of CJp are different from those of SZp. In trees, CJu obeys

the relations16–18

RS(CJu) = RS(We) (18)

CS(CJu) = CS(De) . (19)

Thus, CJu contains the information collected both in De and We (see be-

low).

Several topological indices can be devised on these matrices,29 either as

the half sum of their entries (a relation of the type (3) ) or by
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TIe/p = ( , )i j� �Mu�ij�Mu�ji . (20)

When defined on edges (i.e., (ij) is an edge), TIe is an index (e.g., SZe, the

classical Szeged index); when defined on paths, TIp is a hyper-index (e.g.,

SZp and CJp).

By virtue of the above mutual matrix relations, the indices show the fol-

lowing relations: CJe(T) = SZe(T) = W(T) and CJe(C) = SZe(C) � W(C); CJp(T)

= WW(T) � SZp(T) and CJp(C) � WW(C) � SZp(C) where T and C denote a

tree graph and a cycle-containing structure, respectively.

Matrices of reciprocal properties, RM, (i.e., matrices having entries

�RM�ij = 1 / �M�ij and the diagonal entries zero): M = De, We, Dp, Wp, SZu,

CJu and W(A,De,1), (see below) have been considered for deriving the Harary

and hyper-Harary type indices.18 Properties and applications of these indi-

ces are described in Ref. 29.

WALK MATRIX, W(M1,M2,M3)

Walk matrix, W ( , , )M M M1 2 3 , is defined5,6,16,17,32 as

�W ( , , )M M M1 2 3 �ij = [ ]M2 ij WM i1, �M3�ij = �RS((M1) [ ]M2 ij )�i�M3�ij (21)

where WM i1, is the walk degree,33,34 of elongation �M2�ij, of vertex i, weighted

by the property collected in matrix M1 (i.e., the ith row sum of matrix M1,

raised to power �M2�ij). The diagonal entries are zero. It is a square, (in ge-

neral) non-symmetric matrix. This matrix, which mixes three square ma-

trices, is a true matrix operator, as it will be shown below.

Let, first, the combination (M1, M2, M3) be (M1, 1, 1), where 1 is the ma-

trix with the off-diagonal elements equal to 1. In this case, the elements of

matrix W ( , , )M1 11 will be

�W ( , , )M1 11 �ij = �RS(M1)�i . (22)

Next, consider the combination (M1, 1, M3); the corresponding walk ma-

trix can be expressed as the Hadamard product

W ( , , )M M1 31 = W ( , , )M1 1 1 � M3 . (23)

Examples are given in Chart 1 for G1, in case: M1 = A and M3 = De.

In this article, the use of the walk matrix in generating two types of

valency-property matrices as well as in calculating the Schultz-type indices

is presented. Cramer matrix algebra is discussed parallel with the Hada-

mard algebra, involved in the walk matrix operations.
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VALENCY-PROPERTY MATRICES

The Cramer matrix product, M1M3, is related to matrix W ( , , )M M1 31 by the

following relations

u(M1M3)uT = uW ( , , )M M1 31 uT = uW ( , , )M M3 11 uT (24)

u(M3M1)uT = uW ( , , )M M1 3
1 T uT = uW ( , , )M M

3 11T uT . (25)

Recall that, in general, the Cramer product is not commutative, so that

u(M1M3)uT � u(M3M1)uT . (26)

In contrast, the Hadamard product is commutative within matrix

W( , , )M M1 31 (see Eqs. 23–25).

The left hand member of Eq. (24) can be written as

u(M1M3)uT = (uM1)(M3u
T) = CS(M1)RS(M3) = i j ij[ ]M M1 3�� . (27)

842 M. V. DIUDEA

Chart 1. W( , , )M M M1 2 3 algebra for the graph G1.



In other words, the sum of all entries in the matrix product, M1M3, can

be achieved by multiplying the corresponding CS and RS vectors.

On the other hand, the sum of all entries in W ( , , )M M1 31 is obtained by

uW ( , , )M M1 31 uT = i� �RS(W ( , , )M M1 31 )�i = i j�� �W( , , )M M1 31 �ij . (28)

From Eqs. (24), (27) and (28), we obtain

�CS(M1)�i�RS(M3)�i = �RS(W( , , )M M1 31 )�i . (29)

In the case of a symmetric matrix, CS(M1) = uM1 = M
1
T uT = M1u

T =

RS(M1), so that Eq. (29) can be written as

�RS(M1)�i�RS(M3)�i = �RS(W ( , , )M M1 31 )�i . (30)

If M1 and M3 are topological square matrices, Eqs. (24), (27)–(30) offer

an interesting meaning for the product matrix, M1M3: it represents a collec-

tion of pairwise products of local (topological) properties (encoded as the cor-

responding row and column sums). Such pairwise products are just entries

in the vector �RS(W ( , , )M M1 31 )�i (Eqs. (29) and (30). Thus, Eq. (24) represents a

joint point of Cramer and Hadamard algebra, by means of W ( , , )M M1 31 , and

proves that this matrix is a true matrix operator.

