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The concept of symmetry point groups for regular polyhedra can be

generalized to special permutation groups to describe negative cur-

vature polygonal networks that can be expanded to possible carbon

and boron nitride structures through leapfrog transformations,

which triple the number of vertices. Thus a D surface with 24 hep-

tagons and 56 hexagons in the unit cell can be generated by a leap-

frog transformation from the Klein figure consisting only of the 24

heptagons. The permutational symmetry of the Klein figure can be

described by the simple PSL(2,7) (or heptakisoctahedral) group of

order 168 with the conjugacy class structure E + 24C7 + 24C7
3 +

56C3 + 21C2 + 42C4. Analogous methods can be used to generate a

D surface with 12 octagons and 32 hexagons by a leapfrog transfor-

mation from the Dyck figure consisting only of the 12 octagons.

The permutational symmetry of the Dyck figure can be described

by a group of order 96 and the conjugacy class structure E + 24S8 +

6C4 + 3C4
2 + 32C3 + 12C2 + 18S4. This group is not a simple group

since it has a normal subgroup chain leading to the trivial group

C1 through subgroups of order 48 and 16 not related to the octahe-

dral or tetrahedral groups.

Key words: permutation groups, leapfrog transformation, negative

curvature, polygonal networks, carbon nitride structure, boron ni-

tride structure.

INTRODUCTION

Until the 1980’s diamond and graphite were the only well-characterized

allotropes of elemental carbon. However, during the 1980’s new allotropes of

carbon were discovered exhibiting finite molecular cage structures rather

than the infinite polymeric structures found in diamond and graphite. The
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first such molecular carbon allotrope was C60, which was postulated and

subsequently shown to have a truncated icosahedral structure with all 60

equivalent trigonal carbon vertices, 20 hexagonal faces, and 12 pentagonal

faces.1 The discovery of C60 was followed almost immediately by the discov-

ery of other molecular Cn allotropes (e.g., n = 70, 76, 78, 80, 82, 84, 86, 88,

90, and 96) exhibiting other polyhedral cage structures albeit with much

lower symmetry.2 Such molecular carbon cages, generally known as ful-

lerenes in view of their resemblance to the architectural creations of R.

Buckminster Fuller, were all found to have exactly 12 pentagonal faces; the

remaining faces of all known fullerenes are hexagons. Such fullerenes may

be regarded as topologically homeomorphic to a sphere, the prototypical sur-

face exhibiting positive curvature and having genus zero. Thus the intro-

duction of carbon pentagons into the flat graphite hexagonal lattices gener-

ates sites of positive curvature. Euler’s theorem can be used to show that a

closed polyhedron with all trigonal vertices and only pentagonal and hexag-

onal faces, such as all known fullerene polyhedra, must have exactly 12 pen-

tagonal faces.

A question of interest is the favored shapes of networks of trigonal car-

bon vertices in which only heptagonal and hexagonal carbon rings are pres-

ent. Such networks cannot form closed polyhedra of positive curvature ho-

meomorphic to the sphere but instead must form infinite structures of

negative curvature known as infinite periodic minimal surfaces (IPMS’s).3

The simplest and most symmetric IPMS’s exhibit cubic symmetry and have

unit cells of genus three. Negative curvature carbon allotropes based on

IPMS’s are conveniently called schwarzites, in honor of the mathematician

H. A. Schwarz, who was the first to study IPMS’s in detail. The possibility of

negative curvature allotropes of carbon was apparently first recognized by

Mackay and Terrones4 in 1991 and in 1992 Vanderbilt and Tersoff 5 first

postulated the so-called D168 structure with a unit cell of genus three con-

taining 24 heptagons and 80 hexagons and a total of 168 carbon atoms. In

this structure the heptagonal rings may be viewed as sites of negative cur-

vature and are not necessarily planar but can be bent. Carbon allotropes

with negative curvature IPMS structures have not yet been obtained experi-

mentally. A major difficulty in designing a synthesis of schwarzites is how to

selectively form carbon rings of the desired sizes (e.g., hexagons and hepta-

gons) without forming carbon rings of undesired sizes (e.g., pentagons).

Boron nitride analogues of diamond and graphite are known with the

stoichiometry (BN)x in which pairs of adjacent carbon atoms are replaced by

isoelectronic BN pairs thereby suggesting the possible existence of negative

curvature boron nitrides analogous to the schwarzites. In this connection,

boron nitride structures (BN)x are most favorable energetically if they con-
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tain only B–N bonds without any B–B or N–N bonds. However, the presence

of carbon rings with an odd number of atoms (e.g., pentagons in fullerenes

and heptagons in schwarzites) makes impossible analogous (BN)x struc-

tures if only the most energetically favorable B–N bonds are allowed. Thus

in order to obtain (BN)x with only B–N bonds only (BN)r rings with an even

number of atoms are allowed with alternating boron and nitrogen atoms so

that the most favorable positive curvature BN cage analogous to the fulle-

renes contains only (BN)2 squares and (BN)3 hexagons and the most favor-

able negative curvature IPMS boron nitride structure contains only (BN)4

octagons and (BN)3 hexagons. In this connection the truncated octahedral

B12N12 structure has been shown computationally6,7 to be a favorable struc-

ture for a cage (BN)x boron nitride.

The symmetry of the polyhedra of the fullerene cages such as C60 and

B12N12 can be described in terms of the point group of the polyhedron,

namely icosahedral (Ih) in the case of C60 and octahedral (Oh) in the case of

B12N12. Generalizing this concept of point group symmetry to the permuta-

tional symmetry of the negative curvature IPMS carbon and boron nitride

allotrope structures leads to permutation groups which were already known

to mathematicians in the 19th century but are not familiar to chemists even

today since they do not appear as symmetry point groups. Previous papers

discuss the heptakisoctahedral group of order 168 arising from the D168

schwarzite structure.8,9 This paper reviews these earlier observations in a

group-theoretical context and extends them to the hypothetical IPMS boron

nitride structure containing only hexagons and octagons.

