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Series of strongly subspectral molecular graphs (having a prepon-

derance of common eigenvalues) corresponding to conjugated hy-

drocarbon polyenes containing cyclobutadiene moieties are presen-

ted and their electronic/structural properties studied.
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INTRODUCTION

Our goal is to understand the properties of molecules by identifying ele-

mentary substructures that are carriers of this information in compact form.

Examples of elementary substructures (subgraphs) are atoms (graph verti-

ces), bonds (graph edges or lines), rings (graph circuits),1 excised internal

structures (subgraphs spanned by the internal vertices),2 elementary auf-

bau units (C4H2, C3H, and C2),
3 elementary capping units (C6, C5, C2, C, and

edge),4 organic functional groups (subgraphs with a collection of weighted

edges and vertices), monomeric units (repeating subgraphs), 1-factor, 2-

factor, and Sachs subgraphs, Ulam subgraphs,1 embedding fragments (Hall

subgraphs),5 and right-hand mirror-plane fragments (McClelland sub-

graphs).6,7 Excised internal structures and elementary aufbau units are im-

portant in the enumeration of polycyclic conjugated hydrocarbons, and ele-

mentary capping units are important in the generation of fullerene struc-

tures. 1-Factor, 2-factor, Sachs, Ulam, Hall, and McClelland subgraphs have

found application in the determination of eigenvalues (energy levels) and
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eigenvectors (wave functions) of molecular graphs (vertex-line depictions cor-

responding to C-C �-bond skeletons of conjugated hydrocarbons). Molecular

graphs having one or more eigenvalues in common are called subspectral. If

they have a preponderance of eigenvalues in common, they are said to be

strongly subspectral. An important method for identifying subspectral mo-

lecular graphs is the method of Hall which he called embedding.5 Details for

the procedure of embedding can be found in several sources.5,7 For example,

if a smaller molecular graph can be embedded on a larger one, then the

smaller one is a Hall subgraph of the larger one establishing that the latter

must have eigenvalues common to the former.5,7

Repetitive attachment of given aufbau units under prescribed rules can

lead to families (series) of molecular graphs exhibiting characteristic trends.

This is the essence of the aufbau principle. If the smaller members of these

families correspond to known molecules, then one can use these trends to

predict the properties of larger unknown members. Molecules with strongly

subspectral molecular graphs are more similar. Beginning with a pair of

strongly subspectral molecular graphs, successive attachment of the same

aufbau unit under certain conditions can lead to a pair of series having a

one-to-one correspondence between member molecules of each generation.

This approach allows one to systematically study progressive changes in

properties among a large number of related molecules that would be diffi-

cult to accomplish by other methods.

PAIRS OF INFINITE STRONGLY SUBSPECTRAL SERIES

Figures 1–5 present five sets of series containing molecular graph mem-

bers that are pairwise strongly subspectral for each successive generation.

Similarly, Figure 6 presents three series that are strongly subspectral. The

first molecular graph in the series in Figures 1–4 and 6 are zero generation

members and the eigenvalues affixed next to each are unique to the whole

series; the zero generation pair of molecular graphs can be disconnected and

are not necessarily be strongly subspectral. The zero generation molecular

graphs are frequently Hall subgraphs5–7 for every member of the respective

series. The eigenvalues common to each pair of molecular graphs are listed

below the respective members. The formula of the aufbau unit is indicated

in the upper left-hand corner of each figure. Although, the smaller corre-

sponding members of a strongly subspectral series can look quite different,

as their size increases they begin to look more similar and in the infinite

limit become virtually identical.

The pairs of infinite series tabulated in Figures 1 and 2 have the same

Hall subgraphs, ethene and allyl, and all these series devolve to the same

infinite limit member. Ethene and 3-methylene-1,4-pentadiene (first genera-
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tion member in the top series of Figure 2) are known molecular species, and

allyl is a well-known reactive intermediate. 1,3-Dimethylenecyclobutadiene

(2nd molecular graph in the upper series of Figure 1) is a diradical isomer of

benzene that has been photolytically generated and studied in a low tem-

perature glassy matrix of 2-methyltetrahydrofuran.8 Ethene and allyl are

zero generation members of the series in Figures 1–2. All the remaining mo-

lecular graphs in Figures 1 and 2 correspond to unknown molecules. The

characteristic and matching polynomials for the members in the second
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Figure 1. Two series of molecular graphs that are strongly subspectral. The unmatch-

ed eigenvalues are indicated next to the zero generation molecular graphs of ethene

and allyl. Using the characteristic polynomials listed below the first two molecular

graphs of each series, one can determine the characteristic polynomials of the subse-

quent members by the recursion Pn(X) = (X4 – 5X2)Pn–1(X) – 4X2Pn–2(X).