We introduce here two types of W ( , , )M M1 31 matrices:

(i) VM (Valency-Property), as W ( , , )M M1 31 ; M1 = A. The pairwise products

collected in the row sums �RS(W ( , , )A M1 31 )�i are just valency-property prod-

ucts, thus justifying the name VM given to such matrices. Chart 2 illus-

trates the Cramer product matrix, AM, and matrix VM, M = De, We, CJu and

(CJu)T for graph G1. Note that matrices VCJu and V(CJu)
T show the same RS

vector as matrices VWe and VDe, respectively, proving that CJu is, in trees, a

chimera between We and De.

(ii) AM (Weighted Adjacency), as W ( , , )M M1 31 ; M3 = A. In this case, the re-

sulting valency-property matrices are true weighted adjacency matrices.

They can be easily built up by a graphical method: (i) draw a graph

weighted by the property collected in M1, as �RS(M1)�i (or �CS(M1)�i); (ii)

write an adjacency matrix of that graph by replacing entries 1 in row i by

�RS(M1)�i (or �CS(M1)�i). The row sums in such a matrix are just the local

valency-property products. AM matrices for graphs G1 and G2 are illustrated

in Figures 3 and 4, respectively.

By comparing VM and AM with each other and with the Cramer product

matrices, AM and MA, it comes out that

RS(VM) = RS(W(A,1,M)) = RS(A) � RS(M) = RS(W(M,1,A)) = RS(AM) (31)
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RS(V M T ) = RS(W(A,1, M T ) ) = RS(A) � RS(MT) =

RS(W( M AT, ,1 ) = RS(A M T) (32)
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Chart 2. Cramer product AM and VM (i.e., W(A,1,M)) matrices for the graph G1.



CS(AM) = CS(VM); CS(MA) = CS(A M T) (33)

RS(AM) = CS(AM); RS(MA) = CS(V M T) . (34)

Since RS(A) is just the vector of vertex valencies, v, the vector product,

RS(A) � RS(M), reveals just the meaning of the newly proposed valency-

property matrices, VM and AM: they collect valencies weighted by the (topo-

logical) property enclosed in matrix M.

RELATIONS OF VALENCY-PROPERTY MATRICES

WITH SCHULTZ AND DOBRYNIN INDICES

The molecular topological index, MTI, or the Schultz index, 35 is defined

by

MTI =
i� �v(A+De)�i . (35)

By applying matrix algebra, MTI may be written as32

MTI = u(A(A+De))u
T = u(A2)uT + u(ADe)u

T = S(A2) + S(ADe) (36)

where

S(A2) =
i� �RS(A)�i�RS(A)�i =

i� (vi)
2 (37)

S(ADe) =
i� �RS(A)�i�RS(De)�i . (38)

The term S(A2) is just the first Zagreb Group index, while S(ADe) is the

true Schultz index, reinvented by Dobrynin36 (the »degree-distance« index)

and by Estrada.37

Diudea and Randi}32 have extended Schultz’s definition by using a com-

bination of three square matrices, one of them being obligatory the adja-

cency matrix. In Cramer matrix algebra, it is defined as

MTI(M1,A,M3) = u(M1(A+M3))uT =

u(M1A)uT + u(M1M3)uT = S(M1A) + S(M1M3) . (39)

It is easily seen that MTI(A,A,De) is the Schultz original index. Analogue

Schultz indices of the sequence: (De,A,De), (RDe,A,RDe) and (Wp,A,Wp) have

been proposed and tested for correlating ability.38–40 In the above sequence,

RDe represents the matrix whose non-diagonal entries are 1/�De�ij.
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The walk matrix, W ( , , )M M M1 2 3 , is related to the Schultz numbers (cf. Eq.