GENERAL IDEAS

Negative Curvature and Infinite Periodic Minimal Surfaces

Consider a curved surface, such as one formed by a network of sp2-hy-

bridized carbon atoms. At each point such a curved surface has two princi-

pal curvatures k1 and k2. The mean curvature H and the Gaussian curva-

ture K are defined as follows:

H =
1

2
(k1 + k2) (1a)

K = k1k2. (1b)

A spherical or ellipsoidal shell has positive Gaussian curvature (i.e., it is

»convex«), a hyperbolic sheet has negative Gaussian curvature (i.e., it is

»concave«), and a cylinder or cone has zero Gaussian curvature. Minimal
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surfaces are surfaces where the mean curvature H at each point is zero so

that k1 = – k2 by equation (1a) and K � 0 by equation (1b). They are thus

saddle-shaped everywhere except at certain »flat points« which are higher

order saddles. The simplest example of a (non-periodic) minimal surface ex-

cluding the trivial case of the plane is defined by the following cubic equa-

tion:

F(x, y) = z = x(x2 – 3y2). (2)

This surface (Figure 1) is called the monkey saddle,10 since it has three

depressions, namely two for the monkey’s legs and one for the tail. The av-

erage curvature of the monkey saddle vanishes at every point so that at ev-

ery point its »concavity« is equal to its »convexity.«

It is not possible to construct an infinite surface with a constant nega-

tive Gaussian curvature. However, H. A. Schwarz found before 1865 that

patches of varying negative curvature and constant zero mean curvature

could be smoothly joined to give an infinite surface with zero mean curva-

ture which is periodic in all three directions. Such surfaces are called infi-

nite periodic minimal surfaces (IPMS’s). The finite surface element building

block which is repeated periodically throughout space in an IPMS plays a

role analogous to the unit cell in a crystal structure. The five classical

IPMS’s known by 1880 (Ref. 11) have octahedral, tetrahedral, cubic, trigonal

prismatic, and triangular unit cells and are conventionally known as the P,
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D, T, CLP, and H surfaces, respectively. Hyde and collaborators have used

IPMS’s to describe crystal structures.3,12–16

The IPMS’s of particular interest for possible carbon or BN allotrope

structures are those of the highest symmetry, namely the P and D surfaces,

which have a genus of three. The unit cell of the P surface (the designation

»P« refers to primitive cubic) can be viewed as an octahedral junction of six

pipes or tubes (the »plumber’s nightmare«) or equivalently as three hyper-

boloids whose axes meet at right angles (Figure 2). Connecting the open pi-

pes emerging from each of the three pairs of adjacent faces of the plumber’s

nightmare thereby generating a closed surface leads to a sphere with three

handles thereby indicating that a unit cell of this surface has genus 3.

The description of the unit cell of a P surface by the plumber’s night-

mare (Figure 2) suggests a natural division of the unit cell into eight equiv-

alent octants, each corresponding to a face of the underlying octahedron so

that the numbers of vertices, edges, and faces in a unit cell of a P surface

are eight times those of an individual octant. All such octants of a P surface

must be equivalent and contain the symmetry elements of the Oh point

group describing the symmetry of the underlying octahedron or its dual cu-

be. The local symmetry of an individual octant of the P surface is that of an

equilateral triangle, namely D3h. Thus in order to be compatible with the

symmetry of the P surface the structure within an individual octant must

contain a C3 axis passing through the center of the octant and also must

contain a reflection plane (�v in Oh) through each altitude of the triangle

representing the octant corresponding to D3h local octant symmetry. This

symmetry clearly corresponds to that of a simple cubic lattice. The require-

ment of reflection planes in an octant of the P surface means that only

achiral octants are suitable for P surfaces.
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mare« octahedral junction of six pipes through the faces of a cube; (b) Three hyper-

boloids whose axes intersect at right angles.



The D surface is related to the P surface by reduction of the local sym-

metry from octahedral (Oh) to tetrahedral (Td) (Figure 3). This means that

the eight vertices of the underlying cube of the P surface are partitioned

into two equivalent sets of four vertices for the D surface, each correspond-

ing to the vertices of the two subtetrahedra making up the cube. The D sur-

face can be seen to be related to the diamond lattice in that both consist of

tetrahedral junctions imbedded into a cubic lattice (Figure 3). Three-fold

symmetry is still required in the individual octants of the D surface but the

reflection plane is no longer necessary. The D surface can thus accommodate

chiral octants with the two sets of four vertices each corresponding to

enantiomeric pairs of octants. The D surface bears an adjoint relationship to

the P surface which is described in greater detail elsewhere.3,8

The relationship between the unit cells of P and D surfaces is depicted

in Figure 2 as well as the face-centered cubic symmetry of a 2 � 2 � 2 block

of eight D surface unit cells. Thus the descent in unit cell symmetry from Oh

for the P surface to Td for the D surface can be depicted either by elongation

of the »plumber’s nightmare« octahedral junction (Figure 2) in the P surface

to two tetrahedral junctions in the D surface17 (Figure 3) or by the parti-

tions of eight equivalent octants in the P surface unit cell (represented sche-
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matically as A in Figure 3) into two complementary sets of tetrahedrally dis-

posed octants in the D surface unit cell (represented schematically as A and

B in Figure 3).