Figure 2. Two series of strongly subspectral molecular graphs. The unmatched ei-

genvalues are indicated next to the zero generation members of each series. Using

the characteristic polynomials listed below the first two molecular graphs of each se-

ries, one can determine the characteristic polynomials of the subsequent members

by the recursion Pn(X) = (X4 – 5X2)Pn–1(X) – 4X2Pn–2(X).



(lower) series in Figure 1 have been studied by Hosoya.9 Allyl is also among

the the zero generation members of the infinite series contained in Figures

3, 4 and 6. Cyclobutadiene (Figures 3 and 4) is a transient intermediate.10,11

The trimethylenemethane, tetramethyleneethane, m-xylylene (2nd molecu-

lar graph in the middle row of Figure 6), and cyclobutadiene diradicals and

molecules corresponding to the first generation molecular graphs in Figure

1 have been experimentally and theoretically studied.12–14 Both 3-methyl-

ene-1,4-pentadiene (Figure 2) and styrene (Figure 5) are reactive liquids
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Figure 3. Two series of molecular graphs that are strongly subspectral. The unmatch-

ed eigenvalues are indicated next to the zero generation member of each series.

Figure 4. Two series of molecular graphs that are strongly subspectral. The unmatch-

ed eigenvalues are indicated next to the zero generation molecular graphs (cyclo-

butadiene and allyl). Using the characteristic polynomials listed below the first two

molecular graphs of each series, one can determine the characteristic polynomials of

the subsequent members by the recursion Pn(X) = (X5–6X3+4X)Pn–1(X)–4X2Pn–2(X).
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Figure 5. Two series of molecular graphs that are strongly subspectral. The unmatch-

ed eigenvalues are indicated to the left of the first generation member of each series.

Using the characteristic polynomials listed below the first two molecular graphs of

each series, one can determine the characteristic polynomials of the subsequent

members by the recursion Pn(X) = (X5–6X3+4X)Pn–1(X)–4X2Pn–2(X).

Figure 6. Three series of molecular graphs that are strongly subspectral. The un-

matched eigenvalues are indicated to the left of the first molecular graphs (zero genera-

tion member) of each series. Using the characteristic polynomials listed below the first

two molecular graphs of each series, one can determine the characteristic polynomials

of the subsequent members by the recursion Pn(X) = (X5–6X3+4X)Pn–1(X)–4X2Pn–2(X).



that readily polymerize. Thus, almost all the zero and first generation mo-

lecular graphs in Figures 1–6 correspond to known moderate to very reac-

tive molecules.

The aufbau unit for any strongly subspectral pair of series will be either

identical but connected differently or strongly subspectral with the same

number of vertices. The aufbau unit is the same for all four series in Figures

1–2 and may be either cyclobutadiene-1,3-diyl or trimethylenemethanetetrayl;

with the former aufbau unit successive generation of the members of these

series will involve a splicing-in operation. 3,4-Dimethylenecyclobutenetetrayl

is the aufbau unit for the series in Figure 3, and methylenecyclobutadienediyl

is the aufbau unit for the series in Figures 4–6.

DIMETHYLENEPOLYCYCLOBUTADIENE AND

RELATED INFINITE SERIES

The molecular graphs in the upper series of Figure 1 correspond to the

dimethyelenepolycyclobutadiene series studied theoretically.13 Each mem-

ber of this series is isomeric to a benzenoid acene with the same number of

rings. All the molecular graphs in the upper series can be embedded by

ethene, and all molecular graphs in the lower series can be embedded by al-

lyl, i.e., ethene is a Hall subgraph to all members of the upper series and allyl

is a Hall subgraph to all members of the lower series. The first generation

molecular graph (2nd molecular graph) can be embedded on the third, fifth,

seventh, etc. generation molecular graphs, the second generation molecular

graph can be embedded on the fifth, eighth, etc., and so forth. Everything

mentioned for the upper series on embedding applies to the lower series.