(30) as

S(M1A) = uW ( , , )M A1 1 uT (40)

S(M1M3) = uW ( , , )M M1 31 uT (41)

MTI(M1,A,M3) = uW ( , , )M A1 1 uT + uW ( , , )M M1 31 uT . (42)

One can see that Eqs. (39) and (42) are equivalent. Values of S(M1A) and

of some old and new indices MTI(M1,A,M3); M1 = M3 for octanes are listed in

846 M. V. DIUDEA

TABLE I

S(M1A) and MTI(M1,A,M3)* indices in octane isomers

Graph S(DeA) S(WeA) S(CJuA) S(SZuA) (De,A,De) (CJu,A,CJu) (SZu,A,SZu) MTI

C8 280 322 301 371 3976 3493 5611 306

2MC7 260 324 292 363 3516 3084 5223 288

3MC7 248 318 283 359 3272 2851 5119 276

4MC7 244 316 280 357 3196 2776 4961 272

3EC6 232 306 269 348 2952 2541 4632 260

25M2C6 240 326 283 355 3080 2695 4927 270

24M2C6 228 320 274 350 2852 2478 4740 258

23M2C6 224 318 271 346 2784 2415 4654 254

34M2C6 216 314 265 341 2632 2273 4489 246

3E2MC5 212 308 260 345 2556 2196 4061 242

22M2C6 228 330 279 347 2860 2503 4525 260

33M2C6 212 322 267 338 2564 2223 4216 244

234M3C5 204 320 262 334 2396 2074 4178 236

3E3MC5 200 314 257 326 2344 2017 3730 232

224M3C5 208 332 270 339 2464 2150 4075 242

223M3C5 196 326 261 327 2260 1961 3895 230

233M3C5 192 324 258 323 2192 1898 3783 226

2233M4C4 176 338 257 311 1912 1669 3451 214

* Schultz-type indices, MTI(M1,A,M3), are written as the sequence (M1,A,M3); the original

Schultz index is written as MTI.
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Figure 3. Weighted Adjacency Matrices, AM, for the Graph G1.
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Figure 4. Weighted Adjacency Matrices, AM, for the Graph G2.



Table 1. Matrices W ( , , )M M M1 2 3 involved in the calculation of MTI(M1,A,M3),

for graphs G1 and G2, are illustrated in Figures 3 and 4.

The novel proposed matrices, VM = W(A,1,M) and AM = W(M,1,A) offer just

Schultz-Dobrynin-type indices (e.g., S(ADe) = uW(A,1,De)u
T). Matrices AM,

corresponding to the classical MTI(A,A,De) and to its detour-variant,

MTI(A,A,De), are presented in Figures 3 and 4, respectively (last examples).

Use of unsymmetric matrices, such as CJu, in construction of MTI-type

indices, involves, in fact, the information storred in three topological matri-

ces.34 Other authors have also reported such »three matrix« – MTI indi-

ces.37,41

Matrices VM and AM represent a rational basis for the construction of

topological indices. In addition, they could offer other molecular descriptors,

such as polynomials and eigenvalues, which deserve further investigations.

CONCLUSIONS

A review of basic topological matrices: the adjacency matrix, the dis-

tance matrix, the Wiener matrix, the detour matrix, the Szeged matrix and

the Cluj matrix has been presented. Walk matrix, W ( , , )M M M1 2 3 , operating on

these matrices by a non-Cramer matrix algebra, offers matrices whose row

sums express the product between a local property of a vertex i and its va-

lency. One of the two variants of the newly proposed valency-property ma-

trices is derived by a simple graphical method. Relations of the indices, cal-

culated on these matrices, with the well known Schultz and Dobrynin

(valency-distance) indices, as well as with some novel Schultz-type indices

have been discussed. Further use of the obtained matrices in calculating

polynomials and eigenvalues is suggested.
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Valencije svojstava

Mircea V. Diudea

Temeljne topolo{ke matrice: matrica susjedstva, A, matrica udaljenosti, D, Wie-

nerova matrica, W, matrica zaobilazaka, D, Szegedska matrica, SZu i Clujska ma-

trica, CJu, nakon primjene operatora izra`enog matricom {etnji, W( , , )M M M1 2 3 , prelaze

u matrice ~ije sume po retcima daju umno`ak valencije pripadnog ~vora grafa i lo-

kalnog svojstva tog ~vora. Te se matrice dadu dobiti jednostavnim grafovskim po-

stupkom. Na primjerima je pokazana primjena pripadne ne-Cramerove matri~ne alge-

bre. Diskutira se o vezi ovdje uvedenih indeksa s dobro poznatim indeksima Schultza

i Dobrynina. Predlo`ena je daljnja primjena ovdje uvedenih matrica i pripadnih to-

polo{kih indeksa.
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