Euler’s Theorem

The standard version of Euler’s theorem relating the numbers of verti-

ces (v), edges (e), and faces ( f ) is

v – e + f = 2 . (3)

This theorem as stated in equation (3) applies to polyhedra which can be

embedded in a sphere or a surface homeomorphic to a sphere and thus have

genus zero. If such a polyhedron has all degree 3 vertices then

2e = 3v (4)

since each edge connects exactly two vertices and each vertex is an endpoint

of exactly three edges. In addition each edge is shared by exactly two faces

leading to the relationship

S
n

fn = 2e . (5)

Now consider regular polyhedra containing only triangular, square, or pen-

tagonal faces so that

2e = 3v = 3 f3 + 4 f4 + 5 f5 . (6)

Substituting this into Euler’s equation (equation (3)) gives

S (6 – k) fk = 12 . (7)

Setting in turn f4 = f5 = f>5 = 0, f3 = f5 = f>5 = 0, and f3 = f4 = f>5 = 0 gives the

solutions f3 = 4, f4 = 6, and f5 = 12 for the regular tetrahedron, the cube, and

the regular dodecahedron, respectively.

Euler’s theorem can be generalized to polyhedra (or other polygonal net-

works) embedded in a surface of genus g by using

v – e + f = 2(1 – g) . (8)

Note that if g = 0 (i.e., for polyhedra homeomorphic to a sphere) equation (8)

reduces to the familiar version of Euler’s theorem (equation (3)). In the case

of cubic IPMS’s with genus 3, such as P and D surfaces, equation (8) becomes
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v – e + f = – 4 . (9)

Now consider a cubic IPMS decorated with only trigonal atoms so that equa-

tion (4) applies as well as equation (5). Substitution of equations (4) and (5)

into equation (9) gives

S (6 – k) fk = – 24 . (10)

Now apply equation (10) to trigonal atom networks on genus 3 surfaces con-

taining only hexagons and a single type of larger polygons leading to the fol-

lowing solutions of interest in this paper:

(a) Hexagons and heptagons � f�7 = 0 � f7 = 24 (i.e., 3 heptagons per octant)

(b) Hexagons and octagons � f�8 = 0 � f8 = 12 (i.e., 1 1/2 octagons per octant).

The Isolated Non-Hexagon Rule

The number of theoretically possible fullerene structures (i.e., cage

structures containing only pentagons and hexagons) for a given number of

carbon atoms rapidly becomes unmanageable as the number of carbon at-

oms is increased above the minimum of 20 for the regular dodecahedron.

Additional concepts must be introduced to select a limited number of pre-

ferred fullerene structures from this large number of possible fullerene

structures and to rationalize the observation of C60 rather than C20 is the

smallest isolable fullerene. In this connection an important additional con-

cept for determining fullerene structures is the so-called isolated pentagon

rule (IPR)18 which avoids the unstable 8-membered pentalene-type cycle

around any two pentagonal faces sharing an edge. Such pentalene units are

undesirable for the following reasons:

(1) The Hückel criteria for aromaticity favors cycles containing 4 k + 2

rather than 4k �-electrons where k is an integer. Pentalene units have 8

�-electrons which is an unstable »4 k -type« number.

(2) Topological and geometrical considerations suggest that hexagonal

faces favor flat surfaces (e.g., graphite) whereas pentagonal faces form cur-

ved surfaces (e.g., the regular dodecahedron). Thus pentagonal faces lead to

positive curvature whereas hexagonal faces favor zero curvature. Fusing

two pentagonal faces by sharing an edge concentrates much of the curva-

ture of the polyhedral surface into a limited region leading to unnecessary

strain in the corresponding fullerene.

Klein19,20 has proven the following theorem concerning the IPR:

IPR Fullerene Theorem: For every even vertex count � � 70 there exists at

least one fullerene satisfying the IPR and the smallest fullerene satisfying

the IPR is the truncated icosahedron with � = 60.
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Experimental observations are in excellent agreement with this theorem

since the smallest isolable fullerene has been found to be C60 and the next

higher isolable fullerene is C70.

Analogous ideas can be used to limit the number of possible carbon or

boron nitride structures containing hexagons and other polygons, which can

generically be called »non-hexagons.« This leads to the isolated non-hexagon

rule (INHR) stating that non-hexagonal faces in trigonal carbon or boron

nitride networks must be sufficiently isolated from each other so that no

pair of non-hexagons shares any edges. Thus for schwarzites based on the D

surface decorated only with hexagons and heptagons, the minimum number

of atoms in the unit cell of a structure satisfying the INHR (the »isolated

heptagon rule« in this case) is the 168 atoms of the D168 structure proposed

by Vanderbilt and Tersoff.5 At least in this sense this D168 structure is the

schwarzite »analogue« of the known C60 fullerene.

The Leapfrog Transformation

The truncated icosahedron of the C60 structure can be generated from

the regular dodecahedron by omnicapping (stellating) followed by duali-

zation. Such a process is called a leapfrog transformation, and the resulting

network is called the leapfrog of the original network. A leapfrog transfor-

mation of a network with all degree 3 vertices and only non-hexagonal faces

triples the number of vertices and assures that the non-hexagonal faces will
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TABLE I

Comparison of several leapfrog transformations

Polygon combi-

nation

Squares +

Hexagons

Pentagons +

Hexagons

Heptagons +

Hexagons

Octagons +

Hexagons

leapfrog

process (BN)
4 � ��

leapfrog
(BN)

12
C

20 � ��
leapfrog

C
60 D56 � ��

leapfrog
D168 D32 � ��

leapfrog
D96

original

figure
O

h
cube I

h
dodecahedron Klein figure Dyck figure

vertices 8 24 20 60 56 168 32 96

edges 12 36 30 90 84 252 48 144

faces 6 14 12 32 24 80 12 44

f�6 6 6 12 12 24 24 12 12

f6 0 8 0 20 0 56 0 32

f�6 + f�6 edges 12 0 30 0 84 0 48 0

f�6 + f6 edges 0 24 0 60 0 168 0 96

f6 + f6 edges 0 12 0 30 0 84 0 48



be »diluted« by enough hexagonal faces such that the INHR is satisfied. In

1996 the author8 showed how the D168 structure5 can be generated by an

analogous leapfrog transformation starting with a genus 3 figure containing

24 heptagons and 56 vertices first described by Klein21 in 1879.