The two NBMOs in trimethylenemethane diradical have atoms in com-

mon whereas the two NBMOs of tetramethyleneethane diradical are con-

fined to different sets of atoms. The NBMOs in the former are said to be

nondisjoint and in the latter disjoint.14 Thus, the two NBMOs trimethylene-

methane are degenerate, singly occupied MOs which are orthogonal but co-

extensive; exchange interaction in coextensive systems favors the high-spin

(triplet) state. The first generation member in the upper series of Figure 1,

1,3-dimethylenecyclobutadiene diradical, has two nondisjoint NBMOs and

the second generation member, dimethylenedicyclobutadiene, has two dis-

joint NBMOs. In general, theory predicts that when the number of cyclo-

butadiene rings in dimethylenpolycyclobutadiene is odd, the corresponding

molecule should have a triplet ground state, and when the number of rings

is even, a singlet ground state.13,14 In the infinite limit, the singlet and triplet

states will be degenerate.
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The infinite limit members of the pair of strongly subspectral series in

Figure 1 have the same density of states and, as we will see, a zero band-

gap. A zero bandgap of an infinite strip is equivalent to a HOMO-LUMO en-

ergy difference of zero for a smaller molecule which does not possess a con-

tinuum energy levels, and the molecular graphs (except the zero generation

members) in Figures 1–2 and 4–6 have HOMO-LUMO = 0 values of increas-

ing degeneracy as their size increase. The overlapping close proximity of en-

ergy levels (continuum) in infinitely large �-electronic networks result in

bands bounded by singularities, where the continuum of occupied energy

levels is called the valence band, and the continuum of unoccupied energy

levels above the valence band is called the conduction band. If there is a

zone containing no energy levels between the valence and conduction bands,

then this zone is referred to as a bandgap. Electrical conductivity in a poly-

mer network is associated with a zero bandgap.

Hosoya and coworkers15 have shown that the singular points to the den-

sity of states of a periodic polymer is given by the eigenvalues of the hypo-

thetical cyclic dimer (sometimes cyclic monomer) having the same recurring

aufbau unit (unit cell); if this cyclic dimer has NBMOs, then the correspond-

ing periodic polymer has a zero HOMO-LUMO bandgap or isolated NBMOs

between the valence and conduction bands.9,15 To illustrate, consider the in-

finite linear polycyclobutadiene strip which we argue is the limit species to

the series in both Figures 1–2. The general expression for the infinite poly-

mer ring having the same repetitive (aufbau) unit as polycyclobutadiene is

X4 – 5X2 – 4Xcos�k = 0

�k = 2k�/n for k = 0, 1, 2, ..., n–1.

Solution of this equation for the cyclic dimer (n = 2) gives eigenvalues 0,

0, � 1, � 1
2 ( 13 � 1) which correspond to the singularities for the density of

states. Factoring out X from the above equation and setting X = 0 in the re-

maining factor gives cos�k= 0. Thus, the infinite polycyclobutadiene polymer

has a zero bandgap and is expected to possibly form conductive materials.

BENZODICYCLOBUTADIENE AND RELATED INFINITE SERIES

Two strongly subspectral infinite series are presented in Figure 3. The

first generation member (2nd molecular graph) of the upper series in Figure

3 is benzodicyclobutadiene; only one persubstituted derivative of benzodi-

cyclobutadiene has been prepared.16 In the upper series of Figures 3–4, cy-

clobutadiene can be embedded on every member of these series, and in the
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lower series, allyl can be embedded on every other member. In upper series

of Figure 3, benzodicyclobutadiene can be embedded on the third, fifth, sev-

enth, etc. generation members, the second generation molecular graph can

be embedded on the fifth, eighth, etc., and so forth. This process of progres-

sive embedding of smaller members of an infinite series on larger members

can be used to iteratively generate the density of states of the infinite limit

member. Also, this iterative process suggests that the eigenvalues of the

smaller molecular graphs should have the higher degeneracy in the limit

member of a infinite series.

Using Hosoya’s method,9,15 the density of states for the infinite limit

member to the series in Figure 3 has been determined to be given by the

general expression of

X6 – 8X4 – 4X3cos�k + 12X2 + 8Xcos�k + 4cos2�k – 4 = 0

which gives eigenvalues of 0, 0, � 2, � 2, � (1 � 3), � 2 for the boundaries of

the density of states and a zero bandgap. Thus, polybenzocyclobutadiene is

expected to be conductive.

The pair of strongly subspectral series in Figure 4 can be derived from

those in Figure 3 by a vertex deletion procedure. For example, deleting a

vertex from position-3 of benzodicyclobutadiene (the first generation mem-

ber in the upper series of Figure 3) gives the first generation molecular

graph in the upper series of Figure 4, and deleting the four vertices in the

plane of tetravinylcyclobutadiene (the first generation member in the lower

series of Figure 3) gives the first generation molecular graph in the lower

series. Using Hosoya’s method,9,15 the density of states for the infinite limit

member to the series in Figures 4–6 has been determined to be given by the

general expression of

X5 – 6X3 + 4X(1 – cos�k) = 0

which gives eigenvalues of 0, 0, 0, 0, � 2, � 2.0, � 2.4495 for the boundaries of

the density of states and a zero bandgap.