Table I compares the four leapfrog transformations of interest in the

context of this paper. In each case the leapfrog transformation expands a

highly symmetrical »seed« structure containing exclusively the regular

non-hexagons of interest and only trivalent vertices to a structure with the

following properties:

(1) The number of vertices in the leapfrog is triple the number of verti-

ces in the original seed structure;

(2) The permutational symmetry (i.e., the point group symmetry in the

case of the genus zero polyhedra) of the seed structure is retained in the

leapfrog;

(3) The minimum number of hexagons is introduced to give a structure

satisfying the INHR.

In the case of the cage polyhedra the leapfrog transformation (Figure 4)

converts a regular trivalent polyhedron (i.e., the cube or the dodecahedron)

into its truncated dual (i.e., the truncated octahedron in the case of the cube

and the truncated icosahedron in the case of the dodecahedron). The under-

lying permutational symmetry is the same as that of the corresponding po-

lyhedral point group, i.e., Oh in the case of the cube and Ih in the case of the

dodecahedron. The underlying permutational symmetry of the seeds con-

taining 24 heptagons (i.e., the Klein figure) and 12 octagons (i.e., the Dyck

figure) is more unusual. The relevant group theory will be examined in the

remainder of this paper. More details on the symmetry of the Klein figure as

described by the heptakisoctahedral group are presented elsewhere.9

Permutation Group Theory

The most familiar applications of group theory in chemistry use symme-

try point groups, which describe the symmetry of molecules.22 The elements

of symmetry point groups can include only the standard symmetry opera-

tions in three-dimensional space, namely the identity (E), proper rotations

(Cn), reflections (�), inversion (i), and improper rotations (Sn). However, the

concepts of group theory can also be applied to more abstract sets such as

the permutations of a set X of n objects. A set of permutations of n objects

(including the identity »permutation«) with the structure of a group is called

a permutation group of degree n and the number of permutations in the set

is called the order of the group.23 The standard symmetry operations in

symmetry point groups (e.g., E, Cn, �, i, Sn) can be considered to be special
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types of permutations when applied to discrete sets of points or lines such

as the vertices or edges of polyhedra.24 In such situations, symmetry point

groups can be regarded as special cases of permutation groups.

Let G be a permutation group acting on the set X and let g be any opera-

tion in G and x be any object in set X. The subset of X obtained by the action

of all operations in G on x is called the orbit of x. A transitive permutation

group has only one orbit containing all objects of the set X. Sites permuted

by a transitive permutation group are thus equivalent. Transitive permuta-

tion groups represent permutation groups of the »highest symmetry« and

thus play a special role in permutation group theory.

Let A and X be two elements in a group. Then X–1AX = B is equal to

some element in the group. The element B is called the similarity transform

of A by X and A and B are said to be conjugate. A complete set of elements of

a group which are conjugate to one another is called a class (or more specifi-

cally a conjugacy class) of the group. The number of elements in a conjugacy

class is called its order; the orders of all conjugacy classes must be integral

factors of the order of the group.

A group G in which every element commutes with every other element

(i.e., xy = yx for all x, y in G) is called a commutative group or an Abelian

group. In an Abelian group every element is in a conjugacy class by itself,
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i.e., all conjugacy classes are of order one. A normal subgroup N of G, writ-

ten N G, is a subgroup which consists only of entire conjugacy classes of

G.25 A normal chain of a group G is a sequence of normal subgroups C1

Na
1

Na
2

Na
3

··· Nas
G, in which s is the number of normal sub-

groups (besides C1 and G) in the normal chain (i.e., the length of the chain).

A simple group is a group having no normal subgroups other than the iden-

tity group C1. Simple groups correspond to the transitive groups of »highest

symmetry« and are particularly important in the theory of finite groups.26,27

The only non-trivial simple group found as a symmetry point group is the

icosahedral pure rotation group, I, of order 60.

The permutation groups involved in the structures of carbon and boron

nitride allotropes based on finite polyhedra necessarily correspond to famil-

iar polyhedral point groups. Thus the truncated icosahedral structure of the

fullerene C60 is derived from the leapfrog transformation of the regular do-

decahedron (Figure 4). During this transformation the icosahedral symme-

try Ih is preserved. Similarly the truncated octahedral structure of the bo-

ron nitride B12N12 is derived from the leapfrog transformation of the cube

during which the octahedral symmetry Oh is preserved. The remainder of

this paper discusses the interesting permutation groups which arise when

analogous leapfrog transformations are used to generate the most symmet-

rical negative curvature structures containing only hexagons and either

heptagons or octagons.

THE PERMUTATION GROUPS OF SYMMETRICAL POLYGONAL

NETWORKS ON CUBIC INFINITE PERIODIC MINIMAL SURFACES

Schwarzite Structures Containing Hexagons and Heptagons

The above analysis suggests that the unit cell of the D168 schwarzite

structure can be generated by decorating the unit cell of a D surface of ge-

nus 3 with 24 heptagons followed by a leapfrog transformation similar to

the generation of the C60 fullerene structure by decorating a sphere with 12

pentagons to give the regular dodecahedron followed by an analogous leap-

frog transformation (Figure 4). The D surface decorated with 24 heptagons

can be obtained from a figure described by the famous 19th century German

mathematician Felix Klein in an 1879 paper.21 Figure 5, which is adapted

from a figure in the 1879 Klein paper, depicts schematically the Klein fig-

ure, which is an open network consisting only of full heptagons or portions

thereof which can be folded to decorate a genus 3 negative curvature sur-

face, such as a unit cell of the D surface, in the most symmetrical manner

with 24 heptagons. The seven-fold symmetry (i.e., a C7 axis) of the unfolded

Klein figure (Figure 5) is clearly evident in a »central« heptagon (heptagon
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1) surrounded by seven additional heptagons (heptagons 2 through 8). An

»outer group« of an additional seven heptagons (heptagons 9 through 15)

preserves the seven-fold symmetry of this open network.

The open network of heptagons as depicted in Figure 5 contains 14 outer

arcs, which appear as sets of four edges or portions thereof because of the

negative curvature of the surface. These outer arcs are labeled in pairs by

the letters A through G. Joining the seven pairs of outer arcs labeled by the

same letters generates the genus 3 surface which is topologically homeo-

morphic to a unit cell of the D surface and completes the remaining nine of

the total of 24 heptagons by joining their pieces found in regions which are

separated in the original open network (Figure 5). Thus, heptagons 16

though 22 are generated by joining their halves whereas heptagons 23 and

24 (not labeled in Figure 5) are each obtained by joining seven of the pieces

which are the 14 »points« of the open network in Figure 5 not allocated to

heptagons (heptagons 1 to 15) or heptagon halves (heptagons 16 to 22). Con-

verting the open network in Figure 5 to a genus 3 surface by joining the

pairs of outer arcs AA through GG destroys the seven-fold rotation axis in

the symmetry point group of the resulting surface but in the most symmet-

rical presentation preserves the proper rotations (i.e., O but not Oh symme-

try) of the cubic unit cell of the D surface.

Klein in his 1879 paper21 also considers the most symmetrical form of

the genus 3 figure of 24 heptagons. A cubic unit cell of the D surface can be

decomposed into eight octants as discussed above so that each octant con-

tains 24/8 = 3 of the 24 heptagons with the vertices common to the eight

triplets of heptagons corresponding to the eight vertices of the underlying

cube. One of these triplets of heptagons is depicted in Figure 6a. This deco-

ration of a unit cell of the D surface with 24 heptagons has (7)(24)/2 = 84
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genus 3 surface are indicated by letters A through G.



edges and (7)(24)/3 = 56 vertices and thus has an Euler characteristic (equa-

tion (9)) of 56 – 84 + 24 = – 4 corresponding to genus 3. A hypothetical car-

bon allotrope based on this structure is conveniently called a D56 proto-

schwarzite since it has a C56 unit cell on the D surface.

This D56 protoschwarzite structure is unfavorable for at least the fol-

lowing reasons analogous to the reasons why a C20 fullerene based on the

regular dodecahedron is also unfavorable:

(1) The curvature of an sp2 carbon vertex common to three heptagons

leads to excessive angular strain;

(2) A pair of sp2 carbon heptagons sharing an edge (i.e., a »heptalene

unit«) has 12 (= 4k rather than 4k + 2) local �-electrons and is unfavorable

in schwarzite structures for the same reasons that a pair of pentagons shar-

ing an edge (i.e., a »pentalene unit« with 8 local �-electrons) is unfavorable

for fullerene structures.
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These unfavorable features of the D56 protoschwarzite structure can be

removed by subjecting it to a leapfrog transformation which has the follow-

ing effects:

(1) The number of vertices is increased by a factor of three giving

3 � 56 = 168 vertices in the unit cell leading to the D168 structure;

(2) The carbon heptagons are separated by the minimum number of he-

xagons so that no two carbon heptagons share an edge thereby eliminating

unfavorable heptalene units;

(3) The symmetry and the genus of the surface are preserved.

The effect of such a leapfrog transformation on an individual octant of

the Klein figure is depicted in Figure 6a.

Table I compares the effects of the leapfrog transformation on the dode-

cahedral C20 fullerene and on the D56 protoschwarzite. The products of both

leapfrog transformations, namely the C60 fullerene and the D168 schwar-

zite, have the following features in common:

(1) The numbers of vertices and edges belonging to non-hexagonal faces

(f�6 + f6 edges in Table I) are equal (60 in the case of C60 and 168 in the case

of D168);

(2) The numbers of edges belonging to non-hexagonal faces (f�6 + f6 edges

in Table I) are twice the numbers of edges belonging exclusively to hexago-

nal faces (f6 + f6 edges in Table I).

These features suggest that the C60 and D168 structures both represent

the minimum »dilutions« of non-hexagons with hexagons so that no pair of

non-hexagons has any edges in common. For this reason C60 is the smallest

stable fullerene. Similarly, D168 has the smallest schwarzite unit cell con-

taining only hexagons and heptagons with no pair of heptagons having an

edge in common.

Now let us consider the permutational symmetry of the D56 proto-

schwarzite structure based on the Klein figure. First consider an alternative

definition of the icosahedral pure rotation group, which can be extended to

larger simple permutation groups which do not occur as symmetry point

groups.28 In this connection consider a prime number p and let Fp denote the

finite field of p elements which can be represented by the p integers 0,…,

p – 1; larger integers can be converted to an element in this finite field by

dividing by p and taking the remainder (i.e., the number is taken »mod p«).