RECURSION RELATIONS FOR POLYMERS WITH SINGLY

CONNECTED MONOMERIC UNITS

All the series in Figures 1–2 devolve to the same infinite limit �-elec-

tronic system and have the same following recursion relation

Pn(X) = (X4 – 5X2)Pn–1(X) – 4X2Pn–2(X)
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where n = 0, 1, 2, 3, ... corresponds to the generation number. Note that

P0(X) = X2 – 1 for the upper series in Figures 1–2 and P0(X) = X3 – 2X in the

two lower series. P1(X) differs for all four series in Figures 1–2. The coef-

ficients of (X4 – 5X2) and 4X2 are determined by the characteristic polyno-

mial of the C4H2 aufbau unit (cyclobutadienediyl). The characteristic poly-

nomial for the cyclobutadiene monomer is X4 – 4X2. Since another bond is

formed for each attachment of this monomer to the polymer chain and 4 cor-

responds to the number of edges (bonds) in the C4 molecular graph, this se-

cond coefficient must be incremented by one to give X4 – 5X2 as the cha-

racteristic polynomial for the aufbau unit.

The recursion relation for the series in Figures 4–6 is given by

Pn(X) = (X5 – 6X3 + 4X)Pn–1(X) – 4X2Pn–2(X)

where C5H3, methylenecyclobutadienediyl, is the aufbau unit. The charac-

teristic polynomial for methylenecyclobutadiene is X5 – 5X3 + 2X. Since

another bond is formed for each attachment of this monomer to the polymer

chain and 5 corresponds to the number of edges (bonds) in the correspond-

ing molecular graph, this second coefficient must be incremented by one and

the third coefficient �a4 = 1
2 (q2–9q + 6Nc) – 2r4 = 4� (Ref. 7) must also be

amended since it is a function of the number of molecular graph edges (q).

Thus, the characteristic polynomial for the methylenecyclobutadienediyl

aufbau unit is X5 – 6X3 + 4X.

The 4X2 coefficient arises from the way these aufbau units are connected

which is basically the same for the two different aufbau units for the series

in Figures 1–2 and 4–6. An alternative way to acquire these aufbau charac-

teristic polynomials is by setting cos�k = 0 in the corresponding prior cyclic

dimer expressions. Techniques for finding recursion relations for these type

of polymers have been discussed by Hosoya.9

DESIGN OF STRONGLY SUBSPECTRAL SERIES

While the discovery of strongly subspectral series is mainly empirical,

some general guiding rules can be summarized. Starting with two empiri-

cally found strongly subspectral molecular graphs, search for an aufbau

unit in which different attachments leads to two successor molecular graphs

that are also strongly subspectral. In this search, keep in mind that succes-

sive attachments should eventually result in extended systems that begin to

look more and more alike, and the dettachment of this aufbau will frequen-

tly give zero generation molecular graph members possessing the unique ei-

genvalues. The zero generation molecular graphs are often embedding frag-

ments for every member of the respective series.
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SUMMARY

The design of NBMO degenerate systems continues to attract the inter-

est of investigators17 and the aufbau principle in generating strongly sub-

spectal series is another approach. Subspectrality is one measure of molecu-

lar similarity and the aufbau principle can lead to infinite pairs of series

whose membership is pairwise strongly subspectral. This provides a strat-

egy for predicting the properties of unknown molecules from known ones if

they both have membership to such a pair of series. This paper presents new

results that further extends our previous work.18

The results of Figures 1–6 suggest that end groups have a greater influ-

ence on smaller polymer chains than larger ones. The three different infi-

nite polymer strips containing the cyclobutadiene moiety have zero band-

gaps and are expected to be conductive materials.

Coupling Hosoya’s method of using cyclic boundary conditions in the

analysis of infinite linear polymers with our concept of strongly subspectral

series allows us to not only determine the precise end points for the density

of states but also gives us a another perspective. The simultaneous study of

a large group of molecules as herein done would be prohibitively time con-

suming using ab initio methods, whereas, this approach allows easy discov-

ery of analytical expressions and trends in large groups of related molecu-

les.
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SA@ETAK

Jako subspektralna serija molekularnih grafova koji
sadr`e ciklobutadien

Jerry Ray Dias

Prou~avana je skupina jako subspektralnih molekulskih grafova, prete`ito sa

zajedni~kim svojstvenim vrijednostima. Ti grafovi predstavljaju konjugirane poliene

koji sadr`e ciklobutadien. Pretkazana su njihova strukturna i elektronska svojstva.
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