For example, the finite field F5 contains the five elements represented by

the integers 0, 1, 2, 3, and 4 and other integers are converted to one of these

five integers by dividing by 5 and taking the remainder, e.g., 7 � 2 in F5

(written frequently as »7 	 2 mod 5«). The group SL(2,p) is defined to be the
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group of all 2 � 2 matrices with entries in Fp having determinant 1 and its

subgroup PSL(2,p) for odd p is defined to be the quotient group of SL(2,p)

modulo its center, where the center of a group is the largest normal sub-

group that is Abelian. In the case of the groups SL(2,p) where p � 5, the cen-

ter has only two elements and the quotient group PSL(2,p) is a simple

group. The group PSL(2,5) contains 60 elements and is isomorphic to the

icosahedral pure rotation group I.

An important property of the PSL(2,p) permutation groups for p = 5, 7,

and 11 (Table II) is that they can function as transitive permutation groups

on sets of either p or p + 1 objects. In the case of the group PSL(2,5), these

transitive permutation groups on 5 and 6 objects can be visualized as per-

mutations of parts of an icosahedron since PSL(2,5) is isomorphic to the ico-

sahedral pure rotation group. Thus the PSL(2,5) group acts as a transitive

permutation group on the six diameters of a regular icosahedron, where a

diameter of an icosahedron is defined as a line drawn between a pair of an-

tipodal vertices. In order to obtain in an icosahedron a set of five objects

that is permuted transitively by the PSL(2,5) group, the 30 edges of an ico-

sahedron are partitioned into five sets of six edges each by the following

method:29

(1) A straight line is drawn from the midpoint of each edge through the

center of the icosahedron to the midpoint of the opposite edge.

(2) The resulting 15 straight lines are divided into five sets of three mu-

tually perpendicular straight lines.

Each of these five sets of three mutually perpendicular straight lines re-

sembles a set of Cartesian coordinates and defines a regular octahedron.

The PSL(2,5) permutation group as manifested in its isomorphic I symme-

try point group functions as a transitive permutation group on these five

sets of three mutually perpendicular straight lines. In fact the PSL(2,5) per-

mutation group is also isomorphic with the so-called alternating permuta-

tion group on five objects,30 namely A5, where an alternating permutation

group on n objects is the set of all possible even permutations and is of order

n!/2.

The PSL(2,p) (p = 5, 7, 11) groups are simple groups and thus have no

non-trivial normal subgroups. However, they contain two different sets of n

smaller non-normal subgroups corresponding to pure rotation groups of reg-

ular polyhedra; these regular polyhedral rotation groups are subgroups of

index p of the groups PSL(2,p). However, the PSL(2,11) group has been pro-

ven to the largest group of the general type PSL(2,p) with p a prime which

has a subgroup of index p.31 A corollary derived from this theorem is that if

p > 11, the PSL(2,p) group cannot be a transitive permutation group for a

set with fewer than p +1 elements in contrast to the PSL(2,p) (p = 5, 7, 11)
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groups which can be transitive permutation groups for sets of p elements,

namely 5, 7, and 11 respectively (Table II). Since the PSL(2,p) (p = 5, 7, 11)

groups contain polyhedral point groups as subgroups they are conveniently

designated as pollakispolyhedral groups.9 Thus the PSL(2,5), PSL(2,7) and

PSL(2,11) groups can be called the pentakistetrahedral, heptakisoctahedral,

and undecakisicosahedral groups, respectively, and designated as 5T, 7O,

and 11I, respectively.

The simplest example of the polyhedral subgroups of index p in the pol-

lakispolyhedral groups occurs in the pentakistetrahedral group, 5T, which is

equivalent to the icosahedral rotation group. Thus, 5T can be decomposed

into two different sets of five tetrahedra corresponding to the conjugacy

classes 12C5 and 12C5
2. This is related to the partitioning of the 20 vertices

of a regular dodecahedron into five sets of four vertices each corresponding

to a regular tetrahedron. The permutations of the group PSL(2,5) act as the

icosahedral pure rotation group I on the regular dodecahedron partitioned

in this manner and correspondingly as the alternating group A5 on the five

subtetrahedra.

The next higher pollakispolyhedral group, namely the heptakisoctahe-

dral group 7O of order 168, is highly relevant to understanding the struc-

ture and symmetry of the schwarzite D168. This group can be decomposed

into two sets of seven octahedral subgroups.8,9 This relates to the embed-

ding of the open network (i.e., the Klein figure),21,31 of 24 heptagons (Figure

5) into the unit cell of a D surface of genus 3 having a unit cell of octahedral

symmetry such as the »plumber’s nightmare« (Figure 2). The automorphism

group of the Klein figure (Figure 5) is 7O, which thus remains the auto-

morphism group of its embedding into the D surface in D168. The symmetry

group of the pure rotations of the D168 unit cell is the octahedral rotation

group O, which, as noted above, is a subgroup of index 7 in 7O. Thus the

D168 schwarzite structure can be seen to have seven-fold (C7) hidden sym-

metry.
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TABLE II

Properties of the pollakispolyhedral groups derived from the PSL(2,p) groups

(p = 5, 7, 11)

Group Order Conjugacy Classes
Polyhedral

Subgroup
5
T 
 PSL(2,5) 60 E + 12C5 + 12C5

2 + 20C3 + 15C2
T

7
O 
 PSL(2,7) 168 E + 24C7 + 24C7

3 + 56C3 + 21C2 + 42C4
O

11
I 
 PSL(2,11) 660 E + 60C11 + 60C11

2 + 110C3 + 55C2 +

132C5 + 132C5
2 + 110C4

I



Another question of interest is the relationship of the operations of the

heptakisoctahedral group to permutations in the Klein figure (Figure 5). In

this connection the 168 operations of 7O can be divided into the following

conjugacy classes:

(1) The identity operation E.

(2) Permutations of period 7 (C7), each of which leave three heptagons

invariant so that the cycle index on the set of 24 hexagons is x1
3x7

3. There

are eight distinct »C7 axes,« each of which passes through the midpoints of

three heptagons. The resulting 48 operations can be partitioned into two

conjugacy classes of 24 operations each, corresponding to C7 and C7
3 rota-

tions.

(3) Permutations of period 3 (C3), each of which leave two vertices in-

variant so that the 56 vertices of the Klein figure are partitioned into 28 »C3

axes.« There are 56 operations in the C3 class.

(4) Permutations of period 2 (C2), each of which leave four edges invari-

ant so that the 84 edges of the Klein figure are partitioned into 21 »C2 axes.«

There are thus a total of 21 operations in the C2 class. The C2 operations

can be generated by combination of a C7 and C3 operation, i.e., C2 = C7 � C3.

(5) Permutations of period 4 (C4), which partition the 24 heptagons into

six groups of 4. The C4 operations are related to the other operations by the

relationships C4 = C7
4 � C3 and (C4)

2 = C2. Because of the latter relationship

there are a total of 21 � 2 = 42 operations in the C4 class realizing that »C4«

and »C4
3« will be in the same conjugacy class.

Thus permutations of these five types can be seen to lead to all 168 per-

mutations and the six conjugacy classes of the heptakisoctahedral group

listed in Table II.

The permutational symmetry of the Klein figure provides a simple ex-

planation why the D surface rather than the more symmetrical P surface

(Figure 3) is required for the Klein figure. The high symmetry of the P sur-

face (e.g., Figures 2 and 3) requires the full achiral octahedral group Oh,

which however cannot be a subgroup of the 7O since the order of Oh, namely

48, does not divide the order of 7O, namely 168. For this reason the Klein

figure cannot be embedded onto the P surface without reducing its symme-

try to that of the D surface. Alternatively, it can be seen that an individual

octant of the Klein figure (Figure 6a) is chiral whereas the P surface requi-

res achiral octants.
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Cubic IPMS Boron Nitride Structures Containing Only

Hexagons and Octagons

The generalized Euler’s theorem (equations (9) and (10)) indicates that a

genus 3 structure containing only hexagons and octagons of alternating

trigonal boron and nitrogen atoms has exactly 12 octagons in the unit cell or

1 1/2 octagons per octant. The simple configuration of 12 octagons in the unit

cell of a genus 3 surface leading to 32 vertices and 48 edges was studied by

Dyck32 in 1880 and is conveniently called the Dyck figure (Figure 7). In the

Dyck figure a central octagon (octagon 1) can be seen to be surrounded by

eight other octagons (octagons 2 through 9 in Figure 7). Octagons 10 and 11

are divided into quarters by the boundaries whereas the final octagon (not

labeled in Figure 7) is obtained by joining the unlabeled 8 »points« of the

open network in Figure 7. The leapfrog of the Dyck figure (Figure 6b and

Table I) has 96 vertices, 144 edges, and 32 hexagons in its unit cell and is

conveniently called the D96 structure.

The permutational symmetry of the Dyck figure was already recognized

by Dyck32 to be described by a group of 96 permutations which can be descri-

bed as follows:

(1) The identity permutation.

(2) Permutations of period 4, each of which leaves four octagons invari-

ant. There are thus three distinct »C4 axes,« each of which passes through

the midpoints of four octagons. Since »C4«, and »C4
3« are in the same conju-

gacy class, there are a total of 3 � 2 = 6 permutations in this class and these

may be regarded as analogues of proper rotations C4.

(3) Permutations of period 2, using the same three »C4 axes« as the C4

permutations mentioned above and thus corresponding to C4
2. There are ob-

viously three of these permutations.
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Figure 7. The Dyck figure of 12 octagons. Pairs of outer arcs to be joined to form a

genus 3 surface are indicated by letters A through H.



(4) Permutations of period 8, each of which leave two octagons invariant.

These operations are analogous to an improper rotation S8 rather than a

proper rotation C8 since although S8 leaves only two octagons invariant,

S8
2 = C4 leaves four octagons invariant. Furthermore, the number of »S8

axes« is double the number of »C4 axes« since for each of the three »C4 axes«

passing through the midpoints of four octagons, there are two ways of choos-

ing the pair of octagons that is permuted and the pair of octagons that re-

mains fixed when an S8 operation is applied. Since »S8«, »S8
3«, »S8

5«, and

»S8
7«, are in the same conjugacy class, there are a total of 6 � 4 = 24 opera-

tions in this class.

(5) Permutations of period 3, each of which pass through 2 of the 32 ver-

tices of the D32 structure. Since there are 16 distinct pairs of such vertices

and since »C3« and »C3
2« are in the same conjugacy class, there are a total of

16 � 2 = 32 operations in this class.

(6) Permutations of period 2 (C2), each of which pass through the mid-

points of 4 of the 48 edges so that there are 12 operations in this class.

(7) Permutations of period 4, which are not derived by squaring permu-

tations of period 8. These may be regarded as analogues of improper rota-

tions S4 and there are 18 operations in this class.

These seven classes add up to the 96 operations in the permutation

group of the Dyck figure as E + 24S8 + 6C4 + 3C4
2 + 32C3 + 12C2 + 18S4.

The pure octahedral rotation group, O, is a subgroup of index 4 in this group

so that this group of order 96 can be described as the tetrakisoctahedral

group and designated as 4O. However, the octahedral rotation group O is not

a normal subgroup of the tetrakisoctahedral group since it cannot be con-

structed from entire conjugacy classes of 4O. Nevertheless, the tetrakisocta-

hedral group is not a simple group since other subgroups of 4O, albeit ones

unfamiliar in chemistry or as symmetry point groups, can be constructed

from entire classes of 4O. Thus 4O has a normal subgroup of order 48 and in-

dex 2 that can be obtained by deleting the entire classes of permutations of

periods 8 and 4 leaving only the permutations with periods 2 and 3 to give

E + 3C4
2 + 32C3 + 12C2 designated as G�3,3,4� by adapting terminology al-

ready used by Dyck. The group G�3,3,4� is clearly different from the full oc-

tahedral group Oh, which has elements of periods 4 and 6 and the very diffe-

rent conjugacy class structure E + 8C3 + 6C2 + 6C4 + 3C4
2 + i + 6S4 + 8S6 +

+ 3�h + 6�d.

The group G�3,3,4� is also not a simple group since deletions of its entire

class of permutations of period 3 gives a subgroup of order 16 and index 3

with only the identity and 15 permutations of period 2, namely E + 3C4
2 +

+ 12C2, which can be designated as G�4,4,4�, again adapting terminology
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used by Dyck.32 This leads to the following normal subgroup chain for the

tetrakisoctahedral group 4O:

4O �
2

G�3,3,4� �
3

G�4,4,4� �
2

D2h �
2

D2 �
2

C2 �
2

C1

Order: 96 48 16 8 4 2 1

The normal subgroup chain of the tetrakisoctahedral group 4O can be

depicted by representing 4O and its normal subgroups as tessellations (Fig-

ure 8), where a tessellation of a surface is an embedding of a network of

polygons into a surface.33 Such tessellations can be described in terms of

their flags, where a flag is a triple (V,E,F) consisting of a vertex V, and edge

E, and a face F which are mutually incident. A tessellation T is considered

to be regular if its symmetry group G(T) is transitive on the flags of T. A

permutation group can be depicted as a regular tessellation on whose flags

it acts transitively.

The tetrakisoctahedral group, 4O, of the Dyck figure can be described by

a tessellation with 96 white triangles and 96 black triangles so that the 96

operations of 4O act transitively on the triangles of a given color (Figure 8).

Such a tessellation can be described as �2,3,8� indicating that two white (or

black) triangles meet at the midpoints of each edge of an octagon of the

Dyck figure, three triangles of the same color meet at each vertex of such an

octagon, and eight triangles of the same color meet at the center of each

such octagon. Halving the number of triangles in this tessellation by com-

bining adjacent triangles in a symmetrical manner gives a figure with 48

triangles of each color corresponding to the normal subgroup G�3,3,4� of or-

der 48 and index 2 in 4O (Figure 8). The designation �3,3,4� for this tessella-

tion relates to the points at the vertices of the original octagons where three

triangles of a given color meet and the points at the centers of the original

octagons where four triangles of a given color meet. Taking the 96 triangles
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Figure 8. Tessellations showing the normal subgroup structure of the group G�2,3,8�

( 
 4O) of the Dyck figure.



of both colors in the tessellation �3,3,4� and recoloring them in alternate

colors so that six triangles in the original �2,3,8� tessellation have a single

color leads to a regular tessellation with only 16 triangles of each color cor-

responding to the normal subgroup G�4,4,4� of index 3 in G�3,3,4�. The desig-

nation �4,4,4� for this tessellation relates to the fact that exactly four trian-

gles of a given color meet at each vertex. Note that in order to show the

relationship of the �4,4,4� tessellation to its »parent« �2,3,8� some of the so-

called edges of its »triangles« are actually bent rather than straight lines in

Figure 8.
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SA@ETAK

Neuobi~ajene grupe permutacija u ugljikovim i borovim nitridnim
strukturama s negativnom zakrivljeno{}u

R. Bruce King

Pojam grupe simetrije to~ke za pravilne poliedre dade se poop}iti na posebne gru-

pe permutacija koje mogu opisati mnogokutne mre`e s negativnom zakrivljeno{}u.

Primjenom transformacije »leapfrog« (kojom se utrostru~uje broj ~vorova) te se mre`e

mogu pro{iriti tako da opisuju mogu}e ugljikove i borove nitridne strukture (nega-

tivne zakrivljenosti). Pokazano je da se primjenom ove transformacije na Kleinov graf

(od 24 sedmerokuta) dobiva tzv. D-povr{ina sa 24 sedmerokuta i 56 {esterokuta u je-

dini~noj }eliji. Permutacijska simetrija Kleinova grafa mo`e se opisati jednostavnom

grupom PSL(2,7) ~iji je red 168, a struktura klasa konjugiranih elemenata dana je sa:

E + 24C7 + 24C7
3 + 56C3 + 21C2 + 42C4. Sli~no se primjenom transformacije »leap-

frog« na Dyckov graf (od 12 osmerokuta) dobiva povr{ina s 12 osmerokuta i 32 {este-

rokuta. Permutacijska simetrija Dyckova grafa mo`e se opisati grupom ~iji je red 96,

a struktura klasa konjugiranih elemenata dana je sa: E + 24S8 + 6C4 + 3C4
2 + 32C3 +

12C2 + 18S4. Ta grupa nije jednostavna, jer posjeduje lanac normalnih podgrupa koji

zavr{ava na trivijalnoj grupi C1 a ide preko podgrupa (reda 48 i 16) razli~itih od gru-

pe oktaedra i tetraedra.
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